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Synaptic Heterogeneity and Stimulus-Induced Modulation of
Depression in Central Synapses

John D. Hunter1 and John G. Milton1,2

1Committee on Neurobiology and 2Department of Neurology, Committee on Computational Neuroscience, University of
Chicago, Chicago, Illinois 60615

Short-term plasticity is a pervasive feature of synapses. Syn-
apses exhibit many forms of plasticity operating over a range of
time scales. We develop an optimization method that allows
rapid characterization of synapses with multiple time scales of
facilitation and depression. Investigation of paired neurons that
are postsynaptic to the same identified interneuron in the buc-
cal ganglion of Aplysia reveals that the responses of the two
neurons differ in the magnitude of synaptic depression. Also, for
single neurons, prolonged stimulation of the presynaptic neuron
causes stimulus-induced increases in the early phase of syn-
aptic depression. These observations can be described by a
model that incorporates two availability factors, e.g., depletable
vesicle pools or desensitizing receptor populations, with differ-

ent time courses of recovery, and a single facilitation compo-
nent. This model accurately predicts the responses to novel
stimuli. The source of synaptic heterogeneity is identified with
variations in the relative sizes of the two availability factors, and
the stimulus-induced decrement in the early synaptic response
is explained by a slowing of the recovery rate of one of the
availability factors. The synaptic heterogeneity and stimulus-
induced modifications in synaptic depression observed here
emphasize that synaptic efficacy depends on both the individ-
ual properties of synapses and their past history.

Key words: central cholinergic synapses; Aplysia; depletion;
desensitization; availability; optimization; model; stimulus his-
tory effects

A principle site of information transfer in the nervous system is
the synapse between two neurons. The synapse is not a passive,
static conduit. Rather, it depends on its past history and may
change on a spike-by-spike basis (Byrne, 1982; Dittman and
Regehr, 1998; Stevens and Wesseling, 1998; Gomis et al., 1999;
Neves and Lagnado, 1999). Consequently, mathematical model-
ing techniques are increasingly used to help unravel the complex-
ity of the synapse (Zengel and Magleby, 1982). The necessity of
using these techniques arises because a large number of mecha-
nisms act in concert (Zucker, 1989). Moreover, the relative im-
portance of each mechanism can change with the statistical prop-
erties of the input spike train, such as frequency and patterning
(Wiersma and Adams, 1950; Gillary and Kennedy, 1969; Wachtel
and Kandel, 1971; Brezina et al., 2000a). Modeling approaches
can be used, for example, to quantify and localize the effects of
modulators (Cleland and Selverston, 1997; Jorge-Rivera et al.,
1998); to quantify how synapses change with development (Hill
and Jin, 1998); to understand neuromuscular control (Brezina et
al., 2000a); to elucidate the role of synaptic dynamics in cortical
gain control (Abbott et al., 1997), computation (Chance et al.,
1998), and network synchrony (Abarbanel et al., 1996; Neiman et
al., 1999; Bressloff, 1999; Tsodyks et al., 2000); and to develop
rapid, computer-based methods for screening pharmacological
compounds.

An important step in synaptic modeling was the application of
random spike trains to collect data (Krausz and Friesen, 1977).
Appropriately chosen random stimulus trains contain intervals at
all time scales, and thus the relevant processes need not be
identified a priori. The Volterra method is a powerful technique
that has traditionally been used to analyze data collected with
random spike trains (Ogura, 1972; Krausz, 1975; Krausz and
Friesen, 1977). However, the disadvantages of this method are
that it is difficult to collect sufficient data and difficult to interpret
the results (Hung et al., 1977; Berger et al., 1988; Sclabassi et al.,
1988).

To address these difficulties, Sen et al. (1996) introduced “syn-
aptic decoding.” Optimization techniques are used to fit models
based on synaptic physiology to data collected with random spike
trains. Although this model has worked well in a neuromuscular
junction, it cannot describe synapses with depletion and hence has
limited applicability for the study of central synapses (Sen et al.,
1996; Chance et al., 1998; Dittman and Regehr, 1998).

Here we extend the Sen et al. (1996) model to synapses with
multiple availability factors, using their optimization methodol-
ogy. The term “availability factor” describes a synaptic compo-
nent that decrements with each action potential, recovers with a
characteristic time course, and scales the response multiplica-
tively. This generic term can encompass a depletable vesicle pool
or a desensitizing population of receptors. The extension was
required because we observed that the synaptic responses of
central neurons of Aplysia could not be adequately described by
synaptic models that lacked multiple availability factors.

The simultaneous IPSC responses of Aplysia neurons postsyn-
aptic to buccal interneuron B4/5 (Gardner, 1990) are described by
a synaptic model that incorporated two availability factors: one
rapidly recovering and the other slowly recovering (hereafter
referred to as the rapid and slow factors). The observation that
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two neurons respond differently to stimulation of B4/5 is ex-
plained by differences in the magnitudes of the rapid and slow
factors. We also observed in single neurons that prolonged stim-
ulation of B4/5 increases synaptic depression in subsequent stim-
uli. These changes are explained by an activity-dependent slowing
of the recovery of the rapid factor. Our results are consistent with
the physiology of acetylcholine receptor desensitization in Aply-
sia. This suggests that the available factor model, closely related
to the classic depletion model (Abbott et al., 1997; O’Donovan
and Rinzel, 1997; Markram et al., 1998), may be successfully
applied to receptor desensitization.

MATERIALS AND METHODS
Aplysia electrophysiology. Aplysia care and dissection were performed as
described in Church and Lloyd (1994). The ganglion was constantly
perfused with artificial seawater with high divalent cations; perfusion
solution concentrations were (in mM): 286 NaCl, 165 MgCl2 , 10 KCl, 33
CaCl2 , and 5 NaHCO3. The high divalent solution raises the threshold
for neural firing and is required to quiet intrinsic network activity while
allowing for the investigation of specific synapses (Gardner, 1986, 1990).
Because the high calcium may influence synaptic dynamics, we do not
know whether the observations discussed below would be seen in an
intact animal in normal physiological saline.

Recordings of the two postsynaptic neurons were made in two-
electrode voltage-clamp mode with two AxoClamp 2B amplifiers (Axon
Instruments, Foster City, CA) with electrode resistances '4 MV and a
holding potential of 250 mV. The electrodes were filled with 3 M
K-acetate, 30 mM KCl, and 0.1% Fast Green. The presynaptic interneu-
ron B4/5 was stimulated to fire action potentials with 8–10 msec step
current pulses of 100–250 nA using a Getting Model 5A microelectrode
amplifier (Getting Instruments, San Diego, CA) in current-clamp mode.
B4/5 can mediate pure inhibitory, pure excitatory, or diphasic inhibitory/
excitatory conductances depending on the follower cell (Gardner and
Kandel, 1977). We restricted our investigations to pure inhibitory fol-
lower cells [identified as B3, B6, B8, or B9 in Gardner and Kandel
(1977)].

Data were low-pass filtered at 1 kHz with a Frequency Devices 902
low-pass filter (Frequency Devices, Haverhill, MA) and digitally sampled
at 2 kHz. All recording and stimulation protocols were automated using
an AD2210 A/D board (Real Time Devices, State College, PA) inter-
faced with a personal computer controlled by custom software (Hunter et
al., 1998). We present data from a total of seven neurons in three animals.
The n 5 46 stimulus trains used here had lengths of 2–10 min, mean
frequencies of 2–10 Hz, and an exponential, a uniform, or a Gaussian
distribution of intervals.

Availabilit y model. The model described below is motivated by the
model presented in Sen et al. (1996). In the model presented there, the
amplitude of the i-th event is given by an arbitrary nonlinear transfor-
mation of an underlying factor, i.e., R(ti) 5 F(x(ti)) where x is an
unspecified underlying component and F is the nonlinear transformation.
Because x is governed by a linear convolution kernel, for example, a sum
of exponential functions with possibly different signs, this model is quite
general despite its notational simplicity and can describe systems with
multiple time scales of facilitation and depression. However, as Sen et al.
(1996) note, this formalism does not encompass the case in which the
response is governed by an availability factor, such as a depletable pool
of vesicles. We apply the Sen optimization methodology to an extended
model that incorporates multiple availability factors.

Our approach is mechanism independent so we use generic terminol-
ogy: “underlying component,” “available factor,” “fraction activated,”
and “response,” and we leave the biological correlates unspecified. De-
pending on the system, the underlying component could be identified
with presynaptic calcium accumulation, the available factor with the store
of readily releasable pool of vesicles, the fraction activated with the
fraction of available vesicles released, and the response with presynaptic
membrane capacitance. Alternatively, the components could be identi-
fied with postsynaptic mechanisms, in which the underlying component is
neurotransmitter concentration in the synaptic cleft, the available factor
is a population of desensitizing receptors, the fraction activated is the
fraction of free receptors activated, and the response is postsynaptic
current.

Each incoming action potential arrives at time ti and stimulates an
underlying component, x(ti). The underlying component sums linearly

according to a kernel Kx(t), which governs its decay between action
potentials:

x~ti! 5 O
tj#ti

Kx~ti 2 tj!. (1)

Figure 1A shows the time course of x(t) when Kx, shown in Figure 2A, is
an exponential function.

The underlying component at time ti determines the fraction, F(x(ti)),
of the available factor that is activated. Figure 1B shows the fraction
activated as a function of time. In all of our investigations, we examined
monotone F, i.e., the fraction that is activated is an increasing function
of the underlying component. A possible choice of F is the properly
scaled Boltzmann or Hill function (Fig. 2C). For the models of our data,
however, the distribution of the underlying component was narrow, and
thus we could make the approximation F(x) 5 ax. This simplifies the model
and reduces the number of parameters needed to describe the data.

Availability is decremented at each spike ti by the amount activated,
and between spikes it recovers with a time course given by a function
KA(t). Availability is a discontinuous function of time, with step changes
at the time of each action potential, as shown in Figure 1C. We use the
notation A 2(ti) to indicate the time limit approached from the left and
A 1(ti) for the limit from the right, which is the fraction available imme-
diately after a spike. Between spikes, availability recovers continuously
according to:

A2~t! 5 1 2 KA~t 2 ti!~1 2 A1~ti!! ti , t # ti11 . (2)

KA(t) has a maximum of 1, which occurs at t 5 0, and a minimum of 0,
which occurs at t 5 `. At each time ti, the available factor will decrease
by F(x(ti))A 2(ti), giving the relation:

A1~ti! 5 A2~ti! 2 F~x~ti!!A2~ti!. (3)

Using Equation 3, we can rewrite Equation 2 as:

!~ti11! 5 1 2 KA~ti11 2 ti!~1 2 !~ti!~1 2 F~x~ti!!!!, (4)

where ! [ A 2. For the example shown in Figure 1C, KA is an exponen-
tial function (Fig. 2B).

Figure 1. Simulation of the available factor model determining IPSC
response. A, Each incoming action potential stimulates an underlying
factor x, which decays with an exponential time course and sums linearly.
B, x at the time of each action potential determines the activated fraction
F of the available factor, given by a Boltzmann function of x. C, Avail-
ability ! is decremented by the amount activated and recovers with an
exponential time course. D, Response R is proportional amount activated,
indicated by the downward steps in C. E, IPSCs are given by the linear
convolution of R with the postsynaptic response kernel.
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The response R(ti) is proportional to the product of F and A 2(ti):

R~ti! 5 sF~x~ti!!A2~ti!, (5)

where s is a scalar. The response, which is defined for discrete points in
time, is shown in Figure 1D; to obtain the full continuous time response
shown in Figure 1E, the discrete time response must be convolved with
the impulse response kernel as discussed below.

The multiplicative relationship between F and ! is analogous to the
finding that mean quantal content m is given by the product of the
probability of release p and the number of quanta N in the quantal
analysis of Castillo and Katz (1954) and is an essential feature of
depletion models (Liley and North, 1953; Magleby and Zengel, 1982;
O’Donovan and Rinzel, 1997; Varela et al., 1997; Dittman and Regehr,
1998).

Nonetheless, the formulation of the available factor model in Equation
5 may be inadequate to describe many synapses, because the dynamics
may be determined by multiple, largely independent factors. In the case
where N factors sum linearly, the single factor model is extended in a
straightforward way with:

R~ti! 5 O
j51

N

Rj~ti! 5 O
j51

N

sjFj~x~ti!!!j~ti!. (6)

Because the factors evolve independently, the availability of the j-th
factor obeys:

!j~ti11! 5 1 2 KAj~ti11 2 ti!~1 2 !j~ti!~1 2 Fj~x~ti!!!!.

In our experiments, we observed for a given neuron that the magnitude
of the first IPSC response was approximately constant between stimuli
(see Results). Therefore, for some of our investigations, we normalized
the data so that the magnitude of the first IPSC was 1 and imposed the
constraint R(t1 ) 5 1 with the restriction on the last scalar sN. For the
additive factors model given in Equation 6, this restriction is:

sN 5 S1 2 O
j51

N21

Rj~t1!DY~FN~x~t1!!!N~t1!!. (7)

This constraint reduces the number of parameters by one.
Alternatively, the factors may combine multiplicatively. For example,

Magleby and Zengel (1982) found a multiplicative relationship between

augmentation and facilitation at the frog neuromuscular junction, al-
though they found an additive relationship between the two components
of facilitation. Varela et al. (1997) found that a model with two depres-
sion factors that enter multiplicatively described the EPSCs in neocorti-
cal slices. In such cases, the multiple factor model may be written as:

R~ti! 5 P
j51

N

Rj~ti!, (8)

with the first amplitude normalization:

sN 5 SFN~x~t1!!!N~t1!P
j51

N21

Rj~t1!D21

. (9)

It is also straightforward to extend the model to nonindependent
factors, so that the underlying component governing one availability
factor (e.g., neurotransmitter concentration in the cleft governing a
population of desensitizing receptors) is the response R of a multiple
factor model (e.g., presynaptic calcium concentration governing multiple
pools of vesicles).

Fitting the model to data. A number of steps are required to fit the
model to the data: (1) measure the impulse kernel K of the postsynaptic
neuron, (2) extract the magnitudes ai of the IPSCs from the postsynaptic
current record, and (3) use a gradient descent method to optimize fit
between the model and the data. The impulse kernel K is simply the
average IPSC resulting from a single presynaptic action potential. Gra-
dient descent is a general method of minimizing a function with deriv-
atives that are known (Fletcher, 1987); in this case the error of a model
prediction is minimized over the model parameters. By first extracting
the magnitudes of the IPSCs rather than working with the entire current
record, we were able to reduce the computation time by two to three
orders of magnitude for a 30 sec spike train.

A fundamental assumption of this modeling approach is that the
measured current response I(t) can be represented as a convolution of d
inputs of amplitudes ai with a fixed impulse response kernel K. That is:

I~t! 5 O
i

aiK~t 2 ti!, (10)

where the index i ranges over the action potentials at times ti # t. We plot
a sample current I(t) in Figure 3A. The extracted amplitudes ai are shown
as sticks in Figure 3B, with the time-averaged kernel K shown as an inset
in that panel.

This assumption motivating Equation 10 is not always true; for exam-
ple, it will fail in systems where the impulse response kernel is changing
during the stimulation. Two observations validate this assumption in our
data. First, we found that the spike-triggered average of the IPSC
waveform computed in the first half of a stimulus was indistinguishable
from that in the second half when both were normalized to the same
magnitude. Second, the current obtained by the right side of Equation 10
closely resembles the measured current. We validate this assumption in
Figure 3C for our data by showing that we can reconstitute the original
current I(t) by convolving the amplitudes with the impulse response
kernel. The root mean square (rms) error comparing the actual current
with the current obtained by Equation 10 ranged from 1 to 3% of the
amplitude of the first spike. In all of the cases, more than half of this error
is explained by small amplitude current noise in the recordings.

Measuring the kernel. The impulse response kernel K was computed
from a spike-triggered average of the responses to many action poten-
tials; an example kernel is shown in Figure 3. During a train of random,
repetitive stimulation, we selected spike times that had no events follow-
ing them in the subsequent 150 msec (longer than the duration of a single
IPSC). These spikes were used to compute the spike-triggered average to
avoid the corrupting effects of subsequent events. The resultant averaged
waveform was normalized by its maximum value. We preferred using this
measure to using a fixed kernel obtained by averaging the responses to
single stimuli spaced far apart because the spike triggered average
method can be used independently for each train without the need for
performing additional experiments. See Figure 3B, inset, for a sample
spike-triggered average kernel.

Extracting the amplitudes. We used this kernel K to extract the mag-
nitudes of the IPSCs in a train by effectively deconvolving it from the
recorded current I(t). For each of the i 5 1 . . . N action potentials, we
measured the time t*i of the peak current that occurs in a narrow window

Figure 2. Example model functions. Plots of the functions used in the
simulation in Figure 1. A, Decay of x is determined by a single exponential
rate constant, Kx(D) 5 exp(2aD); a 5 50 s 21. B, The recovery of the
depleted factor is determined by a single exponential rate constant,
KA(D) 5 exp(2aD) where D is the time since the last action potential; a 5
1 s 21. C, Fraction released is given by a Boltzmann function of x, F(x) 5
1/(1 1 exp(2a(x 2 x1/2 ))) with x1/2 5 2 and a 5 2.
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after the time of the i-th action potential at ti. We then iteratively
computed the magnitude ai of the i-th IPSC as:

ai 5 I~t*i! 2 O
tj,ti

ajK~t*i 2 tj!.

In words, this says that the amplitude of any IPSC is given by its peak
current minus the contribution from previous IPSCs. The amplitudes
computed in this way are plotted as vertical lines (sticks) in Figure 3B and
others.

The use of peak current values to quantify IPSC amplitudes is valid
only if the synaptic response is slow relative to the sampling time. In our
experiments, the IPSCs lasted '100 msec, and the signal was sampled
every 0.5 msec; thus we are able to obtain accurate measures of the peak
times. This conclusion is validated in Figure 3, which shows that with the
kernel K and the extracted amplitudes ai, we can reconstruct the original
signal with a high degree of fidelity.

Gradient descent optimization. To perform the optimization, we used a
gradient descent method to minimize the sum of the squared errors
between the data and model predictions (Sen et al., 1996). If the ai are the
IPSC amplitudes as computed above, and R(ti) are the predicted ampli-
tudes (where R is an arbitrary function), we want to minimize the error e:

e 5 1/ 2 O
i51

N

~ai 2 R~ti!!
2. (11)

The gradient descent algorithm uses the gradient of the error e to find
the minimum of the function over the parameter space in the neighbor-
hood of an initial guess. For any given experiment, the ai are constants.

Thus only partial derivatives of the model R are required to compute the
partial derivatives of the error; if a is a parameter governing R:

­e

­a
~ti! 5 2 O

i51

N

~ai 2 R~ti!!
­R
­a

~ti!. (12)

The partial derivatives of R for the available factor model are given in the
Appendix.

The Levenberg-Marquardt algorithm (Fletcher, 1987) was used for all
of the results presented here. This algorithm was obtained from the
OptSolve11 optimization library (Tech-X, Boulder, CO). An extension
specialized for data fitting problems was written in C11, which includes
a parametric model class used to define an arbitrary (differentiable)
synaptic model for use with the optimization algorithms. For 60 sec data
segments, with N 5 2 factors, the model generally converged within 100
iterations in ,2 sec on a Pentium III computer (800 MHz). We will
provide the code which implements the algorithms to researchers who
wish to use them upon request.

Intrinsic neuronal variabilit y. The goodness of the fit of the model to the
observed postsynaptic responses was evaluated relative to the intrinsic
neuronal variability to repeated stimulation. Ideally the variability in the
predictions of the model should be of the same magnitude as the intrinsic
neuronal variability. To estimate the intrinsic neuronal variability, we
stimulated the B4/5 interneuron to produce a single action potential
every 20–30 sec. The magnitude of the resultant 10 consecutive IPSCs
was measured. Fixing 1 response of the 10, we computed the rms
difference between the magnitude of that response and the 9 others,
normalized by the magnitude of the fixed response. We then repeated
this computation for each of the 10 responses and report the average of
these values as the intrinsic variability. The normalized rms error of the
model predictions is computed as:

rms 5 Î1
N O

i51

N Sai 2 R~ti!

ai
D2

,

and this error is compared with the measure of intrinsic variability.

Figure 3. Extraction of the IPSC amplitudes. A, The IPSCs recorded in
a postsynaptic neuron in response to stimulating the presynaptic inter-
neuron B4/5 with a 5 Hz exponentially distributed train of impulses. We
show a segment out of the middle of the recording from 20–22 sec. B, We
extract the amplitudes ai of each of the IPSCs and plot them as vertical
lines. The amplitudes are computed by subtracting the currents from
previous IPSCs, which are given by the convolution of the previous events
with the impulse response kernel, which is shown in the inset of B. The
small deflection seen in the initial rising phase of the response kernel is a
stimulus artifact; the time scale for the response kernel is expanded (scale
bar, 100 msec), and the kernel is normalized to have a peak height of 1.
C, Verification of the assumption that the IPSCs can be represented by a
convolution of the amplitudes with a fixed impulse response kernel. The
rms error of the data minus the convolved data is ;3% of the magnitude
of the first spike; this is among the largest errors we had in using the
technique, and more than half of the error is attributable to low-
amplitude noise in the recordings between the IPSCs. The low-amplitude
noise after the IPSCs is caused by the noise in the kernel, which we
measured by averaging many responses.

Figure 4. Postsynaptic response shows two rate constants of depression
and one of facilitation. A, The IPSCs (sticks) recorded in a postsynaptic
neuron in response to stimulating the presynaptic interneuron B4/5 with
a 10 Hz exponentially distributed train of impulses. There are two time
scales of depression, one rapidly and the other slowly depressing. Solid line
is the best fit to a double exponential function with rate constants 0.03 and
1.81 s 21. The data are normalized by the amplitude of the first IPSC. B,
The ratio of the amplitude of an IPSC to that preceding it (dots) plotted
as a function of interspike interval. Data are from the entire 120 sec
stimulus train of which the first 20 sec are plotted above. Solid line is the
best fit to a single exponential function with a rate constant of 43.5 s 21.
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RESULTS
Figure 4A shows the response of a neuron postsynaptic to the
interneuron B4/5, which was stimulated to fire action potentials
with an exponentially distributed train with a mean rate of 10 Hz.
The depression of the resultant IPSCs (Fig. 4A, sticks) can be
approximated as the sum of two exponentials (solid line): one with
a rate constant of 0.03 s21, another with a rate constant of 1.81
s21. In addition there is a facilitation to short interspike intervals
(ISIs) that can be well described by a single exponential with a
rate constant of 43.5 s21. In Figure 4B the ratio of adjacent IPSCs
(dots) is plotted as a function of ISI. These three influences on
short-term plasticity, one time scale for facilitation and two time
scales of depression, were seen in all of the neurons investigated
that were postsynaptic to B4/5.

Linear model
The simplest model that incorporates two times scales of depres-
sion and one of facilitation is linear. In the linear model, the
predicted amplitudes are given by the convolution of the impulse
train with a linear response function that is the sum of one
positive (facilitatory) and two negative (depressing) exponentials
with different rate constants:

R~ti! 5 O
j#i

a1e2a1(ti2tj) 2 a2e2a2(ti2tj) 2 a3e2a3(ti2tj), (13)

where all of the parameters are positive. This is a special case of
Equation 5 where F(x) 5 x and !(ti) 5 1. The number of
parameters can be reduced to 5 by imposing the normalization
R(t1) 5 1. These three exponential functions, and the distribution
of the underlying component, are shown in Figure 5, bottom panels.

Figures 5A shows the first 10 sec of the IPSC response (sticks)
to a random stimulus train, and the model fit given by the
equation above is plotted with dots. The model versus the data are
plotted in Figure 5B, where the identity line indicates a perfect fit.

This linear model fits the data with an rms error of 0.15. This is
approximately twice the intrinsic neuronal variability, rms error
of 0.07 6 0.02, n 5 10 for this neuron, which we measured by
computing the variation in the responses of the neuron to iden-
tical stimuli (see Materials and Methods; we report mean 6 SEM
unless indicated otherwise).

To further test the adequacy of this model, we presented novel
stimulus trains having a different mean and interval distribution.
The response of the neuron to the novel train is made using the
parameters estimated from the training stimulus. An example is
shown in Figure 5, C and E. The error of the prediction was 0.67,
more than nine times the intrinsic variability. Although the linear
model provides an adequate fit to the data in Figure 5, it breaks
down entirely on the task of predicting novel stimuli. The data for
multiple predictions using the linear model is summarized in
Figure 6, which shows that both the fit and all predictions fall
outside the range expected form the intrinsic neuronal variability
(indicated by the bounding box).

Nonlinear transform model
To accurately describe the excitatory junction potential response
to repeated stimulation in neuromuscular synapses of the crab,
the introduction of a nonlinear transformation (polynomial) of
the underlying linear process is a critical step (Sen et al., 1996).
Therefore, we investigated a nonlinear transformation F(x(ti))
given by the Boltzmann function. For values of x below the
saturation point, the Boltzmann function has an approximately
polynomial shape, but saturates for large values of x. This satisfies
the intuitive requirement that the response is bounded. Here
again, the availability !(ti) 5 1 is constant.

Figure 6 shows that this model does a much better job than
the linear model, with a fit within the bounds expected from
the intrinsic variability of the synaptic response. Again, how-
ever, the predictions of responses to novel stimuli are poor.

Figure 5. Linear model. IPSC ampli-
tudes are proportional to the convolution
of the spike train with a linear response
function Kx, which is the sum of three
exponential processes: rapid depression,
slow depression, and facilitation. The fit is
a reasonable first-order approximation
with an rms error of 0.15. This is approx-
imately twice as high as the intrinsic vari-
ability. A, The vertical sticks are the IPSC
magnitudes in the first 10 sec of presyn-
aptic stimulation with 10 Hz train of ex-
ponentially distributed impulses; the dots
are the best fit of the linear model. B,
Data versus model for the entire 60 sec
modeled segment. C, D, When the model
fit to the data in A and B is used to predict
the responses to a novel random stimulus
from a different statistical distribution
with a different mean frequency (5 Hz
train of uniformly distributed intervals),
the error is dramatically worse. Bottom
panels, The density of the underlying
component x and the exponential func-
tions that contribute to kernel Kx: slow
depression, rapid depression, and facilita-
tion. The data are normalized by the am-
plitude of the first IPSC.
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Availability models
The nonlinear transform model is not designed to handle syn-
apses with availability factors (Sen et al., 1996). We investigated
all three of the possible one available factor models that incor-
porate two time scales of depression. The time scales of depres-
sion can be modeled as an accumulation of inhibition in the
underlying component x by adding an additional exponential term
to the kernel Kx. Alternatively, they can enter into the availability
recovery function KA. Although these three models were able to
accurately fit the training stimulus, the mean prediction error,
comparable for each model, was approximately rms 5 0.2 (range
rms 5 0.08–0.33; data not shown). This value is roughly four
times the intrinsic variability for this neuron.

Because the prediction errors of the models with only one
availability factor were considerable higher than the intrinsic
variability, we investigated a two-factors model with rapidly and
slowly recovering availability factors (Fig. 7). This model is given
in Equation 6 with n 5 2:

R~ti! 5 s1F1~x~ti!!!1~ti! 1 s2F2~x~ti!!!2~ti!. (14)

In Figure 7A, the first 10 sec of IPSCs resulting from the training
stimulus (same as above) are shown as sticks, and the best fit of
the model is shown as dots; the full record of data versus model
is shown in Figure 7B. Not only does the model fit the responses
to the training stimulus train to within the intrinsic neuronal
variability, it also does markedly better at predicting the re-
sponses to novel stimuli, as shown in Figure 7, C and D. The data
from the fit and multiple predictions are shown in Figure 6.

We also considered a model in which the two factors combine
multiplicatively. Varela et al. (1997) also found two time con-
stants of depression and one of facilitation in excitatory synapses
in the neocortex. A multiplicative relationship between the fac-
tors described their data. In the neuromuscular junction of frog,
there is a multiplicative relationship between augmentation and
facilitation (Magleby and Zengel, 1982). Figure 6 shows that the
predictions and fit of the two-factors multiplicative model, al-
though better than the linear or linear with transform models,
does not fit the data or predict novel stimuli as well as the
two-factors additive model. For the rest of the investigations
below, we will consider only the two-additive factors model, which
we refer to simply as the “two-factors model.”

It should be noted that the number of parameters in the
two-factors model (6) is similar to the number of parameters in
the other models (5, 6, or 7). It may seem surprising that the
two-factors model has the same number of parameters as the
one-factor model, rather than twice as many. To describe two
time components of depression and one component of facilitation
requires several rate constant and amplitude parameters. The
difference between the one- and two-factors models is simply
where these parameters enter the model. Thus the substantial
improvement in the description of the data cannot be attributed
to the addition of free parameters.

Rest-time effects
For all experiments, the two-additive factors model consistently
predicted the neuronal responses to novel stimuli better than the
linear, nonlinear transform, one-factor, or multiplicative models.
On closer inspection of the prediction errors of the two-factors
model (Figure 6, third column), however, we noted that there was
still considerable variability in the goodness of fit. Investigating
the possibility that this difference could be attributed to changes
in the neuronal state on the time scale of minutes between
experiments, we collected a large number of stimulus responses in
which we varied the rest-time between stimuli from just under 2
min to .1 hr. Each of the stimuli were long trains lasting several
minutes.

Figure 8A–C shows the response of a neuron to three consec-
utive stimulus trains drawn from interval distributions having the
same mean frequency (5 Hz). In Figure 8A, the neuron has rested
for .30 min; in Figure 8, B and C, the rest-time was only 2 min.
In all cases, there is a slow prolonged decrease in the response
throughout the duration of the stimulus train. For the short
rest-times, however, an initial rapidly decrementing response of
the neuron appears that was not apparent for the rested neuron.
Thus the rest-time between stimuli appears to be an important
determinant of the extent of synaptic depression in early
responses.

Figure 9 summarizes the prediction error over 20 novel stimuli.
The point marked training stimulus indicates the data shown in
the top panels of Figure 10. The error in the prediction of the
responses to 20 stimuli is plotted as a function of stimulus order
(Fig. 9A) and rest-time (Fig. 9B). The prediction error is not
dependent on stimulus order; the errors appear random as a
function of order. However, there is a strong effect of rest-
time. For experiments with similar rest-times, indicated by the
bounding box in Figure 9B, the error in the prediction falls
within the expected range given by the intrinsic variability for
all points save two.

The training stimulus, with a rest time of '2 min, is shown in
Figure 10A, where the IPSCs are plotted as sticks and the model

Figure 6. Model fits and prediction of novel stimuli for four classes of
models. Because the data clearly show three time scales of short-term
changes in synaptic efficacy (Fig. 4), we looked at several ways in which
these time scales can enter into the model presented in Equation 6. Each
of the models presented was trained on the same stimulus, a 10 Hz
exponential train (1). This model was then used to predict the responses
to novel stimuli (F), which were spike trains with different means and
interval distributions. The bounding box shows the range of the intrinsic
variability (mean 6 1.96 SD) of the neuron in response to identical
stimuli. Although several models provide good fits to the data, the two
additive availability factors model is significantly better at predicting
responses to novel stimuli. An example of the data for the worst case
(linear model) and best case (two additive factors model) is shown in
Figures 5 and 7. The number of parameters for the four models shown are
5 (linear), 7 (linear w/transform), and 6 (two factors additive or
multiplicative).
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fits are plotted as dots. Examples of the responses and predictions
for two novel stimuli with similar rest-times are shown in Figure
10, C and E. The rms prediction error drops to the order of the
intrinsic variability. For each of these three examples, the model
predictions versus the measured data for the full segment is
plotted to the right.

We next determined whether the changes in the response of the
neuron attributable to rest-time could be isolated to one of
the model components. The observation that the amplitude of the
first spike is approximately constant, seen in the raw data in
Figure 8, is supported in Figure 11A, where the first spike ampli-
tude over 20 stimulus sets is plotted as a function of rest-time.
The proportion of variance in the first IPSC amplitude explained
by rest-time is R2 5 2%, clearly indicating that the first IPSC does
not vary with rest-time.

This puts a severe constraint on which parameters can change
with rest-time. Namely, only parameters governing recovery can
change without systematically altering first IPSC amplitude.
Thus, if we assume that only one parameter is changing with
rest-time (see Discussion), this leaves the parameters governing
Kx, KA1

, and KA2
as candidates. These kernels govern the decay of

the underlying component, the recovery rate of the rapid factor,
and the recovery rate of the slow factor. The rate constants for
these three kernels are ax , aA1

, and aA2
.

The procedure to identify the parameter that varied with
rest-time is as follows. By sharing five of the six model parameters
between stimuli, and allowing one (ax , aA1

, or aA2
) to vary freely,

we simultaneously fit the model to all stimuli over the range of
rest-times. We found that only aA1

was sufficient to account for
the changing response with rest-time, with an overall rms error of
0.05 6 0.007, n 5 20 equivalent to the intrinsic variability. The
rms error obtained when only aA1

was allowed to vary was
significantly lower than that obtained with either aA2

or ax (Stu-

dent’s t test; p , 0.01; n 5 20). The latter two were statistically
indistinguishable.

Figure 11B shows the recovery time constant as a function of
rest-time. For short times, the time constant is small (with one
exception) and grows with longer rest-times. There is, however,
considerable variability with long rest-times. The simplest expla-
nation consistent with our observations is that presynaptic stim-
ulation of B4/5 slows the rate of recovery of the rapid factor.

How are two neurons different?
Figure 12, A and B, shows IPSCs recorded simultaneously in two
neurons postsynaptic to the B4/5, which was stimulated to fire
action potentials with a 5 Hz Poisson stimulus. Despite the fact
that both neurons are postsynaptic to the same interneuron, their
responses are quantitatively different. In particular, for one of the
neurons, the depression of the IPSC amplitudes in the early
response is clearly larger.

A useful way to estimate the difference between the IPSC
amplitudes of the two neurons is to again use the rms error.
Identifying one of the trains with the “prediction,” the rms error
of the second relative to the first is 0.25. This error is approxi-
mately five times the intrinsic neuronal variability (0.05 and 0.06
for the neurons in Fig. 12). The average rms difference between
the two neurons in all pairs investigated, normalizing the IPSCs
in each train by the first, is 0.20 6 0.03, n 5 13. Thus the
differences in the response between the two neurons cannot be
explained simply in terms of random variations in neuronal
response.

To quantify the differences between the neurons in terms of the
model, we fit the parameters of the model to each neuron pair for
all pairs. Unlike the case above, in which we investigated how a
single neuron changes with rest-time, in the two-neuron case the
amplitude of the first IPSC is not the same between neurons. So

Figure 7. Two-factors model. Plot con-
ventions are described in Figure 5. The
model here from Equation 6 provides a
twofold better fit (A, B) to the same data in
Figure 5 and a fourfold better prediction
(C, D) of novel data. Bottom panels, Left,
The fraction of the rapid and slow factors
activated as a function of the underlying
component. The inset is the density of the
underlying component x, with an arbitrary
vertical scale. We used the scalar approxi-
mation (dashed lines) to the Boltzmann
functions (solid lines) to reduce the number
of parameters to six so that comparisons
between models would be fair. The approx-
imation is quite good over the density of x.
Middle, The functions KA governing the
recovery of the rapid and slow factors; right,
the function Kx governing the underlying
component. The data are normalized by
the amplitude of the first IPSC.
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we did not constrain the investigation to rate constants. Instead,
we modeled each postsynaptic neuron independently.

For each pair of simultaneously recorded responses, we as-
signed the response with the smaller average IPSC to be neuron
1 and the other to be neuron 2. The values for each of the
parameters are plotted in Figure 12C–I, in which the parameter
value for neuron 1 is plotted along the abscissa and the value for
neuron 2 is plotted along the ordinate. The line of identity
indicates the values where the two neurons have the same value
for the parameter plotted. The lef t column (C, E, G) shows the
parameters for the rapid factor, and the right column (D, F, H)
shows the parameters for the slow factor. The data are taken from
13 stimuli in three neuron pairs (plotted with the symbols 3, {,
and E). A given neuron may change from stimulus to stimulus, as
noted in the discussion of rest-time effects above. For both scalar
factors s1 and s2 , the values for neuron 2 are consistently larger
than for neuron 1, falling above the line of identity (Fig. 12C,D);
this is particularly apparent for s2. Although there is considerable
scatter about the line of identity for the other parameters, there
are no consistent differences between neuron pairs.

We then tested to see whether variations s1 and s2 alone could
account for the different responses by constraining the model for

each pair to share all parameters except s1 and s2. If the model can
fit the data to within the bounds expected by the intrinsic vari-
ability with this constraint, then this suggests that these two
parameters are sufficient to explain interneuronal variation. With
these constraints, the average fit rms error was 0.07 6 0.01, n 5
13, which is within the intrinsic variability bounds. These obser-
vations suggest that the main difference between the two neurons
can be accounted for by the amount of current carried by the
rapid and slow factors.

DISCUSSION
One of the fundamental issues in the study of neural computation
is the information flow across the synapse. The model presented
here accurately describes the output of a central synapse to a wide
range of synaptic inputs, varying in mean and interval distribu-
tions. Although the model does not identify the locus of these
factors, this distinction may not be important for the study of
computation and information transfer, because it is the total
synapse that is the operative unit. The model does identify,
however, how many availability factors are required to describe
the synapse, their relative sizes, and recovery kinetics. It also
provides a means to assess how these quantities change with
experimental perturbations. Many different possible mechanisms
can give rise to similar qualitative behavior. Thus, a mechanism-
independent means of quantifying synaptic properties is useful.

Our results imply the existence of two availability factors at the
B4/5 synapse of Aplysia. The smaller factor is characterized by a
high probability of activation and a recovery time of the order of
seconds. This factor governs the rapid depression seen in the early
IPSC response. Changes in the recovery rate of this factor can
explain the effects of rest-time on neuronal response. The larger
factor is characterized by a lower probability of activation and
recovers with a time course on the order of tens of seconds. This
factor generates the long slow decay of the response seen through-
out the several hundred seconds of stimulation. These observa-
tions are qualitatively similar to those of Varela et al. (1997) in
visual cortex, who also observed two time scales of depression and
one of facilitation.

We have shown that a model of the Aplysia central synapse that
incorporates these two availability factors together with a single
facilitation component describes the response of the neurons to
both training and novel spike trains. This model does not distin-
guish between availability factors located presynaptically from
those located postsynaptically. The fact that both factors share the
same underlying component and are otherwise independent,
however, suggests that they are on the same side of the synapse.
In other systems, there is abundant evidence supporting the
existence of multiple pools of vesicles (Mennerick and Matthews,
1996; Silver et al., 1998; Gomis et al., 1999; Burrone and Lagnado,
2000; Stevens and Williams, 2000); for reviews, see Zucker (1996)
and Neher (1998). Although we cannot exclude the possibility
that the dynamics observed in our preparation arise from presyn-
aptic depression or vesicle depletion, we have chosen to discuss
our results in the context of the known properties of Aplysia
acetylcholine receptors (AChRs) in B4/5 follower neurons.

In Aplysia, early work indicated the presence of at least two
pharmacologically distinct AChRs, with different desensitization
sensitivities (Tauc and Gerschenfeld, 1961; Tauc and Bruner,
1963; Kehoe, 1969). In the buccal ganglion follower cells of B4/5,
two different AChRs on the same neuron have different rates of
desensitization to repeated stimulation of B4/5; this can be mim-
icked with ionophoretic acetylcholine (ACh) application (Gard-

Figure 8. Responses of a single neuron to three consecutive stimulations
of the interneuron B4/5. The lef t panels show the current traces of the first
5 sec of a much longer stimulation. The right panels show the amplitudes
of IPSCs over the entire stimulus on semilogarithmic axes. All of the
stimuli have a mean ISI of 200 msec: A and B show the response to a
uniform distribution of intervals with an ISI SD s 5 0.11 sec; C and D
show the response to an exponential distribution of intervals with s 5
0.19 sec; E and F show the response to a Gaussian distribution of intervals
with s 5 0.078 sec. The smaller variance seen in F compared with B and
D presumably arises from the smaller variance in the interval distribution.
Note the development on a rapidly depressing component in the first few
seconds of the stimulus in the middle and bottom panels, which is not
present in the top panel. The top panel is a rested synapse, with .30 min
elapsed since the previous stimulus (data not shown), whereas the middle
and bottom panels are comparatively non-rested, with a '2 min elapsed
since the preceding stimulus. Evidence presented below indicates that the
development of a rapidly depressing component is stimulus induced and
not dependent on the statistical distribution of the inputs. The apparent
increases in the variability of the IPSC amplitudes with time is an illusion
created by the use of a logarithmic x-axis. The outliers below the bulk of
the responses toward the end of stimuli in B are an artifact. Because these
artifacts occurred rarely ('1/1000 IPSCs), we did not try to remove them
from the analysis pool.
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ner and Kandel, 1977). Selective antagonization of one of two
classes of pharmacologically distinct AChRs, each of which me-
diate an inhibitory Cl2 conductance, reveals that one rapidly
desensitizes to tonic ACh application, whereas the other slowly
desensitizes (Kehoe and McIntosh, 1998). In the cholinergic
buccal neurons that Kehoe and McIntosh (1998) investigated, it
appeared that the two receptor populations were present in
different proportions. The multicomponent response is by no
means limited to Aplysia, but rather is a common feature of

postsynaptic responses (Feigenspan and Bormann, 1994; Elson
and Selverston, 1995; McGehee and Role, 1995).

Thus the evidence on desensitization of AChRs in Aplysia is
consistent with our observations. There are two populations of
inhibitory receptors with different desensitization sensitivities,
and there is neuronal variation in the proportion of these two
populations. This is consistent with the model findings that the
sizes of the two availability factors varied between neurons. We
also found that stimulation of B4/5 led to a more rapid depression

Figure 9. Error in prediction varies with
rest-time, not stimulus order. We per-
formed 20 separate stimulations of the
same neuron with inputs drawn from dif-
ferent statistical distributions (2 or 5 Hz
with exponential, Gaussian, or uniform dis-
tribution of intervals). We took 1 of these
20 and trained a two-factors model (train-
ing stimulus). A, rms error of the predic-
tions plotted as a function of sequential
stimulus number; the error does not vary
systematically with order. B, rms error as a
function of time since last stimulus (rest-
time). The largest prediction errors occur
for rest-times far from that of the training
stimulus. The bounding box shows a region
where we expect the predictions to be
good: the range on the abscissa is given by
the rest-time of the training stimulus 6 1
min; the range on the ordinate is given be
the mean 6 1.96 SDs of the intrinsic
variability.

Figure 10. Two-factors model predicts responses to
novel stimuli. Plot conventions are described in Figure
5. The novel stimuli have a different mean frequency
or interval distribution than that used to build the
model. The novel stimulus sets were chosen so that
their rest-time was similar to that of the training stim-
ulus. A, B, The parameters were determined from the
training stimulus. C, D, Model predicts responses to a
novel 2 Hz exponentially distributed train. E, F, Model
predicts responses to a novel 5 Hz Gaussian distrib-
uted train. The data are normalized by the amplitude
of the first IPSC.
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of the early responses in subsequent trains. In the model, this was
identified with a slowing of the rate of recovery of the rapidly
recovering factor. Under the desensitization hypothesis, this pre-
dicts that repeated application of ACh slows the recovery from
desensitization for the rapidly desensitizing inhibitory AChRs.

Although it might be anticipated that in a prolonged train the
shape of the IPSC waveform would change during receptor de-
sensitization (which we did not observe), this does not always
occur. For example, in central GABAergic synapses, there is a
slow GABAA receptor desensitization that affects only the IPSC
amplitude (Overstreet et al., 2000). Additionally, the rapid effects
of acetylcholinesterase at buccal cholinergic synapses may serve
to block such actions of acetylcholine (Simonneau and Tauc,
1987; Fossier et al., 1990).

Our conclusion that stimulation modulates the recovery rate of
the rapid factor is based on the assumption that only one param-
eter is changing with rest-time. Other explanations are possible. If
more than one parameter is allowed to vary simultaneously, then
the stimulus-induced changes can be explained, for example, by
allowing the sizes of both factors to vary with rest-time. As long
as the relative sizes are constrained so that the amplitude of the
first IPSC is approximately constant, the stimulus-induced mod-
ulation of depression can be modeled as an increase in the
proportion of the rapid factor (data not shown). This raises the
possibility that differential sensitivity to the stimulus-induced
changes contributes to the observed synaptic heterogeneity. Such
stimulus-dependent control of receptor expression is observed in
other systems, where the cycling of receptors shows differential
sensitivity to stimulus modulation depending on receptor type
(Turrigiano et al., 1998; Akaaboune et al., 1999; Ehlers, 2000).

It is experimentally challenging to measure the properties of
synapses in which the stimuli themselves alter the synaptic re-
sponse to subsequent stimuli. We observed that long trains of
stimuli had effects on synaptic depression that persisted over a
time scale of minutes. These effects cannot be readily quantified
using paired-pulse stimulation, for example, because the effect
decays during the time it takes to measure it. Protocols that
measure synaptic properties at longer time scales magnify the

difficulties. Although it is possible in some specialized systems to
eliminate this confound with clever experimental protocols
(Rosenmund and Stevens, 1996), it remains a general problem.
Our approach provides a solution by allowing synaptic processes
over a range of time scales to be quantified with a single, short
stimulus train.

The generalization of the synaptic decoding optimization
methodology to multiple availability factors provides a powerful
tool to investigators in various systems. For mechanistic investi-
gations, the available factors model and optimization methodol-
ogy can be used with narrowly focused experimental prepara-
tions, where the presynaptic or postsynaptic side can be isolated
experimentally. It may be used equally well where synaptic activ-
ity is assayed with postsynaptic currents, presynaptic capacitance
changes, fluorescence increases, or any other measurement where
the data can be represented as a series of times and amplitudes.

The use of the additive multiple factors also solves a recurring
problem with one-factor models: they often overestimate the
amount of depression in prolonged trains. One approach to
solving this problem is to incorporate a stimulus/calcium-
dependent increase in the recovery rate of the availability factor
(Byrne, 1982; Dittman and Regehr, 1998). Another is to assume
that the probability of release is very small (Brezina et al., 2000b).
This latter approach, however, cannot account for synapses that
show an initial rapid depression and a sustained response. We
encountered a similar problem with the two multiplicative factors
model (Varela et al., 1997), which assumes that the response is
given by the product of facilitation and two depression factors.
Although this model was able to fit the bulk of the IPSCs (those
occurring after the initial rapid depression), it tended to under-
estimate the first several spikes, or if we applied the first IPSC
amplitude constraint given in Equation 9, the subsequent several
spikes were consistently overestimated. In short, we found it
difficult with this model to obtain accurate fits of both the
initial rapid depression and the slower sustained depression.
The two-factors model with additive rapid and slow factors
provides an alternate solution that satisfies both time scales of
depression.

Responses of the central and peripheral synapses depend on
their past history. A consequence is that the same spike train
presented to the same neuron at different times will likely gener-
ate different responses. To complicate matters, the response is
highly dependent on the statistical properties of the spike train.
To highlight an extreme case, a low-frequency synaptic input to a
neuron in the abdominal ganglion of Aplysia generates an exci-
tatory response, whereas a high-frequency input at the same
synapse generates an inhibitory response, because of presence
of two populations of receptors with different desensitization
rates (Wachtel and Kandel, 1971). Observations such as these
limit the utility of attempts to unravel the nature of the neural
code from action potential times alone, because the effects of
these action potentials depend heavily on dynamic synaptic
properties.

APPENDIX: Gradients for parameter optimization

One-factor model
Here we provide the expressions for the partial derivatives of the
model R in Equation 5 with respect to the parameters controlling
s, F, and !. These partials are used in computing the gradient of

Figure 11. First IPSC amplitude and recovery time constant of rapidly
recovering availability factor as a function of rest-time. A, Amplitude of
first event. B, Recovery rate constant.
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the model error given in Equation 12. Because the availability !
is defined recursively in Equation 4, the gradient of the response
must be defined recursively as well. We begin with the assumption
that !(t1) 5 1; that is, there is full availability of the factor at the
time of the first spike.

The partial derivative of Equation 5 with respect to any pa-
rameter a is, by the product rule:

­R
­a

~ti! 5
­s
­a

~ti!F~x~ti!!!~ti! 1 s
­F
­a

~x~ti!!!~ti! 1 sF~x~ti!!
­!

­a
~ti!.

(15)

The partial derivative of s:

­s
­a

~ti! 5 1 a ; s
(16)

50 otherwise.

The partial derivatives of !:

­!

­a
~ti11! 5 2

­KA

­a
~Dt!@1 2 !~ti!~1 2 F~x~ti!!!# a controls KA

1KA~Dt!
­!

­a
~ti!~1 2 F~x~ti!!!

(17)

5KA~Dt!
F­!

­a
~ti!~1 2 F~x~ti!!!

2 !~ti!
­F
­a

~x~ti!! G a controls F

50 otherwise,

where Dt 5 ti11 2 ti.

The partial derivatives of F:

­F
­a

~ x~ti!! ;
­F
­a

~x~ti!! a controls F (18)

5
dF
dx

~x~ti!!
­x
­a

~ti! a controls x, (19)

where, from Equation 1:

­ x
­a

~ti! 5 O
tj#ti

­Kx

­a
~ti 2 tj!. (20)

Because the gradients in Equation 17 are defined recursively,
we must define the values of !(t1) and F(x(t1)). Because the
initial availability is constant, ­!(t1)/­a 5 0 for all parameters,
and ­F(x(t1))/­a can be obtained from the expressions in Equa-
tion 18.

Multiple-factors model: additive
The partial derivatives of the additive multiple factor model given
in Equation 6 follow directly because the N factors sum linearly

­R
­a

~ti! 5 O
j51

N
­Rj

­a
~ti!, (21)

where the expression for ­Rj(ti)/­a is given in Equation 15.
In the case of the constrained model given in Equation 7,

Figure 12. Responses of two postsynaptic
neurons recorded simultaneously in re-
sponse to stimulation of B4/5. A, B, IPSCs
from a 10 sec segment of a random stimulus
train. The amplitude of the currents in both
neurons is normalized by the first event to
facilitate comparison. Both neurons show
similar features, notably an initial rapid de-
pression and a sustained slow depression,
as well as short-term facilitation after short
interspike intervals. The rapid onset of de-
pression in the lower neuron, however, is
more pronounced. C–I, Plots of the param-
eter values from one neuron versus the
other. The neuron with the smaller average
IPSC in each pair is assigned plotted along
the ordinate, and other neuron in the pair is
plotted along the abscissa. A full two-
additive factors model was fit to each neu-
ron in the pair, and the values for each of
the seven parameters are plotted. Multiple
stimuli for each pair are plotted with the
symbols 3, {, and E, indicating the neuron
pair. Values that fall along the identity line
indicate that both neurons in the pair have
identical values for that parameter.
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however, the following expression for ­sN(ti)/­a must be used in
place of the one given in Equation 16:

­sN

­a
~ti! 5 2 O

j51

N21
­Rj

­a
~t1!/~FN~x~t1!!!N~t1!!

2sNS­FN

­a
~x~t1!!/FN~x~t1!! 1

­!N

­a
~t1!/!N~t1!D . (22)

This expression follows directly from the requirement that
­R(t1)/­a 5 0 for all parameters because R(t1) is constant in the
constrained model. Note that ­FN(x(t1))/­a 5 0 for all parameters
except those governing FN and the underlying component x.
­!N(t1)/­a 5 0 for all parameters, because we assume that the
initial availability is a constant.

Multiple factors model: multiplicative
The partial derivatives of the multiplicative multiple factor model
given in Equation 8 are given by:

­R
­a

~ti! 5 O
j51

N
­Rj

­a
~ti! P

k51,kÞj

N

Rk~ti! (23)

5R O
j5i

N
­Rj

­a
~ti!/Rj~ti!, (24)

where the expression for ­Rj(ti)/­a is given in Equation 15.
The partial of sN below, when using the constraint given in

Equation 9, must be used in place of the one given in Equation 16:

­sN

­a
~ti! 5 sNS­!N

­a
~t1!/!N~t1! 1

­PN

­a
~t1!/PN~t1! 2 O

j51

N21
­Rj

­a
~t1!/Rj~t1!D .

(25)
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