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A semiclassical model for orientation effects In electron transfer reactions 
Robert J. Cave, Stephen J. Klippenstein, and R. A. Marcus 
Arthur Amos Noyes Laboratory of Chemical Physics. California Institute of Technology, a) Pasadena, 
California 91125 

(Received 26 August 1985; accepted 12 December 1985) 

An approximate solution to the single-particle Schrodinger equation with an oblate spheroidal 
potential well of finite depth is presented. The electronic matrix element H BA. for thermal electron 
transfer is calculated using these wave functions, and is compared with values of H BA. obtained 
using the exact solution of the same Schrodinger equation. The present method yields accurate 
results for H BA.' within the oblate spheroidal potential well model, and is useful for examining the 
orientational effects of the two centers on the rate of electron transfer. 

I. INTRODUCTION 

Increased understanding of biological redox systems 
has led to the need for detailed information regarding the 
effects of mutual orientation and separation distance on the 
rate of electron transfer. The nonspherical structure of many 
biological redox components, such as hemes, chlorophyll a 
and b, and quinones leads one to expect that the mutual 
orientation of redox partners can significantly affect the rate 
of electron transfer. 

Examples of systems for which orientational effects are 
expected include electron transfers involving cytochrome c 
as well as various components in photosynthetic reaction 
centers. It will be recalled that cytochrome c is a complex in 
which a heme lies in a crevice created by a surrounding pro­
tein and is bonded to the protein by thioether bridges. 1 It is 
believed that electron transfers to and from the heme occur 
predominantly near the opening of the crevice to the solu­
tion. 

Several previous studies have attempted to qualitatively 
assess orientational effects using simplified models.2 Recent­
ly, Siders et al.3 developed a model for examining orientation 
effects in transfers between large, aromatic molecules, where 
the high lying electrons are delocalized, and have applied4 it 
to several systems of current experimental interest. The basis 
of the model is the calculation of single-site, one-electron 
wave functions of oblate-spheroidal wells having constant 
potentials. These wave functions are then used to calculate 
the electron-transfer matrix element, the predominant dis­
tance dependent quantity in theories of nonadiabatic elec­
tron transfer. 

In the present paper two simple approximations to this 
model are introduced. The resulting approximate model is 
computationally much faster, conceptually simpler, and will 
be seen to yield accurate results for H BA., within the original 
model. The paper is organized as follows. The exact model 
and the form of the electron-transfer matrix element are out­
lined in Sec. II. The exact wave functions for the original 
model3 are described in Sec. III and the two additional ap­
proximations are introduced in Sec. IV. The calculation of 
H BA. and the energy quantization for the approximate wave 
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functions are briefly discussed there. The exact and approxi­
mate results for the wave function and the electron-transfer 
matrix element are compared and discussed in Sec. V, with 
concluding remarks made in Sec. VI. 

II. THE THEORETICAL MODEL 

The present modeP is intended to describe electron 
transfer between two fixed sites, A and B. In the zeroth-order 
problem A and B do not interact and only the transferable 
electron is considered explicitly, i.e., each electronic wave 
function is a one-electron wave function. The states localized 
at sites A and B are labeled \{IA. and \{IB, respectively. The 
model has been designed to asSess orientational effects, at 
various distances, in electron transfer between large aroma­
tic systems and it is thus assumed that the transferable elec­
tron is delocalized over the aromatic ring system. 

Each isolated site is modeled as an oblate spheroid of 
constant negative potential inside the well and zero potential 
outside the well. Thus, in oblate spheroidal coordinates5 

(S,"1,tp) the potential Vis a constant, - Vo, inside the well 
(S<'So), and another constant (V = 0) outside,3 and is de­
picted in Fig. 1. The molecule is taken to lie in the xy plane of 
the spheroid; a (in Fig. 1) is chosen as an approximate in­
plane radius of the molecule, and b is chosen to yield a rea­
sonable thickness for the electronic orbital of interest. The 
usual Cartesian coordinates are readily defined in terms of 
these coordinates [Eq. (2) of Ref. 3]. 

z 

v=o 

FIG. 1. Potential well for a single site. There is cylindrical symmetry about 
the z axis. On the well boundary the coordinate S equals So. 
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3090 Cave, Klippenstein, and Marcus: Electron transfer reactions 

The single-site one-electron Schrodinger equation may 
be written as 

(1) 

where k 2 equals 2p,(E + Vo)/lf==k; inside the well and 
2p,E IIf=k ~ outside. A choice of Vo yields a specific value of 
an orbital's energy E upon quantization. 

The rate of nonadiabatic electron transfer between two 
such localized fixed states A-+B may be written as6-8 

(2) 

where (FC) is a Franck-Condon sum, discussed in detail 
elsewhere, e.g., Refs. 8-10. TBA is the electronic matrix ele­
ment which, in the present model, was expressed in terms of 
H BA , HAA> and SAB as 

TBA = (HBA - SABHAA )/( 1 - ISAB 1
2
), (3a) 

HBA = f qJB*VBqJA dr, HAA = f qJA*VBqJA dr,(3b) 

SAB = f qJA*qJB dr, (3c) 

where VB is the potential of the transferable electron for the 
isolated site B. TBA is the primary distance and orientation 
dependent quantity in the expression for k A_ B· TBA was 
found3 to agree with HBA when HBA was nonzero to within 
3% for states similar to those examined here, when the wells 
were in contact and the agreement improved with increasing 
separation distance. Furthermore, the zeros of TBA and H BA 
were within 2° of one another (for a specific state exam­
ined) .4 Since the evaluation of T BA requires considerably 
more computational time, only H BA is calculated here. 

The present model was developed to obtain approxi­
mate expressions for qJA and 'liB and thereby to significantly 
simplify the calculation of H BA' To facilitate the description 
of the two approximations introduced below, the calculation 
of the exact wave function is outlined briefly first. 

III. THE EXACT SINGLE-WELL EIGENFUNCTIONS 

In the oblate spheroidal coordinate system, Eq. (1) is 
separable.s Therefore, assuming that qJ==qJmn (5,'I],CP) 

= Rmn (5)Smn ('I])<I>m (cp) one obtains the separated equa­
tionss 

d
2

<1>m 2~ 0 (4a) ---+m 'Vm = , 
dcp2 

~ (1_'I]2)~ + -'I]2k;----2 { 
dSi } {d

2 
m

2 

d'l] d'l] 4 1- 'I] 

+ A :"n } S:"n = 0, ( 4b) 

(4c) 

where d = 2Jaz - b z, and m 2 and A:"n are separation con­
stants. The superscript i indicates a function appropriate to 
the potential region inside the well (5<50)' while a super-

script 0 will indicate these properties outside (5)50)' 
<l>m(CP) is equal to A sinmcp+Bcosmcp, and since <l>m 
must be single valued, m is an integer. The index n orders the 
eigenvaluesAmn in order of increasing value and is chosen to 
have the possible values n = m,m + I,m + 2, .... This 
choice is convenient since in the spherical limit, where a 
tends to b, the eigenfunction given below reduces to a single 
term'll mn with n = I, I being the angular momentum quan­
tum number of the particle for the spherical case. S 

Since the method is primarily designed to assess orienta­
tion effects in electron transfers between delocalized 1T sys­
tems, only states with no 5-type nodes, and one 'I]-type node 
are considered.4 These states are odd with respect to reflec­
tion in the xy plane and are labeled (m,1T); they are 1T-like 
states with azimuthal quantum number m. (A more com­
plete description of the states is given elsewhere. 3,4) 

To satisfy the quantization conditions, namely the con­
tinuity of the wave function and of its normal derivative at 
the well boundary, the exact solution 'II m.1t is written as a 
linear combination of the separated solutions,3 that is, as 

l:~ 0 C ~ qJ:"n for 5 <50' and as l:~ 0 C~ qJ~n for 5>50' Here, 
n = 2r + m + 1. Quantization is accomplished by iterating 
the energy E until'll m.1T and its derivative are continuous at 
the well boundary 5 = 50' 

IV. APPROXIMATE SINGLE-WELL EIGENFUNCTIONS 
AND HBA CALCULATION 

The two new approximations made in the present paper 
to obtain single-well functions for use in calculating H BA are 
the following: (1) The sums for the inner and outer quan­
tized wave functions are each truncated to a single term, one 
inside and one outside the well, and (2) each Rmn and Smn' 
inside and outside the well. is evaluated semiclassically rath­
er than as a sum of known special functions. 

The first approximation was prompted by two observa­
tions: (a) In the spherical limit the inner and outer wave 
functions are each represented by a single mn term. (For the 
case of 1T-like states this single term has n = m + 1.3

) Since 
an oblate spheroid can be viewed as a "flattened sphere" it is 
reasonable that the use of only one term in the sum will be 
adequate when the eccentricity is not too high. (b) Empiri­
cally, we noted in our numerical calculations3

•
4 that both 

inside and outside the potential well it was common for a 
single C ~ and a single C ~ to dominate the other coefficients 
for the states considered. 

In view of approximation (1) above, the total wave 
function, for the (m,1T) states of interest here may now be 
written as 

'II = {C:"+ 1 qJ:".m+ 1 (5,'I],CP); S<So (5) 

m.1t - C~ + 1 qJ~.m + 1 (5.'I],CP); 5>so· 
Within this approximation the quantization conditions can 
now be satisfied only approximately at the well boundary: 

C:" + 1 qJ:".m + 1 ~C~ + 1 qJ~.m+ 1 (5 = 50)' (6a) 

C i a'I':".m+l =co m.m+l . (6b) . I aqJ° I 
m+ 1 - m+ 1 :Jf:' as s=so u~ S=So 

To satisfy Eq. (6a) both sides were squared and then 
integrated over 'I] and cp at 5 = So' thereby averaging over the 
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boundary. Taking the square root, and following the same 
procedure for Eq. (6b) one obtains an equality of 

C!..+ IR !...m+ 1 (so) and of C~+ IR ~.m+ 1 (so) and also of 
their derivatives, when S !...m + 1 , S ~,m + 1 and cP m are each 
normalized to unity. Thereby, the ratio yields 

---- :£- R!...m+ds)ls=so 
R !...m+1 (s) ~ 

= 1 £- :£-R~.m+ds)ls=so' (7) 
R ~.m+ 1 (~) ~ 

This equation serves to determine the approximate single­
site wave function to within a normalization constant (Ap­
pendixA). 

A semiclassical approximation is now introduced to 
simplify evaluation of Rmn and Smn both inside and outside 
the well. In previous applications3.4 the individual inner and 
outer R 's and inner and outer Smn's were evaluated in-mn 
stead through series expansions in spherical Bessel functions 
and associated Legendre functions,5.11 a process which can 
be time consuming. In the present study, semiclassical ap­
proximations were used for S!..n' S ~n' R !..n' and R ~n (uni­
form semiclassical approximations for the first two and 
primitive for the latter two, for reasons given in Appendix 
A). The resulting functions are seen (in Tables II, III, V, 
and VI given later) to be accurate. Previous uniform semi­
classical approximations to prolate spheroidal wave func­
tions, described by Sink and Eu,12 have a number of differ­
ences from ours.13 Our expressions for the wave functions 
and the procedure for calculating H BA are given in Appendix 
A. The semiclassical treatment of S!..n ( 1]) itself involves 
four turning points for the states of interest in the present 
article. 

The general procedure used for calculations of H BA 

(both approximate and exact) was to choose a value for E 
which yielded the desired decay of H BA with distance, after 
adjusting Va. Thus, an accurate quantization of the energy 
for a given value of the potential was not needed. What is 
required is, given this decay, that the orientation dependence 
of H BA be accurate for the states of interest. Nevertheless, for 
completeness, results for quantization of E are given in Ap­
pendix B. 

v. RESULTS AND DISCUSSION 

In this section the exact and approximate results for 
H BA are compared and discussed for a number of states of 
interest. The physical significance of these (m;TT) states was 
discussed earlier. 3.4 In particular, (4, 1T) states are used to 
model the HOMO's of porphyrin derivatives and (5,1T) 

states to model the LUMO's in such molecules. The value of 
E (and hence of Va) is chosen so as to give a fall off with 
distance of the rate which is fairly consistent with presently 
available data. The exact3.4 and approximate electronic ma­
trix elements H BA so calculated are compared below in Table 
I and in Figs. 3, 4, and 6. 

To describe the orientation of the two wells for the cal­
culation of HRA the (R,0) coordinate system shown in Fig. 
2 is used. Unless otherwise specified, the xy planes of both 
wells are chosen to be parallel and the centers of the wells are 

TABLE I. Exact and approximate H BA 's for a pair of (4,17') states as a func­

tion of distance at ® = (J' and ® = 90". 

® (deg) R(A) H';..a Hac b 
BA H'Lherec 

(J' 10 3.8( -4) d 3.0( - 4) 7.0( - 4) 
15 2.0( - 6) 1.8( - 6) 2.2( - 6) 
20 2.2( - 8) 2.1( - 8) 2.0( - 8) 
25 3.8( - 10) 3.7( - 10) 3.0( - 10) 

10 -4.1(-2) - 5.8( - 2) -9.9(-3) 
15 -1.3( -4) -1.5(-4) -4.5( - 5) 
20 - 1.5( - 6) - 1.7( - 6) - 5.8( -7) 
25 -3.0(-8) -3.4(-8) - 1.2( - 8) 

a Por each (4,17') state E = - 1.1525 eV, Vo = 17.352 97 eV, a = 4.85 A, 
b=2.55A. 

bPor each (4,17') state E = - 1.1525 eV, Vo = 17.541 21 eV, a = 4.85 A, 
b=2.55A. 

cPor each (4,17') spherical state E = - 1.1525 eV, Vo = 18.0313 eV, 
r= 3.915 A. 

dThe numbers in parentheses are the powers of ten by which each entry 
should be multiplied. 

held at a given separation distance R. The angle 0 = (j (Fig. 
2) corresponds to a "face-to-face" configuration and 
0= 90· to an "edge-to-edge" one. 

The exact and approximate H BA 's are presented as func­
tions of distance for transfer between two (4, 1T) states, for 
the 0 = O· and 0 = 90· orientations in Table I. The agree­
ment is seen to be good. The deviation in Table I is largest at 
small R, and, especially in the 0 = O· orientation, is due to 
the contribution of other states in the exact state sum over 
RmnSmn [cf. Eq. (6) of Ref. 3] atthesesmallR 's.ltisclear 
that this contribution from other n's is only serious at very 
small R. For comparison, results using spherical wells of 
similar volume and energy are also given in Table I. They are 
seen to be significantly less accurate than the present approx­
imation to the spheroidal problem, particularly at 0 = 0·. 

In Fig. 3 exact and approximate results for transfer 
between two (5,1T) states are compared at constant edge-to­
edge distance for various 0's. As the edge-to-edge distance 
increases from 0 to 4 A, the accuracy of the present approxi-

10 

.--+~~==~~R 

-l.----¥~-----\t--------1Ir+O x CA) 

FIG. 2. Coordinate system used to specify the mutual orientation of wells A 
and B. The x axes of the wells are parallel and lie in the plane of the figure, as 
do the z axes. 
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FIG. 3. The matrix element H 1M as a function of ® at several fixed edge-to­
edge separations for (5,17")-+(5,17") transfer. For the donor and acceptor 
states a = 5 A, b = 2A,E = - 2.8 eV. - - - corresponds to the exact calcu­
lations where Vo = 26.3022 eV. -corresponds to the semiclassical calcula­
tions where Vo = 25.532 eV. (a) Edge-to-edge separationisOA. (b) Edge­
to-edge separation is 2 A. (c) Edge-to-edge separation is 4 A. 

mate calculation also increases. The agreement is good for 
an edge-to-edge distance of 4 A, and for larger separations 
the agreement remains good. 

In Fig. 4 H BA 's for the same set of orientations are given 
for transfer between (5,17") and (4,17") states. Calculations 
similar to those in Figs. 3 and 4 have been used previously3.4 
to model the orientation dependence of the electron transfer 
rate between two porphyrins. Again, at all distances the ap­
proximate results for the H BA 's show similar behavior to the 
exact ones and for an edge-to-edge separation of 4 A or larger 
the agreement is good. 

Results for a different class of orientations (cf. Fig. 5) 
are given in Fig. 6. For these results, the wells are held at a 
given R, in the edge-to-edge (0 = 90°) orientation, but the 

xy planes are twisted about the line of centers through an 
angle r relative to each other. The agreement is again good at 
all distances. 

The present approximation has several advantages over 
the exact method developed in Ref. 3: (1) The present meth­
od is easier to implement. In the exact method the individual 
inner and outer Rmn's and inner and outer Smn's were con­
structed as sums of known special functions. Each sum was 
then checked for convergence at all values of the argument 
for which the function was evaluated. Moreover, the total 
wave function was itself (in principle) an infinite sum which 
had to be checked for convergence at each evaluation. In the 
present method each inner and outer R mn and each inner and 

5 
g .. 
'" I 

~ 
E. .. 
'" I 

:> 
OJ 

3-.. 
'" I 

450,----------,----------,----------, 

(0 ) 

300 

/" "\ 
I , 

I \ 
I \ 

I \ 
150 I 

I 
I 

I 
I 

I 
I 

" 
I ' 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

Of---------~~---r~--------~~ 

" I \ 
\ 

I \ 

(b) I \ 
\ 

25 
\ 
\ 

15 

5 

0 

" I \ 

I \ 
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I \ 
(c ) I 

I 

2000 I 
I 
I 

I 
I 

I 
I 

I 
I 

1000 I 
I 

8 (dE<jrees) 

FIG. 4. The matrix element H 1M as a function of ® at several fixed edge-to­
edge separations for (5,17")-+(4,17") transfer. For the donor and acceptor 
states a = 5 A, b = 2 A, E = - 2.8 eV. For the exact calculations (- - -) the 
donor Vois 26.3022 eV and the acceptor Vois22.199 eV. Forthesemic1assi­
cal calculations (-) the donor Vois25.532eV and the acceptor Vois21.499 
eV. (a) Edge-to-edge separation is 0 A. (b) Edge-to-edge separation is 2 A. 
(c) Edge-to-edge separation is 4 A. 
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I -75 
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FIG. 6. The matrix element HIU. as a function of r at several fixed edge-to­
edge separations for (S,17")--+(S,17") transfer. For the donor and acceptor 
states a = sA, b = 2 A, E = - 1.867 eV. For the exact calculations (- - -) 
the donor and acceptor Vo is 2S.191 eV. For the semiclassical calculations 
(-) the donor and acceptor Vois 24.438 eV. (a) Edge-to-edge separation is 
oA. (b) Edge-to-edge separation is S A. (c) Edge-to-edge separation is 10 
A. 

FIG. S. Coordinate system used to specify 
the mutual orientation of the wells for the 
calculations presented in Fig. 6. The x 
axes of the wells lie in the plane of the fig­
ure. For r = (J the x axes lie along the 
same line but are antipara11el. 

outer Sm" is evaluated as a single term, with convergence 
needed only for the respective integrals involved in the semi­
classical expressions. The problem of convergence of a sum 
thus disappears. (2) The current method is considerably fas­
ter computationally. For each geometry in Figs. 3,4, and 6, 
and Table I, the current method, treating H BA as a three­
dimensional volume integral, required about 10 min CPU 
time (VAX 11-780) while the exact method required about 
50 times longer. 14 (A method of reducing computation time 
for the exact method by reducing the dimensionality of the 
H BA integral is given in Ref. 4. It could be adapted using the 
present approximations to the wave functions, but we have 
not done so. It is expected to give essentially the same results 
as the present three-dimensional integration.) (3) The accu­
racy of the present method supports the simple conceptual 
previously introduced3

,4 to understand the orientation de­
pendence of H BA • Previously, this simple conceptual model 
was understood3 by analogy with results from the use of 
spherical wells, where the inner and outer wave functions are 
each single terms. The spheroidal functions were envisioned 
as distorted spherical functions. Here, a related assumption 
is made explicitly by treating the inner and outer \II's as sin-

TABLE II. Relative values of S::'. (1/)'s for various 1/'s. 

m= S,n=6a m =4,n = Sb 

1/ Semiclassicalc Exact Semiclassicalc Exact 

0.9 9.83(1)d 9.83(1 ) 1.93(1) 1.92(1 ) 
0.8 4.71(2) 4.70(2) 6.81(1) 6.79(1) 
0.7 1.06(3 ) 1.06(3) 1.30(2) 1.30(2) 
0.6 1.71 (3) 1.71(3) 1.89(2) 1.89(2) 
O.S 2.24(3) 2.24(3) 2.31(2) 2.31 (2) 
0.4 2.48(3) 2.48(3) 2.44(2) 2.44(2) 
0.3 2.36(3) 2.36(3) 2.23(2) 2.23(2) 
0.2 1.84(3 ) 1.84(3) 1.70(2) 1.70(2) 
0.1 1.01(3) 1.01(3) 9.21 (I) 9.21 (I) 

a For both exact and semiclassical cases, E = - 2.8 eV, Vo = 26.3022 eV, 
a = S A, b = 2 A, A. ~ = 44.9S,A. ~f = 4S.17. 

bFor both exact and semiclassical cases, E = - 2.8 eV, Vo = 22.1985 eV, 
a = S A, b = 2 A, A. ~:. = 33.36, A. ~"" = 33.67. 

cThe semiclassical function was set equal to the exact function at 1/ = 0.4. 
This was done for comparison purposes only and is not required for the 
H IU. calculations presented here. 

dThe numbers in parentheses are the powers often by which each entry 
should be multiplied. 
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TABLE III. Relative values of S~. ( "') 's for various ",'s. 

m = 5,n = 6" m=4,n=5b 

'" 
Semiclassicalc Exact Semiclassicalc Exact 

0.9 8.03(3 )d 8.03(3) 1.28(3) 1.28(3) 
0.8 1.78(4) 1.78(4) 2.15(3) 2.16(3) 
0.7 1.94( 4) 1.94(4) 2.07(3) 2.07(3) 
0.6 1.60 ( 4) 1.60 ( 4) 1.58(3) 1.59(3) 
0.5 1.13(4) 1.14( 4) 1.08(3 ) 1.08(3) 
0.4 7.35(3 ) 7.36(3 ) 6.81(2) 6.84(2) 
0.3 4.44(3) 4.45(3) 4.06(2) 4.08(2) 
0.2 2.45(3) 2.46(3 ) 2.23(2) 2.25(2) 
0.1 1.08(3) 1.09(3) 9.79(1) 9.88(1 ) 

a E, Vo, a, and b are the same as for the m = 5, n = 6 state of Table II. A ~~x 
= -O.IlIl,A~:' =0.4718. 

bE, Va' a, and b are the same as for the m = 4, n = 5 state of Table II. A ~;x 
= -9.371,A~;"= -8.790. 

cSee Ref. c of Table II with", = 0.4 replaced by '" = 0.6. 
d See Ref. d of Table II. 

gle-term functions. The accuracy of these results therefore 
supports this model. 

Although the goal of this paper is the calculation of 
HBA 's, it is interesting to also compare the shape of the wave 
functions used with the exact ones. We do this next. More 
precisely we select the principal RmnSmn term in the exact 
sum (largest coefficient) and compare (in Tables II to VI 
given later) its Rmn and Smn' inside and outside the well, 
with those of the corresponding approximate functions used 
in the present single-term calculation of H BA • They are com­
pared on a relative basis to emphasize their similar shape. 
(Normalized wave functions were, as already noted, used to 
calculate H BA .) Also included in these comparisons are the 
exact and semiclassical Am,. 's inside and outside the well. 

The exact and approximate results for the S::On 's and 
A ::On's for two of the states used in the present H BA calcula­
tions are compared in Table II. The agreement for the S::On 's 
and for the A ::On's is generally better than 1 %. In Table III, 
exact and approximate S ~n 's and A ~n 's are compared for 
the same two states. The agreement for the S ~n 's is again 
excellent, the largest error being less than 1 %. (The agree­
ment for both the R ::On's and R ~n 's, discussed later, is also 
good.) The A ~n 's themselves are somewhat inaccurate, 
though the splittings are in good agreement with those of the 
exact A ~n's (Table IV). (A similar problem was encoun-

TABLE IV. Corrected A :".'s. 

m=5a 

A~ Exact Semiclassical A~ 

A ~, -0.293 0.381 A~ 
A;. -0.111 0.562 A~, 

A;. -A;, 0.182 0.181 A~, -A~ 

• E, V", a, and b are the same as for the m = 5, n = 6 state of Table II. 
bE, Va' a, and b are the same as for the m = 4, n = 5 state of Table II. 

TABLE V. Relative values of R:!o. (5') 's for various 5' 'so 

m = 5,n = 6" m =4,n = 5b 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

SemiclassicalC 

3.47( - 2) d 

2.03( - 4) 
1.86( - 6) 
2.19( - 8) 
2.97( - 10) 
4.38( - 12) 
6.83( - 14) 
1.11(-15) 

Exact 

3.47( - 2) 
2.05( -4) 
1.88( - 6) 
2.21( - 8) 
3.OO( - 10) 
4.43( - 12) 
6.9O( - 14) 
1.12( - 15) 

SemiclassicalC 

1.44( - 2) 
1.12( - 4) 
1.20( - 6) 
1.55( - 8) 
2.23( - 10) 
3.44( - 12) 
5.53( - 14) 
9.18( - 16) 

Exact 

1.44( - 2) 
1.13( - 4) 
1.21(-6) 
l.57( - 8) 
2.27( -10) 
3.50( - 12) 
5.63( - 14) 
9.35( - 16) 

"E, Va' a, and b are the same as for the m = 5, n = 6 state of Table II. A ~ .. x 

= 44.95, A ~61C = 45.17. 
bE, Va' a, and b are the same as for the m = 4, n = 5 state of Table II. A ~;ex 

= 33.36, A ~;IC = 33.67. 
cSee Ref. c of Table II with", = 0.4 replaced by 5' = 1.0. 
d See Ref. d of Table II. 

tered by Sink and Eu in the prolate spheroidal problem. 12) 

The inaccuracy is seen, however, not to seriously affect the 
semiclassical S ~n 's and R ~n 'so 

The exact and semiclassical R ::Oil'S are compared in Ta­
ble V for the same two states as in Tables II and III. For 
comparison purposes, the functions are equated at the small­
est s. The agreement is good over the entire region of inter­
est. Similar accuracy is obtained for other states. The A ::Oil 
values used in the calculations of R ::Oil'S for Table V were 
from exact and semiclassical methods, respectively. The ex­
act and semiclassical R ~Il 's are compared in Table VI. The 
agreement is again good and similar accuracy can be expect­
ed for other states. 

The accuracy of the semiclassical functions and the 
agreement of the semiclassical and exact H BA 's indicate that 
the relevant shapes of the semiclassical and exact wave func­
tions are quite similar. The shapes of the exact (4,17') and 
(5,17') states are compared elsewhere4 to the shapes ofpor­
phyrin HOMO's and LUMO's obtained in molecular orbital 
calculations and are found to be in qualitative agreement. It 
would be useful to compare also the present H SA results with 
calculations which might be based on the corresponding mo­
lecular orbital wave functions. For face-to-face orientations 
TBA has been evaluated using molecular orbital tech­
niques. IS

,16 Molecular orbital calculations of HBA have not 

m=4b 

Exact Semiclassical 

-9.49 - 8.85 
-9.37 - 8.73 

0.12 0.12 
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TABLE VI. Relative values of R ~. (S') 's for various S' 's. 

m =S,n =6" m=4,n=Sb 

S' Semiclassicalc Exact Semiclassicalc Exact 

0.05 3.24( - 2)d 3.18( - 2) 3.38( - 2) 3.3S( - 2) 
0.10 6.25( - 2) 6.14( - 2) 6.51( -2) 6.48( - 2) 
0.15 8.80( - 2) 8.68( - 2) 9.19( - 2) 9.16( - 2) 
0.20 1.07( - 1) 1.06( - I) l.l2( - 1) l.l2( - 1) 
0.25 l.l8( - 1) l.l8( - 1) 1.24( - 1) 1.24( - 1) 
0.30 1.20( - 1) 1.20( - 1) 1.27( - I) 1.27( - 1) 
0.35 l.l3( - 1) l.l3( - 1) 1.20( - I) 1.20( - 1) 
0.40 9.59( - 2) 9.73( - 2) 1.04( - I) 1.04( - 1) 
0.45 7.13( - 2) 7.31( - 2) 8.02( - 2) 7.99( - 2) 
0.50 4.08( - 2) 4.29( - 2) 5.00( - 2) 4.93( - 2) 

"E, Vo, a, and b are the same as for the m = 5, n = 6 state of Table II. A. ~:" 
= - 0.111, A. ~~ = 0.562. 

bE, Voo a, and b are the same as for the m = 4, n = 5 state of Table II. A. ~f 
= - 9.37, A.~;C = - 8.73. 

cSee Ref. c of Table II with 7f = 0.4 replaced by S' = 0.30. 
dSee Ref. d of Table II. 

been made for the variety of orientations examined here. 
Such a study should include the role of the solvent mole­
cules, e.g., via a superexchange mechanism, and such molec­
ular orbital-based calculations do not appear to be available 
as yet. 

VI. CONCLUSION 

A semiclassical plus single-term approximation for cal­
culating the electron transfer matrix element H BA has been 
formulated. It was shown to yield good agreement with re­
sults4 in which the exact solution of the Schrodinger equa­
tion for the same model potential was used. This method also 
has much greater computational efficiency. In future appli­
cations of the model of Ref. 3 to the calculation of mutual 
orientation and separation distance effects, use of this meth­
od should be appropriate. 
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APPENDIX A: PRESCRIPTION FOR CALCULATING THE 
Rmn's, Smn's, Amn'S AND HSA 

To facilitate use of the present method, details are given 
here on the calculation of H B.4 • To this end, the Rmn's, Smn's 
and Amn 's are calculated first, for any given E and V. 

In obtaining a uniform semiclassical solution for S"mn' 
S"mn is convertedl2

,17 to a function (1 - 7l)1/2S"mn' whose 

differential equation contains no first derivatives. The com­
parison function chosen for making the uniform approxima­
tion is (1- ,?)1/2P7'(v),12 where P7'(v) is the associated 
Legendre function. Thereby, we have 

(1 - ,?) 1/2 
S"mn(1/)~A 2 1/2 P 7'(V), (AI) 

(1-1/) 

where A is a constant which normalizes S "mn (1/), and where 
the function v(1/) is defined below. 

The mapping 1/-w(1/) leads in a standard way12.18 to 
the equation 

f
+.,TP fVTP 

P., d1/ = Pv dv, 
-"1TP -VTP 

(A2) 

where P., is the classical 1/ momentum 

2 A"mn+1/2d2k~/4 (m2-1) 
P., = (1 - 1/2) (1 - 1/2)2 ' 

(A3) 

and Pv is the classical v momentum 

2 1(1 + 1) (m2 
- 1) 

Pv = 1 _,? - (1 _ ,?)2 ' (A4) 

with 1 = n. At 1/ = ± 1/TP' P., = 0 while Pv = 0 at 
v = ± V TP . The left-hand side of Eq. (A2) was evaluated 
numerically, using a standard routine. The right-hand side 
equals ([/(I + 1)] 112 - (m2 - 1) 1/2}1T. The quantized val­
ue of A "mn which appears in Eq. (A3) is that which permits 
Eq. (A2) to be satisfied. 

The v in Eq. (AI) is given by Eq. (A2) with the upper 
( or lower) limits of integration on each side of the equation 
replaced by 1/ and v( 1/).19 (The choice of which set of turn­
ing points to use is a matter of convenience in performing the 
integration. In principle either choice will suffice.) With this 
v( 1/) the S"mn (1/) given in Eq. (AI) was calculated for sub­
sequent use in the calculation of H B.4 • 

The function R "mn (s), the "radial" function outside the 
potential well, satisfies Eq. (4c), with the i superscripts and 
subscripts there replaced by o's. In the present study the 
following primitive semiclassical approximationl2,17 for 
R "mn (s) sufficed because of the absence of turning points for 
the S motion: 

R "mn (s) ~ [exp( - is I Ps Ids) ]!(S 2 + 1) 1/21 Ps 1
1/2

, 

So 
(AS) 

where the classical S momentumps is defined by 

p~ =~ 
-{[(~ +A"mn)(S2+ 1) - (m2 _1)]I(s2+ 1)2}, 

with c~ = d 2k ~/4 and where A "mn was calculated above. 
The calculation of A ~n and S ~n is lengthier and is dis­

cussed at the end of this Appendix. 
The inner radial function R ~n (S) satisfies Eq. (4c). 

The tendency towards an absence of turning points, i.e., for 
the effective energy for the S motion to exceed the effective 
potential energy for all S, increases with increasing d, in­
creasing k~ and decreasing n. For the (m,1T) states and 
choice of parameters appropriate to the modeling of large 
aromatic systems discussed here there are no turning points 
for the S motion in the region s<'So, and so a primitive semi-
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classical approximation suffices for R ~n (t). The boundary 
condition for 1T-like states is that the wave function be zero in 
the xy plane. Thereby, it is also zero on the disk of diameter 
d, centered at the origin, in the xy plane, and hence at t = O. 
(It is also zero at 1/ = 0.) The primitive semiclassical 
R ~n (t) satisfying this condition is 

R ~n (t) ~ [sinUS 1 Psldt ) ]/(t 2 + 1)1/21 Ps 1112, 

(A6) 

where P~ is the same as that given following Eq. (A5), but 
with 0 subscripts and superscripts replaced by i's. 

All the components of II'::',m + 1 and II'~,m + 1 have now 
been considered [ 4>~ (~) = B cos m~ + C sin m~, with 
appropriate normalization] and thus the next step is to sa­
tisfy the quantization conditions. This is done by choosing 
the desired value of E and then using a root search technique 
(we used the Newton-Raphson method) to find the value of 
the well depth Vo which allows Eq. (7) of the text to be 
satisfied. C::, + I' and C~ + 1 are determined using Eq. (6a) 
and normalizing the II'm,1T defined in Eq. (5) of the text. The 
entire procedure is followed for both wells A and B. H BA. can 
then be calculated straightforwardly from Eq. (3b) of the 
text using nested numerical integration to perform the three­
dimensional integral. We note that the integration only 
needs to be performed over well B, since this is the only 
region where VB is nonzero. 

In the above discussion we deferred consideration of 
S ~n and A ~n' We now treat them by first describing a new 
procedure for defining localized wave functions. 

First introducingl2 the function U~n (1/) 
= (1 -1/2)1/2S~n (1/), as noted earlier, then using20 the 
Bethe modification, namely, substituting m 2 for m2 

- 1, we 
obtain an equation for U ~n ( 1/ ) : 

d
2

2 U~n(1/) - V·If(1/)U~n(1/) =0, (A7) 
d1/ 

{

m2 _ (A~n +c;1/2)(I-1/2) 

Vi(1/) = (1 _1/2)2 

V S 

where V S equals m 2 
- A ~n and 1/; is the 1/ in the interval 

(0,1) where Vi(1/;) = V S
• The single-well potential for a 

wave function localized between 0 < 1/< 1 is simply the re­
flection of the potential depicted in Fig. 8 about 1/ = O. Each 
of these effective single-well potentials yields a two-turning 
point problem which can be solved using a uniform approxi­
mation based on a comparison equation for the two-turning 
point problem. The harmonic oscillator equation was chosen 
for the latter.23 A zeroth order separation constant A ~n is 
then obtained semiclassically from the single-well problem 
in a way analagous to the determination of A ::'n' The analog 
of Eq. (A2) for the determination of A ~n is 

f
'lh f+XTP [ 2]112 
_'1~P [Vi(1/)] 1/2 d1/ = -xTP (2N + 1) -~ dx 

1T = (2N + 1) -, (A9) 
2 

where 

with 

This Veff (1/) serves as an effective" V - E" term for the 1/ 
motion. 

When c7 is zero the numerator in V·1f (1/) is quadratic in 
1/. For c;#O, this numerator is a quartic function which, for 
large enough c7, has four real zeros. Examples of plots of 
Veff (1/) for various positive values of Vo and thus for various 
c;'s are given in Fig. 7. It is seen that as Vo and thus as c; 
increases, Veff 

( 1/) changes from having two zeros to having 
four. For the states of interest in the present paper Veff (1/) in 
Eq. (A 7) typically has four zeros (i.e., the problem has four 
turning points), and we devised the following method for 
obtaining S ~n' [Had there been only two turning points an 
equation analogous to Eq. (A 1) for S::'n (1/) would have 
been appropriate.] 

In principle, a four turning-point problem can be treated 
with a comparison function that arises from a potential 
which itself yields four turning points, but such functions are 
typically as complicated as S ~n (1/) itself. Accordingly, re­
sults for two single-well problems were used, noting that the 
eigenvalues of a symmetric double well potential for a high 
barrier occur in pairs and the eigenfunctions can be repre­
sented to a high degree of accuracy by symmetric and anti­
symmetric combinations of the single-well wave functions. 2 

1 

Single-well potentials were devised for the portions of the 
wave function localized to the left- and the right-hand side of 
1/ = O. Linear combinations of two semiclassical single-well 
eigenfunctions then yielded an approximate S ~n (1/). 

For this purpose we introduce an effective single-well 
V~ (1/) to replace V·1f (1/), so as to yield a wave function 
largely localized in the ( - 1<1/<0) region, (cf. Fig. 8)22: 

(A8) 

\vhere V~ (1/) is defined in Eq. (A8), x TP is the x for which 
the x integrand vanishes, and the 1/~J,'s are the values of 1/ for 
which the 1/ integrand vanishes. The first integral in Eq. 
(A9) was evaluated numerically, choosing A ~n so as to 
satisfy Eq. (A9). 

The choice of the quantum number N for the harmonic 
oscillator comparison wave function ~ N (x) is determined 
by the state to be modeled. The number of nodes for the 
function S ~n (1/) (excluding those at 1/ = ± 1) is n - m. 
Thereby, S ~,m ( 1/) has no nodes, while S ~,m + 1 (1/) has one. 
The number of nodes of ~N (x) is N. Since pairs of ~N'S are 
combined, one member from each well, S ~,m states are ob­
tained by taking the symmetric combination of two ground­
state harmonic oscillator-like wave functions, ~o(x), re­
gardless of the value of m. For a 1T state, we need consider 
only states where n = m + 1. S ~,m + I is obtained by taking 
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FIG. 7. Eft'ective potential for S:". as a function of TJ for three dift'erent 
values of Vo. The other parameters used in all 3 plots are a = 5 A, b = 2 A, 
m = 5, n = 6, and E = - 2.8 eY. - corresponds to Vo = 26.3022 eYand 
A. ~6 = 0.3807. - - - corresponds to Vo = 12.00 eY and A. ~6 = 30.60. - ... -
corresponds to Vo = 3.00 e Y and A. ;6 = 42.02. 

the antisymmetric combination of the two ~o(x) wave func­
tions. (Similar reasoning shows that for S:"" states for which 
n > m + 1, and when there are four turning points, linear 
combinations of two ~N'S with N = 1,2, ... , would be used.) 

Thus S :".m + 1 is then given by 

. A 
S:".m+l(rJ} = (1 2 1/2 [UI(rJ} - U,(1])] , (AlO) 

-1] ) 

where UI (1]) is exp( - x; (1]»), i.e., a ·ground state harmonic 
oscillator wave function in the new variable XI (1]) for the 
left-hand side single well; XI (1]) is defined by Eq. (A9) with 
the upper or lower integration limits replaced by 1] and 
X I ( 1] ) .24 Similar definitions apply to U, ( 1]) and X, but with 
1 's replaced by r's and with V~ (1]) as the single-well poten­
tial for a wave function "localized" in 0<1]< 1. A is a con­
stant which normalizes S :",m + 1 (1]). 

90 

60 

-

/ 
V 

o 

-30 

-1.0 -0.5 o 0.5 10 

FIG. 8. Effective single-well potential for a localized s:". state, localized 
between - l<TJ<Oas a function ofTJ. The parameters a, h, m, n, andEare 
the same as in Fig. 7, and Vo = 26.3022 eY. 

The above A :",m + 1 's can be termed zeroth order 
A :",m + I 'So We also calculated "corrected" A :",m + 1 's which 
allow for the splitting of the eigenvalues by tunneling in the 
double-well problem. To do this we use the above UI and U, 
as basis functions, and obtain solutions ofEq. (A7) by solv­
ing 

(All) 

where F/j denotes the matrix element (Uj IF I ~) of 

F= (l-1]2)(d 2/d1]2) + [m2/(l-1]2)] -c71]2 

and G Ij denotes (Uj I ~ ). Equation (A 11) yields two eigen­

values Am.m and Am,m + l' This corrected A :".m + 1 was used 
in the calculation of R :".m + 1 utilizing Eq. (A6)25 and so to 
obtain the results given in the various tables and figures. 
However, we have found that for the parameters and states 

employed here, use of the zeroth order A :".m + I , i.e., values 
without the splitting, gave results for the R :.." 's which dif­
fered negligibly in the domain of interest and hence could 
have been used instead. 

APPENDIX B: SEMICLASSICAL ENERGY 
EIGENVALUES 

Using the semiclassical approximations to the individ­
ual Rm" 's and Sm" 's, and inside and outside the well, togeth­
er with the single-term approximation, the energy values can 
be calculated using Eqs. (6) and (7) for given values of the 
potential and for various states. When Vo, a, and b for m = 5, 
n = 6 were chosen to be the values in Table II (Ref. a), the 
exact value of E was - 2.8 eV, but the approximate value 
was - 3.46 eV. To obtain the desired E of - 2.8 eV in the 
approximate quantization, a Vo of25.5316 eV was needed 
and was used. When Vo, a, and b for m = 4,n = 5 were cho­
sen to be the values in Table II (Ref. b) the exact value of E 
was - 2.8 eV, while the approximate value was - 3.39 eV. 
To obtain the desired E of - 2.8 eV in the approximate 
quantization, aVo of 21.4993 eV was needed and used. 

There is seen to be a fairly large error in this calculated 
eigenvalue, a result not unexpected, because of the observed 
contribution of several terms to the total wave functions near 
the well boundary. As was seen previously, however, these 
single-term functions are still accurate enough to yield rea­
sonable results for H BA • 
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12M. L. Sink and B. C. Eu, I. Chem. Phys. 78, 4887 (1983). 
13Sink and Eu (Ref. 12) treated the analogous prolate spheroidal problem, 

related to the present S::'. and R ::. •. There are a number of ditferences 
between our treatment and theirs: (a) They do not have a boundary So and 
hence do not need the "inner" wave functions. (b) They make the Langer 
modification [R. E. Langer, Phys. Rev. 51, 669 (1937), M. S. Child, Mo­
lecular Collision Theory (Academic, New York, 1974), p. 44], i.e., they 
set 1(1 + 1)--+(1 + ~)2 whereas we do not. (c) They also make an adjusted 
Bethe modification (Ref. 12) [H. A. Bethe, Hand. Physik 24 Part 1,273 
(1933) (cf. Ref. 2,p. 411)] (m2 - I)--+(m + d)2, where dis a small posi­
tive constant chosen to give the best approximate A ::.. 's. We comment on 
these ditferences as follows: (a) The presence of the boundary leads to our 
having to treat the four turning-point problem. (b) When the Langer 
modification is avoided the S::'. reduce asymptotically to the corespond­
ing P ,[" as n--+ 00. [The ditference between using and not using the Langer 

modification is quite small « 0.1 % in S::'.) for the states examined 
here.] (c) The interest of Sink and Eu was in constructing a single uni­
form approximation for all mn states. Had they not adjusted the Bethe 
modification their method would not have yielded a single-valued map­
ping function for the case of n = m = O. In the present case, where only 
high nand m states are considered, the question of single valuedness for 
the mapping variable did not arise and a Bethe modification for S::'. was 
not needed. The Bethe modification for the 7J spheroidal equation is used 
when a harmonic oscillator comparison function is used, for the latter 
involves a mapping of the interval ( - 1,1) onto the infinite interval 
( - 00,00). Accordingly, we used the Bethe modification for S~. but not 
for S::'., since we used an associated Legendre comparison function for 

S::'. rather than a harmonic oscillator comparison function. 
140£ this factor of 50, a factor of 20 simply arises from the use of the single­

term wave function and a factor of about 2. 5 from the use of the semiclassi­
cal approximations in the wave functions. 

ISM._H. Whangbo and K. R. Stewart, Isr. I. Chem. 23,133 (1983). 
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Good, Ir., Phys. Rev. 91, 174 (1953); A. Erdetyi, I. Math. Phys. 1, 16 
(1960). 

l'The values of the v integrals are then as follows. For Ivl > IvTPI: 

f±'v
' 

i(m2_1)1/2 
Pv dv == -'------"-

± Ivr,.l 2 

{
(m2 _1)1/2v + [(m2-1) -1(1+ 1)(I-V)]II2} 

xln 
(m2 - I) 1/2v - [(m2 - 1) -1(1 + I) (1 - v) ]1/2 

- i[/(/ + I) jl/2 

xln I [(m2
_1) -1(1+ 1)(I-v)]1/2+ [/(/+ l) jl/2v l. 

[1(/ + I) - (m2 - 1) ]112 

_ (m2 _ 1)1/2 

X arctan { 
v(m2 _ 1)1/2 } 

[1(1+ I)(I-v) - (m2_1)]1/2 

+ [1(1 + 1) jll2 

. { v[l(l + 1)]1/2 } 
X arcsin . 

[I(I + 1) - (m2 _1)]1/2 

2°H. A. Bethe, Ref. 13. 
21M. A. Morrison, T. L. Estle, and N. F. Lane, Quantum States of Atoms, 

Molecules, and Solids (Prentice-Hall, New Iersey, 1976), p. 276. 
22This procedure has elements in common with that used by V. Lopez, V. K. 

Babamov, and R. A. Marcus [1. Chem. Phys. 81, 3962 (1984)] for a dif­
ferent double-well problem. 

23Unlike the case of S::'., the associated Legendre equation was not used. 
The single-well solutions are quite ditferent from associated Legendre 
functions. 
2~ex integrals are then as follows: For Ixl > IXTPI: 

fx Pxdx=~[(2N+I)-X2]1/2 
-XTP 2 

+ (N+ lI2) 

xarcsin [ x 1/2] + (N + lI2) .!!... 
(2N+I) 2 

2SThe zeroth order A ~. 's are used for the S~. 's, in order that the zeros of 
the comparison function and the original function U~., are mapped onto 
one another by Eq. (A9). 
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