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Theoretical studies of electron transfer in metal dimers: XY+ ~X+Y . , 
where X, Y = Be, Mg, Ca, Zn, Cd 

Robert J. Cave,a) David V. Baxter,b) William A. Goddard III, 
and John D. Baldeschwieler 
Contribution No. 7525 from the A.rthur Amos Noyes Laboratory of Chemical Physics, California Institute 
of Technology, Pasadena, California 91125 

(15 January 1987; accepted 2 April 1987) 

The electronic matrix element responsible for electron exchange in a series of metal dimers was 
calculated using ab initio wave functions. The distance dependence is approximately 
exponential for a large range of internuclear separations. A localized description, where the 
two nonorthogonal structures characterizing the electron localized at the left and right sites are 
each obtained self-consistently, is found to provide the best description of the electron 
exchange process. We find that Gaussian basis sets are capable of predicting the expected 
exponential decay of the electronic interactions even at quite large internuclear distances. 

I. INTRODUCTION 

Electron transfer reactions are important processes 
throughout biology, chemistry, and physics. Homogeneous 1 
and heterogenous2 redox reactions, biological energy trans­
duction,3.4 gas phase atom-molecule reactions,S and the re­
cently developed Scanning Tunneling Microscope6 are all 
systems in which electron tunneling plays an integral role. 
The ubiquity of electron transfer reactions clearly makes it 
desirable to gain a fundamental understapding of the factors 
that influence the rates of these reactions. 

Considerable advances have been made in the quantita­
tive assessment of the role of the surrounding medium (out­
er sphere effects) upon electron transfer.7- 11 While such ef­
fects play some role in all of the above processes, the central 
feature in controlling the electron transfer rate at large inter­
reactant separations is the degree of electronic interaction 
between the donor and acceptor. 8-12 These interactions have 
been discussed qualitatively but quantitative assessments of 
the variation of the electronic interaction from system to 
system, as well as its distance and orientation dependence, 
have been limited. . 

Several studies have examined the decrease in the rate of 
electron transfer with distance between two fixed centers in 
glassy matrices. 13-IS This decrease is primarily controlled by 
the decay with distance of the electronic interaction, for 
which functional forms were assumed. The role of the inter­
vening medium between pairs of redox centers on the decay 
of the electron transfer rate has been investigated by Beratan 
and Hopfield l6 and by Larsson, 17.18 using extended Hiickel­
type wave functions to estimate the electronic interactions. 
Ab initio electronic structure techniques have been applied to 
the study of the Fe(H20)~ + 12 + and RU:(NH3)! + /2 + self­
exchange reactions by Newton and co-workers. 19-21 Dis-

a) Present address: Department of Chemistry, Indiana University, Bloom­
ington, IN 47405. 

b) Present address: Physics Department, Ernest Rutherford Physics Build­
ing, McGill University 3600 University Street, Montreal, Quebec, Can­
adaH3A2T8. 

tance and surface-corrugation effects on the tunneling cur­
rent in the scanning tunneling microscope have been 
examined using square-well-type wave functions, as well as 
more detailed models. 2 1-24 

In this article we address some of the questions regard­
ing the electronic interaction using results from ab initio 
electronic structure calculations for diatomic systems. In 
particular, we examine the energy dependence of the elec­
tronic interaction and its dependence on the atoms and orbi­
tals involved in the transfer. Also, we address the sensitivity 
of the interaction to the method of calculation. In Sec. II, the 
quantity characterizing the electronic interaction, T BA' is 
introduced and discussed for a one-electron model. In Sec. 
III, T BA as a function of distance is compared for a variety of 
symmetric, diatomic charge transfer systems. In Sec. IV, 
several methods of calculating T BA are compared, and in 
Sec. V, charge transfer interactions are compared for heter­
onuclear diatomic systems. Our conclusions are presented in 
Sec. VI. 

II. T SA AND ONE-ELECTRON SYSTEMS 

In order to outline the procedures used, consider start­
ing with the system A in which, for example, a neutral Cd is 
on the left (center A, with wave function ~) and an ion­
ized Cd is on the right (center B, with wave function <P~+ ). 
The total wave function for A is thus 

(1) 
"'-

where A indicates that the total wave function for Cd and 
Cd + is antisymmetric (to satisfy the Pauli Principle). After 
electron transfer, we have system B with an ionized Cd on 
the left (wave function <P&+ ) and a neutral wave function 
on the right (wave function <P~ ). Thus the total wave func­
tion for B is 

(2) 

Since the valence electronic wave function of Cd is (5s) 2 and 
that of Cd + is (5s) I, we can think of this electron transfer in 
terms of removing an electron from the left 5s orbital and 
placing it in the right 5s orbital. However, this charge trans­
fer also changes the shielding of the various orbitals and, as a 
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Cave et al.: Electron transfer in dimers 927 

result, the shapes of the 5s orbital and of the core orbitals 
change upon charge transfer. Indeed, these shape readjust­
ment effects are sufficiently important that the optimum 
Hartree-Fock (HF) wave functions have the localized form 
of Eqs. (1) or (2) rather than the usual delocalized form in 
terms of symmetry functions (O"g,O" u' etc.). 

Starting out at t = 0 with the system in IA ), the prob­
abilitY'PBA (t), of finding the system in IB) attimet, if A and 
B are the same atomic species (and neglecting all other elec­
tronic states of A and B), may be written as 

PBA (t) = sin2 [T~At] . 
The quantity TBA in Eq. (3) is defined as 

BBA -SABBAA T - ---..;;.;.:......-__ :-=-

BA- l-ISABI 2 ' 

where 
A-

BBA = (B IBIA), 
BAA = (A IRIA), 
SAB = (A IB), 
A-

(3) 

(4) 

(5a) 

(5b) 

(5c) 

and B is the full Hamiltonian of the system. The quantity 
, I 

T BA is responsible for the rate of oscillation between states 
IA ) and IB ), and thus controls the rate of charge exchange in 
such systems. It is TBA that will be evaluated as a measure of 
the strength ofthe charge exchange interactions for the var­
ious diatomic systems in the present article. 

In extended systems, where a single reactant electronic 
state decays into a continuum of product electronic levels, 
TBA enters the golden rule (GR) rate expression for charge 
transfer,8.9.ll as shown in Eq. (6) 

kOR = 21T ITBA 12p. (6) 

" In Eq. (6), the Condon approximation8.9 has been made and 
p then assumes the form of a weighted density of electronic 
or nuclear states, depending on the system of interest. 1.11 

Therefore, in both diatomic and many-atomic systems, TBA , 

as defined in Eqs. (4) and (5), is intimately related to the 
frequency of electron transfer. 

The simplest symmetric charge exchange system is Ht , 
for which an analytic expression for TBA can be obtained. In 
this case, IA ) is taken as representing an electron in a hydro­
genic orbital localized on center A and IB ) is defined analo­
gously. TBA then becomes25 

[
2aR 1]' [1 4aR a2R 2] Zaexp( -aR) ---- +Zaexp( -3aR) 2+-+--+--

T- 3 aR aR 3 3 (7a) 
BA - l-ISABI 2 

( a2R 2) 
SAB = exp( - aR) 1 + aR + -3- , 

where Z is the effective nuclear charge (Z = I for H2+ at 
largeR ),a = (2mE Iftl) 1/2 (a = 1 for H 2+ ) in atomic units, 
and R is the internuclear separation. For R beyond a few 
angstroms, the first term dominates, the denominator is 
nearly 1, and one obtains 

T 2Za2R exp( -aR) (8) 
BA

e 3 

This expression therefore provides a means of testing our 
calculations for B 2+ • 

In our calculations of TBA for H2+ using ab initio elec­
tronic structure techniques, standard Gaussian basis sets 
centered on each atom were used (see the Appendix), aug­
mented by diffuse s functions. The electronic states IA ) and 
IB ) were taken to be the ground state variational solutions of 
the Schrooinger equation at sites A and B in the absence of 
the second center. TBA was evaluated using these wave func­
tions, as prescribed by Eqs. (4) and (5). The results are 
shown in Fig. 1. It is seen that from 5 to 9 A, the ab initio 
results are in excellent agreement with the analytic, exact 
results. At larger distanceS, the ab initio results begin to di­
verge and become larger than the exact results. In general, in 
order for Gaussian functions to describe the exponential de­
cay, it is necessary to have a collection of sufficiently diffuse 
functions (see Appendix) so that they can combine to yield 
the expected exponential character. 

These results suggest that ab initio wave functions can 
be used to obtain estimates of the size of TBA and its decay as 

(7b) 

-2\~------~6~------~~~------~I~~------J 

RIA) 
FIG. l.lniT BA I (T BA inhartree) vsR forHt andHet. For the Ht results, 
the circles are the results of the present frozen orbital calculations, the solid 
curve is the natural logarithm ofEq. (7), and the dashed curve (not seen 
since it is superimposable on the solid line) is the natural logarithm of Eq. 
(S), the large R form ofEq. (7). For the Het results, the circles are the 
results of the present SCF calculations, and the solid curve is a plot of the 
natural logarithm of the function T BA = A,R exp( - aiR}, where 
a, = ( - 2mE Koopman'/fil) ,/2. EKoopman, is the Koopmans estimate of the 
He IP, and A, is obtained by equating the functional and calculated values 
of TBA at R = 5 A. 
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928 Cave et al: Electron transfer in dimers 

a function of distance. In the next section, we examine the 
behavior of TB.t for many-electron systems. 

III. s-ORBITAL TRANSFERS IN THREE-ELECTRON 
SYSTEMS 

In this section, we examine s orbital to s orbital electron 
transfers in the symmetric charge transfer systems 
He2+ ,Be2+ ,Mg2+ ,Zn2+ ,Ca2+, and Cd2+. In each case, the 
atom and ion have the electronic occupations [core] nr and 
[core] nsl, respectively. Since there is minimal electronic 
reorganization of the core upon oxidation or reduction, we 
refer to these as three-electron systems. For Bet the Is core 
electrons are explicitly included in the calculation, and for 
Znt and Cd2+ , the 3d 10 and 4d 10 cores are included (see the 
Appendix), but deeper core levels were replaced by effective 
potentials.26

,27 We found that TBA is insensitive to core read­
justments in these cases. Because of the presence of addi­
tional electrons, we calculated TB.t using a procedure differ­
ent from that used for H2+ . For these three-electron systems 
at finite internuclear separation, the HF wave functions lead 
to localized AA + or A + A configurations (rather than sym­
metry orbitals) because the core electrons relax and thus 
stabilize the localized charge. Thus, we have used these lo­
calized HF wave functions (labeled SCF, below) for the 
three-electron systems in the results of this section (rather 
than the analogous frozen orbital results as in Sec. II for 
H2+ ). The consequences of freezing the orbitals for the 
three-electron systems will be discussed in Sec. IV. As for 
H 2+ , standard basis sets were augmented by the addition of 
diffuse functions (s and p sets; see Appendix). Since the left 
and right localized wave functions are in general composed 
of nonorthogonal orbitals, T B.t was evaluated using the 
biorthogonalization procedure of Voter and Goddard28 (see 
the Appendix). 

A.HeHe+ 

Results for the calculation of TBA for He2+ are shown in 
Fig. 1. The solid line, shown together with the calculated 
data points, is a plot of 

TBA =AR exp( - aKoopmansR), 

where 

aKoopmans = 
[ 

_ 2mEHe] 112 

li2 . 

(9a) 

(9b) 

with E He being the Koopmans orbital ionization potential 
(IP) for He, and A is obtained from equating the function to 
the calculated TB.t at R = sA. The agreement is quite good 
from 4 to 7 A, with deviations appearing beyond 7 A. From 
the HF wave function we obtain aKoopm~. = 1.36 bohr-I, 
while a least-squares fit of the TBA data from 4 to 7 A yields 
a Fit = 1.38 bohr- 1, in excellent agreement. It is reasonable 
to expect that TBA for He2+ should have a functional fonn 
similar to that for H 2+ , since the transfers occur between Is 
orbitals in both cases (although He2+ has some electronic 
reorganization) . At large R, deviations from exponential de­
cay most likely result from deficiencies in the Gaussian basis 
set. Het is quite a severe test, however, since the wave func­
tions decay so rapidly. Of the systems discussed here, He2+ 

has the shortest R for which this deviation occurs. For all 
others, exponential decay is exhibited beyond 11 A separa­
tion, as shown below. 

B. Other three-electron systems 

Results are shown in Fig. 2 for Bet over the range of S 
to 13 A. Least-squares fits to the data points using the func­
tionalfonns TBA = Aoexp( - aoR),AIR exp( - aiR), and 
A2R 2 exp( - a 2R) were perfonned; the results of the 
A2R 2 exp( - a2R) fit are shown in the figure. The values of 
ao, a I' and a2 from these fits are, respectively, 0.663, 0.726, 
and 0.788 bohr-I; aKoopmans = (2mEBe/fz2) 112 = 0.786 
bohr -I, in excellent agreement with that from the func­
tional fonn TB.t = A~ 2 exp( - azR). The quality of the 
fits was good for all three fonns, the first being slightly better 
than the rest.29 However, from a comparison of the values of 
aFit and aKoopmans, it is clear by analogy with the Hez+ and 
H 2+ results that the third fonn yields the best agreement 
with the expected large R decay rate of TB.t. That is, the 
third fonn yields the closest agreement with the exponential 
decay constant estimated from the Koopmans IP, as was 
obtained for H2+ and He2+ . (Agreement will vary somewhat 
with basis set; see Sec. IV D.) It is ofinterest to explore what 
causes the fonn of TBA to change in progressing from He to 
Be, both of which are ostensibly three-electron systems un­
dergoing s-orbital-to-s-orbital electron transfers. Qualita­
tively, the cause of this change can be seen by examining the 
fonn of the hydrogenic orbitals involved in the transfers. For 
He, the Is orbital has the fonn 

( 10) 

while a hydrogen-like 2s orbital (qualitatively similar to the 
Be 2s orbital) has the fonn 

-101-
~ 

-13 

I -16
5 
"'---=-7---=-9---"'":11---~13=------' 

FIG. 2.lnITBA I vsR for Bet. Thecirc1es are the results of the present SCF 
calculations. The solid line is a least-squares fit of the functional form 
TBA = A2R 2 exp( - a2R) to the data. The parameters of the fit are given in 
Table I. 
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(aBe )3/2 ¢Be = (2 - aBeR)exp( - aBeR). (11) 
2s 4(217") 1/2 

We have obtained an estimate of a one-electron TBA for 
Be2+ by using the above ¢~ and calculating 

T'iJ~e= (I_IS;,) «¢;..IV,I¢i.) -SI,(¢;slV,I¢;s»' 

(12) 

with V, = (-ZeIf/R,), exactly analogous to the case of 
TBA for H2+' (Note: this is equivalent to assuming that the 
untransferred charge density is fixed on each center and 
creates an equivalent effective potential V" for which ¢;.. is a 
one-electron eigenfunction.) The first term in parentheses is 
again dominant, and for SI,.( 1, T~r::. becomes30 

T'iJ~e=Zeff [!(I + aR) -ja2R 2 + Aa3R 3] 

Xexp( -aR). (13) 

Thus, the factor multiplying the exp ( - aR) term in TBA is 
expected to have a polynomial form, which is dependent on 
the orbitals involved in the electron transfer. Since the hy­
drogenic Be 2s orbital is a poor approximation to the HF Be 
2s orbital, the exact form of T';'; for Be2+ is expected to differ 
from Eq. (13). However, it is just as R becomes large that 
the transferring electron experiences a hydrogenic potential, 
and therefore the qualitative aspects of this argument should 
hold. 

For the systems Znt ,Cd2+ ,Mgt and Cat, plots of 
InlTBA I are shown in Figs. 3 and 4 (see the Appendix for a 
description of the quantities plotted in each case). Together 
with the results of the calculations, the results of fitting these 
points to the functional form TBA = A2R 2 exp( - a2R) are 
presented. In general, the fit is shown to be quite good, and in 

I-~ 
-- -9 
~ 

-12 

-15~----~~----~------~------~----~ 
5 7 9 II 13 

FIG. 3. Inl T IJA I vs R for Zn,+ and Cd,+ . The circles (triangles) are the 
present Zn,+ (Cdz+) SCF results, the solid curve (dashed curve) is the 
least-squares fit to the functional form TSA = A2R 2 exp( - a,R) for 
Zn2+ (Cd,+ ). The parameters of the fits are given in Table I. 

I-~ 
-- -9 
~ 

-12 

7 9 
I 

II 13 

FIG. 4. InlTBA I vs R for Mg2+ and Ca,+. The circles (triangles) are the 
present Mg2+ (Ca2+) SCF results, the solid curve (dashed curve) is the 
least-squares fit to the functional form TSA = A,R2 exp( - a,R) for 
Mg,+ (Ca,+ ). The parameters of the fits are given in Table I. 

all cases the region over which the decay is approximately 
exponential is at least from 6 to 12 A. The parameters of the 
fits for A2 and a Fil are given in Table I, together with esti­
mates of a based on Koopmans' IP for the atom (aKoopmans),. 

and estimates for a based on the actual IP's for the atoms 
(alP). In all cases but Ca2+ , the agreement between a Fil and 
aKoopmans is excellent. The Cat results appear to be better fit 
by the functional form TBA = AIR exp( - a.R). This may 
be an artifact of incomplete localization in the initial and 
final wave functions, thus artificially increasing TBA • Never­
theless, in general, the agreement is very good. The signifi­
cant difference between a Koopmans and alP is caused by inac­
curacies in the IP's for the present wave functions. Here the 
quantity of interest to discussions of TBA is aKoopmans, since it 
corresponds to the energies of the wave functions actually 
used. 

The results of Figs. 3 and 4 indicate that atomic size as 
well as orbital energy can playa role in determining the size 
of TBA . This is especially apparent when values of TBA are 

TABLE I. Decay constants for symmetric systems.' 

System A Fitb 

a Fitb aKoopmana~ alP" 

Be,+ 0.108 0.788 0.786 0.828 
Zn,+ 0.106 0.757 0.759 0.831 
Cd+ 

2 0.111 0.746 0.750 0.813 
ea,+ 0.086 0.566 0.521 0.670 
Mg2+ 0.108 0.714 0.714 0.750 

• All quantities in a. u. 
bFrom fitting TSA = A,R 2 exp( - a,R). 
C From the Hartree-Fock calculation. 
dIP from experiment. 

J. Chem. Phys., Vol. 87, No.2, 15 July 1987 
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compared at a given R for the systems Be/ ,Zn2+ , and Cd2+ , 
all of which have comparable values of aKoopmans. In this 
series, TBA increases monotonically with increasing atomic 

radius. Comparisons with Mg2+ and Ca2+ are less transpar­
ent since aKoopmans is significantly different in these systems 
compared with the previous three. Of course, atomic size is 
not the only factor determining the size of T BA' since the 
overlaps of the core orbitals at each center will differ from 
system to system. Qualitatively, these overlap terms can be 
seen to enter TBA as multiplicative factors that are constant 
as functions of R. However, the present results indicate that 
the difference in atomic radii can provide a useful qualitative 
measure of the size of TBA • That is, all other factors being 
approximately equal, TBA will be largest at a given internu­
clear separation for transfers between the atoms having the 
largest atomic radii. Thus, a given value of TBA cannot be 
simply related to an interatomic distance. 

IV. COMPARISON OF METHODS OF OBTAINING TBA 

Using Be2+ as a model system, calculations of TBA were 
performed with a variety of types of wave functions and the 
results were compared with the Be2+ SCF results of Sec. III. 
We discuss these results here. 

A. Frozen orbitals 

For this case, the composite Be2+ wave function was 
composed of atomic orbitals for Be and Be+ obtained from 
HF calculations on the isolated atom and ion, respectively. 
The orbitals were orthogonalized at each R but were other­
wise unchanged from their shapes at infinite separation. The 
results of calculations of TSA using these frozen atom + ion 
wave functions are shown in Fig. 5 and are compared with a 
fit of the SCF results of Fig. 2. From 5 to 9 A, the shapes of 

-7 

f-~ 
--10 
~ 

-13 

• 
• 

-IS'-------'-----J-----'---_-'-__ --' 
5 9 II 13 

FIG. S. Comparison oflnl TBA I vs R for Be2+ using SCF and frozen (atom 
+ ion) (see text) wave functions. (The three diffuse-function basis set was 

used for Be.) The solid curve is from theA 2R 2 exp( - a2R) fit to the SCF 
results, the circles are the frozen wave function results. 

O.O.--y---------------, 

dI .. 
-e.N 

c: 

-5.0 

'I -7.5 

-10.0 

-12.5 

6 8 10 

R(A) 

FIG. 6. Inl~~1 as a function of R (A), the distance from the nucleus at 
which ~~ is centered. ~~ was obtained from a Hartree-Fock calculation on 
Be using the three diffuse-function basis set. 

Inl TSA 1 vs R for the frozen and SCF results are in excellent 
agreement, the value of T SA being somewhat larger for the 
SCF results. Beyond 9 A, the rate of decay of the frozen 
orbital results changes abruptly and the agreement becomes 
poor. We believe this dramatic change indicates that the fro­
zen orbital results are inaccurate at large distances, for rea­
sons similar to the H/ results, since we know of no physical 
reasons to expect an abrupt change in the decay of TBA with 
distance at large R. In Fig. 6, a plot oflnl;~1 is shown as a 
function of radial distance. At approWnately 6 A, the rate of 
decay changes dramatically. Beyond this point, only a single 
basis function is of appreciable size; thus the wave function 
decay with R is poorly represented. The good agreement at 
short R between the SCF and frozen orbital results indicates 
that the SCF procedure introduces no significant change in 
the left and right localized wave functions, relative to the 
pure atom and ion, thus supporting the assertion that the 
electronic interaction between the centers is weak over this 
range of R. The observed small size difference between TBA 

calculated using the frozen and SCF wave functions at short 
R is most likely due to a slight polarization of the Be 2s 
orbital due to the presence of the nearby ion, thus increasing 
TBA • The larger range over which the SCF results are able to 
obtain a nearly linear decay ofln 1 TBA 1 with distance appar­
ently stems from the incorporation of functions on the sec­
ond center into the orbitals localized on the first. Since incor­
poration of the second center functions may partly correct 
for deficiencies in the very large R portion of the atomic basis 
sets, this may be partially a basis set superposition effect . 
However, it would be wrong to immediately assume that 
TBA is incorrectly calculated as a result of this superposition 
effect. In fact, the similarity of the slopes at medium and long 
R suggests that the expected exponentially decreasing inter­
action between the two centers is being modeled correctly, 
even with the deficiencies in the large R part of the atomic 
basis. Calculations using extended diffuse basis sets for each 
atom would test the origins for the increased range of the 
SCF calculation's apparent success in computing TBA • Simi­
lar results were obtained for other three-electron systems. 

J. Chern. Phys., Vol. 87. No.2. 15 July 1987 
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B. Frozen orbltals-atom + atom wave functions 

These frozen wave functions are similar to the ones used 
in Sec. IV A, except orbitals appropriate to the neutral spe~ 
cies were used to describe both the atom and the ion. The 
results are presented in Fig. 7 and are seen to be in reasonable 
agreement with the SCF results from 5 to 9 A. Similar com~ 
ments to those of the preceding section apply to the change 
in decay at largeR. Use of this wave function eliminates any 
electronic reorganization at a center upon loss or gain of an 
electron. It is thus the many-electron analog of the one-e1ec~ 
tron calculation of TBA between two fixed potentials. It can 
be seen that restriction to atomic wave functions (rather 
than atom + ion wave functions) does not radically alter 
the size or behavior of TBA over the range of distances where 
basis set effects are minimal. 

A comparison of the frozen wave function results of this 
section with those of Sec. IV A ( and/or the SCF results) 
indicates that electronic reorganization effects are not of pri­
mary importance in determining the size of TBA for Be2+ • A 
priori, it is not obvious whether changes in the "untrans­
ferred" charge distribution will significantly alter the size of 
TBA • The fact that the frozen atom + atom results are nearly 
equal to the frozen atom + ion results shows that in this case 
electronic relaxation has a minor effect on TBA • (In fact, the 
frozen atom + ion results are slightly larger than the 
atom + atom results at all R.) While this result must cer­
tainly be checked for other systems, we would argue that 
electronic reorganization effects on TBA due to charge read­
justments, if important at all, should be most important in 
small systems such as these light diatom systems. That is, in 
these light diatomic systems, the "transferring" electron and 
the untransferred charge density are both localized on single 
centers and are strongly interacting; thus, one might expect 
large valence orbital shape changes upon electron transfer. 

-7 

• 

t-~ 
c: -10 
"'1 

-13 

-165~------~7~----~9-------1~1------~13-------J 

FIG. 7. Comparison ofln I TBA I vsR for Be2+ using SCF and frozen atom + 
atom wave functions. (The three diffuse function basis set was used for Be.) 
The labeling is as in Fig. 5. 

The fact that charge readjustment effects on TBA do not ap­
pear to be important here suggests that their effects may be 
small for larger systems such as, for example, metal atom 
clusters or large aromatic molecules. 

c. Symmetry-restricted systems 

In a one-electron symmetric system, TBA is equal to half 
the energy splitting between the ground state (symmetric) 
LCAO wave function and the first excited state (antisymme­
tric) LCAO wave fUnction. In the three-electron case, the 
T BA 's calcuated using localized and symmetry-restricted 
wave functions need not be equal and, in general, will not be 
unless there is minimal electronic reorganization for both 
the core and valence electrons upon electron transfer. In Fig. 
S we present two types of symmetry-restricted calculations 
of TBA. using a two-diffuse function basis for Be (see Sec. 
IV D and the Appendix). In one case, the wave functions are 
obtail!ed self-consistently, with the restriction that they be 
either symmetric or antisymmetric under inversion. In the 
second case, the MO's were obtained from symmetric and 
antisymmetric combinations of Be atomic orbitals, properly 
orthogonalized at each R, but otherwise unchanged from 
their infinite R forms. Note, for the three-electron system, 
the ground state is antisymmetric and the first excited state is 
symmetric with respect to inversion through the bond mid­
point. 

Results of the antisymmetric-symmetric wave function 
estimates of TBA are shown in Fig. 8. As with the results of 
the preceding two sections, it is seen that the decay of TBA 

agrees with the SCF results from 5 to 7 A, after which the 
symmetry-restricted results diverge from the SCF results, 
both for the frozen and self-consistenly obtained symmetry­
restricted results. 

-7 

• 
t-~ 
- -10 
~ • .. • 

• 
-13 

• .. 

-16~5------~7~----~9~-----1~1------~13~----~ 

FIG. 8. Comparison of Inl TIM I vs R for ~+ using SCF and symmetry­
restricted wave functions. (The two diffuse-function basis set was used for 
Be; see Sec. IV D and the Appendix.) The circles are the frozen orbital 
symmetry-restricted results, the triangles the self-consistent symmetry-re­
stricted resplts, and the solid curve is from the A2R 2 exp( - a,R) least­
squares fit to the SCF results. 
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932 Cave sf al.: Electron transfer in dimers 

It should be noted that for all R examined here, the SCF 
localized wave function yields a significantly lower energy 
than the self-consistent symmetry-restricted result, indicat­
ing that core relaxation upon localization is energetically 
more favorable than the energy return from delocaliza­
tion (i.e., bonding). This should not be surprising for the 
large R 's considered here. As to which description of TBA is 
to be preferred for this range of R 's (and all larger R), two 
lines of argument suggest that the localized description is the 
more appropriate. First, the localized results yield a more 
nearly exponential decay with distance over the range of R 
considered. Since we assume that exponential decay of TBA 

at large R is correct, this would suggest the localized results 
as the more accurate. The symmetry-restricted results show 
a rather abrupt change in the decay of T BA at larger R (most 
likely numerical errors in calculating the energy differ­
ences), and we know of no reason to assume TBA should 
behave in this manner. Second, the localized description is a 
better representation of the actual atomic charge distribu­
tions whenever the time scale for electron transfer is long 
compared with the time for electronic relaxation. This sec­
ond problem clearly mandates a localized description for 
long-range electron transfer processes. 

D. Basis set sensitivity 

SCF calculations were performed for Be2+ using three 
different basis sets: (1) VDZ (see the Appendix) with no 
diffuse functions, (2) VDZ + two sets of sand p diffuse 
functions (used in Sec. IV C), and (3) VDZ + three sets of 
sand p diffuse functions (used in Secs. III and IV A-B). The 
purpose of these calculations was to test the sensitivity of the 
calculated value of TBA to the choice of basis. The results are 
shown in Figs. 9 (a) and 9 (b) where results from basis sets 1 
and 3 and from 2 and 3 are compared, respectively. In Fig. 
9(a), it is seen that the results agree at short distances but 
basis set 1 yields a much more rapidly decaying TBA at larger 
distances, indicating the importance of diffuse functions. In 
Fig. 9 (b), the results for basis set 2 are shown to be in excel­
lent agreement with those of basis set 3 to 12 A. The values of 
A ~it and a~it for the two diffuse function basis are 0.132 and 
0.804, respectively (including the points from 5 to 12 A). 
Note that the two sets of diffuse functions in basis set 2 are 
not included in the three sets of diffuse functions of basis set 
3; the diffuse functions of basis set 3 are entirely different 
functions (see the Appendix). Thus, the agreement seen in 
Fig. 9(b) indicates that TBA is not particularly sensitive to 
the basis set choice, given that enough diffuse functions are 
included to describe the wave function in the region of R of 
interest. 

V. HETERONUCLEAR SYSTEMS 

It is also possible to consider charge transfer interac­
tions in heteronuclear diatomic systems. The expression for 
the transfer probability in the two-atom case for the same 
conditions as in Eq. (1) is given by31,32 

PAB (t) =AAB sin2[ ;/i ~(EA - EB )2 + 4TBA TAB]' (14) 

-10 

• 
-13 

~ -161-----L..-----''----....I----'--~-_ ____1 

-16
5
':----=-7 -----'9'----...:"-, ---.... , ·3'----.....J 

R(!.) 

FIG. 9. Comparison oflnl T s .. 1 vs R for SCF calculations ofBe,+ for various 
basis sets. In each case, the solid curve represents the fit of the three diffuse­
function basis set results to the functional form Ts .. = A2R 2 exp( - a~). 

(a) The circles are results obtained for the zero diffuse function basis. (b) 
The circles are results obtained with the two diffuse function basis set. The 
parameters for the two diffuse function basis results from the fit of the form 
A2R 2 exp( - a 2R) to the calculated points areA2 = 0.132, a 2 = 0.804. 

where TAB is defined analogously to T BA of Eq. (4) but with 
H M replaced by H BB ,E A' and E B are the total energies of the 
initial and final states, and A AB is a constant for a given set of 
E A ,E B' and initial and final states (see Refs. 31 and 32). It is 
seen that the time dependence of the system is now con­
trolled by two factors, an energy difference and T BA (TAB)' 

We will concentrate on the second term, as it bears closest 
analogy to the symmetric systems examined earlier. Note, 
I TBA I and I TAB I will not be equal whenever H M :j=H BB' In 
the results below, we present values of (TBA TAB) J /2 since in 
the limit of van is hingE A - EB,(TBA TAB )1/2reduces to TBA 

=T~B' 
In passing, it is noted that the inequality of I TBA I and 

I TAB I would appear to cause microscopic irreversibility 
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between forward and back golden rule8
•
9 electron transfer 

rate constants from equienergetic levels in extended systems. 
This is, however, an artifact of the use of the Condon approx­
imation, which assumes the insensitivity of TBA to nuclear 
position, and thus to the difference between H A.A. and H BB' A 
means of circumventing this problem in solution electron­
transfers is to evaluate TBA at the crossing point of the reac­
tant and product nuclear surfaces, where HAA = H BB . In a 
diatomic system, no such nuclear coordinates exist to equal­
ize reactants and products electronic surfaces, and we have 
therefore evaluated (TBA TAB) 112. 

For elastic electron tunneling between two different sur­
faces, a golden rule analysis23

,24 suggests that electron tun­
neling occurs only between equienergetic levels (due to the 
delta function in energy in the golden rule rate expression 
and the continuous energy spectrum within bands of the sol­
id), and thus I TBA I always equals I TAB I for the truly infinite 
system. Because of the discrete energy spectrum in a cluster, 
the cluster description of such transfers will not provide true 
equality of initial and final levels, and it is therefore neces­
sary to consider transfers to and from a band of energy 
states surrounding the Fermi level. 23,24 In such cases, 
I TBAI ¥= I TA.B I in general. 

In Fig. 1O(a)-1O(c), plots of the quantity 
In( TBA TAB) 1/2 as a function of R are shown for the heteron­
uclear systems ZnBe+,ZnMg+,and ZnCd+. For compari-

Zn+ M+ I 
son purposes, the pertinent Inl T B} T A; II 2 are also 
shown. For ZnBe + and ZnCd +, the initial and final wave 
functions were obtained self-consistently as localized de­
scriptions at each R. For ZnMg+, the wave functions would 
only localize in the form Zn-Mg+, and frozen wave func­
tions similar to those used in the symmetric systems were 
used in this case, Only results between 5 and 10 A are pre­
sented for ZnMg+ because of errors in the frozen wave func­
tions similar to those encountered previously. 

The values of a Fit from the functional form TBA 

= A2R 2 exp ( - a2R) for the cross reactions are given in 
Table II and can be compared with those from the symmet­
ric systems of Table I. The values a Fit are, not surprisingly, 
quite close to those of the symmetric cases. 

Comparison of the heteronuclear (TBA TAB) 1/2 with 
(TkA T~B) 1/2, where TkA and T~B denote the symmetric 
system TBA and TAB corresponding to the heteronuclear ij 
system, shows good agreement in the case of ZnCd + but not 
for ZnBe+, where (TkAT~B)1/2 is approximately 30% 
smaller than (TBA TAB) 1/2. 

VI. CONCLUSIONS 

The present results indicate that current ab initio elec­
tronic structure methods utilizing Gaussian basis sets are 
capable of producing accurate decay rates of TBA over large 
distances. As a result, it is reasonable to assume that such 
methods may be useful in examining vacuum charge trans­
fers over large distances, as occur in applications of the scan­
ning tunneling microscope. This accuracy reinforces the 
utility and reliability of the application of such techniques to 
shorter range transfers as are encountered, for example, 
in solution transition metal redox reactions. I9-21 

Of the various methods presented here, we believe that 

IAI 

6 

9 

-12 

- �5t-__ .1..-__ .1..-__ '--__ "--_---! 
(8) 

-12 

-151----'----'----'----'-----1 
Ie) 

ZnCc!' 

-155~----,1~---:9~---;1';-1 ---;1:;03----' 

FIG. 1O.lnl (Tllli Til.) 1/21 VS R for various heteronuclear diatomic systems 
containing Zn. In each case, the circles are the calculated data points for the 
Zn-M+ system, the solid curve is a fit of the data to the functional form 
(T.II Til. )1/2 =A2R 2 exp( - a2R), and the dashed curve is a fitto the form 

A2R 2 exp( - a~) of the quantity In / (T!t T~i ) 1/2/, appropriate to 
the given system_ (a) ZnBe+ (two diffuse basis functions on Be), (b) 
ZnMg+, (c) ZnCd+. 

TABLE II. Decay constants for heteronuclear diatomic systems: 
TlJA =A~2exp( -a2R). 

System 

ZnBe+ 
ZnMg+ 
ZnCd+ 

• All quantities in a.u. 

0.094 
0.108 
0.102 

0.746 
0.762 
0.746 
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the one we have termed the SCF method is the most reliable 
for estimating TBA at large distances. Its accuracy apparent­
ly stems from the incorporation of functions on the second 
center in propagating the electronic interaction, while still 
retaining a localized description. The results obtained with 
these wave functi9ns yielded exponential decays of T BA with 
distance to better than 10 A center-to-center separation for 
all systems except He. 

Results for the system Be2+ showed that while the inclu­
sion of diffuse functions had a qualitative effect on the value 
of TBA at large R, the value of TBA was not particularly 
sensitive to the 9hoice of exponents for the diffuse basis set. 
The two diffuse basis sets examined had completely different 
s and p diffuse functions, yet yielded values of T BA' and de­
cays of TBA with distance, in good agreement with each oth­
er over a wide range of distances. 

It might be thought that electronic reorganization upon 
gain or removal of an electron could seriously alter the size of 
TBA • However, the present results indicate that this is not a 
major effect. This is most easily seen in comparisons of the 
frozen orbital (atom + ion) and frozen orbital (atom + 
atom) results. In the latter case, we specifically exclude elec­
tronic reorganization upon electron transfer, yet the size of 
T BA. is similar in the two cases, as is the decay with distance. 
While electronic rearrangement plays some role in deter­
mining the size of T BA' the role is secondary relative to orbi­
tal energy and atomic size considerations. This suggests that 
charge rearrangements upon ionization of metal clusters 
should not have a qualitative effect on the size of TBA.' rela­
tive to TBA. calculated for an infinite surface, all other effects 
(such as correlation, edge effects, etc.) being equal. 
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APPPENDIX: CALCULATIONAL DETAILS 

Basis sets 

(a) H: The Huzinaga 7s basis see3 was used contracted 
to four functions in the ,form (4,1, 1,1 ). In addition, three 
diffuse Gaussian s functions were added having the expo­
nents 0.01822,0.005466, and 0.001 640. 

(b) He: The Huzinaga [ lOs} basis see3 for He was used, 
with a contraction scheme of (6,1,1,1,1). Three diffuse s 
Gaussians were added having orbital exponents 0.004 318, 
0.001 727, and 0.000 690 9. Five uncontractedp functions 
were also used, having exponents 1.276,0.2700,0.0571,34 
0.01986, and 0.000 690 9. 

(c) Be: For beryllium, three different basis sets were 
used having zero, two, and three added diffuse functions. In 

each case, the Dunning-Huzinaga35 VDZ (9s,5p/3s,2p) ba­
sis set was used. For the basis set having two additional sand 
p sets of diffuse functions, the s Gaussians used had the expo­
nents 0.018 76 and 0.006 029, and the p Gaussians had the 
exponents 0.017 23 and 0.006 029. For the basis having three 
additional diffuse s and p functions, the s Gaussians used had 
the exponents 0.016 05,0.004 413, and 0.001 213 and the p 
functions had the exponents 0.01432, 0.004 168, and 
0.001213. 

(d) Mg: The SHC effective potential of Rappe et al.36 

was used together with the DZ basis recommended there. 
This basis set was augmented with two sets of sand p diffuse 
Gaussians, the s functions having the exponents 0.01665 
and 0.006 478, and the p functions having the exponents 
0.01853 and 0.006 478. 

(e) Ca: The recently developed effective potential of 
Wadt and Hay26 WaS used to replace the Ar core. The asso­
ciated (3s, 3p) basis set was employed. Two additional sets 
of sand p Gaussians were used, the s functions having the 
exponents 0.009 636 and 0.002 650 and the p functions hav­
ing the exponents 0.008 347 and 0.002 650. 

(f) Zn: The effective potential of Hay and Wade7 for Zn 
was used, allowing for explicit treatment ofthe 3d 10 and 4? 
electrons. The (3s,2p,2d) basis set suggested by Hay and 
Wadt was augmented by two sets of additional sand p Gaus­
sians, the s functions having the exponents 0.01540 and 
0.004 280 and the p functions having the exponents 0.012 25 
and 0.004 280. 

(g) Cd: The effective potential of Hay and Wade7 for 
Cd was used, allowing for explicit inclusion of the 4d 10 and 
5s2 electrons. The recommended (3s,2p,2d) basis set was 
augmented by two sets of additional s and p Gaussians, the s 
functions having the exponents 0.01632 and 0.004 896 and 
the p functions having the exponents 0.014 08 and 0.004 896. 

Wave functions 

For the calculations labeled SCF in the text, Hartree­
Fock (HF) calculations were performed at each R to obtain 
wave functions having the character of the odd electron be­
ing localized on the right or left center, thus yielding the 
nominal structures M+ -M and M-M+, respectively. No re­
strictions were placed on the wave functions to bring about 
the localization. 

For the various frozen wave function calculations, HF 
solutions for the relevant atom and/or ion were used and 
combined to yield the given frozen wave function for the 
system. At each R, the orbitals were properly orthogona­
lized but otherwise were not allowed to change shape. 

The frozen orbital symmetry-restricted calculation for 
Be2+ used linear combinations of Be neutral orbitals cen­
tered on e~ch atom to construct the symmetric and antisym­
metric molecular orbitals. As in the localized frozen orbital 
case, these orbitals were made orthogonal at each R but were 
otherwise not allowed to change shape. 

Calculation of T SA 

The calculation of TBA. was performed using the set of 
programs developed by Voter and Goddard.28 The SCF 
wave functions representing the left and right localized 
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structures [e.g., Eqs. (1) and (2)] were used in the calcula­
tion of the individual matrix elements Eqs. (5a)-( 5c). Since 
each oribital in the left wave function overlaps all orbitals of 
the right wave function, the orbitals of the two wave func­
tions were "biorthogonalized,,28 in order to simplify the eva­
luation of the matrix elements. In the biorthogonalization 
procedure; a linear transformation is applied to the orbitals 
of each localized structure so that a given orbital in, for ex­
ample, the left localized wave function, will have nonzero 
overlap (generally less than one) with only a single oribital 
on the right localized wave function. This simplifies the ex­
pressions for the matrix elements of Eq. (5a), yielding terms 
involving one- and two-electron operators between the non­
orthogonal wave functions.28 In these calculations, an SCF 
calculation leads to the localized wave functions (1) and 
(2), but we do not reoptimize the orbitals after resonance 
(the programs of Voter and Goodgame allow this, but pre­
liminary tests indicate that this much lengthier procedure 
was not needed). 

For Be2+ , Zn2+ , and Cdt, the overlap of the "core" 
electron (ls,3d,and 4d,respectively) on the two centers was 
so small, and the change upon addition or removal of the 
extra electron so slight, that explicit inclusion of the core 
electrons in the calculation of TBA at large distances intro­
duced significant numerical error. To correct this, these core 
electrons were treated as a static field for the noncore elec­
trons for the calculation of T BA' but not when obtaining the 
wave functions; thus the core electronic density for TBA was 
the same whether the extra electron was left or right local­
ized. Since the core electron density is frozen in an asymme­
tric distribution, i.e, say for M-M+, this could, in principle, 
induce an asymmetry in I TBAI and I TAB I via differences in 
HAA and H BB · For Be2+ ,ITBAI and I TAB I were equal to at 
least three deciinal places, thus substantiating this procedure 
for Be2+. For Zn2+ ,TBA was found to agree with t~e all­
electron (d + s) calculation of TBA to within 4% at the 
shorter distances (5-9 A), where the all-electron calcula­
tions could be performed. For Cd2+ ,1 TBA I and I TAB I differed 
by 20%-30%, but the quantity (TBA TAB) 1/2 was found to 
agree with the all-electron (s + d) calculation to within 4% 
over 5-8 A, where the latter values could be obtained. Thus 
it is (TBA TAB) 1/2 that is presented in the text for the system 
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