
Minimal Circuits for Very Incompletely
Specified Boolean Functions

Richard Strong Bowen

Nicholas J. Pippenger, Advisor

Ran Libeskind-Hadas, Reader

May, 2010

Department of Mathematics

Copyright c© 2010 Richard Strong Bowen.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.

Abstract

In this report, asymptotic upper and lower bounds are given for the min-
imum number of gates required to compute a function which is only par-
tially specified and for which we allow a certain amount of error. The upper
and lower bounds match. Hence, the behavior of these minimum circuit
sizes is completely (asymptotically) determined.

Contents

Abstract iii

1 Introduction 1
1.1 Previous Work and Motivation 1
1.2 The Present Work . 2

2 The Lower Bound 7

3 The Upper Bound 11
3.1 A Covering Lemma . 11
3.2 Proof of the Upper Bound . 12

4 Other Classes and Future Work 21
4.1 Counting . 21

Bibliography 23

List of Figures

3.1 A block diagram describing the blocks of the circuit which
proves the upper bound. 15

List of Tables

2.1 A partially specified function which can be computed by the
same circuit as Table 2.2. 7

2.2 A partially specified function which can be computed by the
same circuit as Table 2.1. 8

3.1 Parameters of the blocks in the upper-bound construction. . 16
3.2 Purpose of the blocks in the upper-bound construction. . . . 16

Chapter 1

Introduction

In this chapter, we will introduce the work, give definitions and general
background, and state the theorem to be proved.

1.1 Previous Work and Motivation

One topic in circuit complexity theory is the minimum circuit (made up
of some set of gates, such as AND, NOT, and OR gates) which computes a
particular boolean function (i.e., a function from {0, 1}n to {0, 1}).

Livnat and Pippenger (2008) discuss some applications of circuit com-
plexity theory to theoretical biology. Specifically, they consider theoretical
model organisms with some computational limitation, which they model as
some limit on the number of gates in a boolean circuit describing the organ-
ism’s binary choices. They are interested in systematic mistakes—mistakes
due to limitations in the circuit. They show that, for most functions, the best
circuits (i.e., the smallest ones which are correct on all but a certain fixed
fraction ε of input bitstrings) of a certain size depend on all their inputs,
and conclude from this that most such circuits make systematic mistakes.

Sholomov (1969) considers incompletely defined boolean functions and
bounds on their circuit sizes. A boolean function is said to to be incom-
pletely defined if it is only defined on a subset of {0, 1}n, i.e., there are rows
of its truth table which are marked by a “don’t care” symbol. In the same
paper, Sholomov also shows that as long as the number of specified rows
(Nn) of the truth table is at least

n log1+δ
2 n,

2 Introduction

for some positive δ, then as n grows the minimum number L of gates in a
circuit for a function, for most circuits, grows as

L ∼ ρ
Nn

log2 Nn
,

where ρ is a constant depending on which gates are allowed in the circuit.
In the sequel, for simplicity, we will consider only circuits composed of
gates with at most two inputs, for which the constant ρ is always 1, and
hence we will omit it. For more details on ρ, see for example Sholomov
(1969).

Sholomov (1969) does not discuss the effects of allowable errors (the
fraction ε in Livnat and Pippenger (2008)) on the complexity of circuit sizes.
This is considered by Pippenger (1976), where the size of a circuit realizing
a function having some fixed fraction of its inputs specified and allowed to
make some fixed fraction of errors is asymptotically given. Unlike Sholo-
mov (1969), Pippenger (1976) considers only circuits with a fixed fraction
(i.e., a number growing exponentially) of specified rows in the truth table.
In this thesis, we consider the more general combination of the two prob-
lems: we will allow a fixed fraction of errors (as considered by Pippenger)
and a more general number of specified rows.

1.2 The Present Work

In this section, we present definitions and state the theorem to be proved.

1.2.1 Definitions

We begin with the definition of various kinds of boolean functions:

Definition 1.1. A function f : {0, 1}n → {0, 1}m is called a (n, m)-boolean
function.

Definition 1.2. A function f : {0, 1}n → {0, 1, X}m is called a (n, m)-partially
specified boolean function.

Here the X in the range indicates an input for which the output is un-
specified. In the case of both kinds of boolean functions, m may be omitted
when it is one; both n and m may be omitted when their values are clear
from context.

The Present Work 3

Definition 1.3. An (n, m)-boolean function f is a completion of an (n, m)-
partially specified boolean function g if, for all input words w ∈ {0, 1}n where
g(w) 6= X, f (w) = g(w).

Next, we consider definitions for circuits. For more formal definitions,
see for example Wegener (1987). We begin with the idea of a basis:

Definition 1.4. A basis for a circuit of size i is a set of (ni, 1)-ary functions.

Definition 1.5. A circuit over a particular basis is an acyclic network of gates and
n inputs, where each gate computes some binary function in the basis; additionally,
a list of m gates are specified as output gates.

Now we will give a notion of what it means for a function to compute
a boolean function, and to compute a partially specified boolean function:

Definition 1.6. A circuit C computes an (n, m)-boolean function f if C has n
inputs and m outputs, and for every word w in {0, 1}n, f (w) agrees with the
output gates of the circuit when the inputs are set to agree with w.

Definition 1.7. A circuit C computes an (n, m)-partially specified function g if
it computes some (n, m)-boolean function f and f is a completion of g.

Definition 1.8. A circuit computes an (n, m)- (perhaps partially specified) boolean
function f with error E if it computes an (n, m)-function g which disagrees with
f on at most a fraction E of all specified input words.

Finally, we give definitions which allow us to talk about complexity, by
assigning a notion of resources (in this case, gates). We are concerned with
circuits with minimally many gates, hence

Definition 1.9. If a circuit has n gates, then the size of the circuit is n.

Next we define the so-called Shannon function:

Definition 1.10. If f is a (perhaps partially specified) boolean function, then L(f)
is the size of the smallest circuit which computes it.

We can extend this to include a sense of computing with errors:

Definition 1.11. If f is a (perhaps partially specified) boolean function, then
LE(f) is the size of the smallest circuit which computes it with error E.

There is a natural extension of the function L to sets of functions:

4 Introduction

Definition 1.12. If B is a set of (perhaps partially defined) functions, then L(B)
(resp. LE(B)) is the maximum of L(f) (resp. LE(f)) for f ∈ B.

Hence L(B) is a tight upper bound for the number of gates needed to
compute any function in B.

Finally, we will care about asymptotic behavior, so we need to define
our asymptotic estimation:

Definition 1.13. We say f (n) & g(n) for functions f and g if

lim inf
n→∞

f (n)
g(n)

≥ 1.

Definition 1.14. We say f (n) . g(n) for functions f and g if

lim sup
n→∞

f (n)
g(n)

≤ 1.

Definition 1.15. We say f (n) ∼ g(n) for functions f and g if

f . g and f & g

1.2.2 Bounds for Circuit Classes

In this thesis, we are interested in how the complexity of computing a gen-
eral partially specified circuit with allowed errors grows as the number of
inputs grows. That is, if Bn is the set of all n-partially specified boolean
functions with a particular number Rn of specified rows, we are interested
in the asymptotic behavior of L(Bn) or LE(Bn) for some fixed E. We may
also be interested in the behavior of all functions with a particular property;
for example, if Mn is the set of all n-boolean functions with at least half of
their values equal to zero, then we might be interested in the asymptotic
behavior of L(Mn).

Lower Bounds

We are interested in asymptotic behavior, so by a lower bound, we mean a
theorem like: as n goes to infinity, L(Bn) & q(n) for some function q.

In general, lower bounds in this field are proved by a counting argu-
ment (see for example Wegener (1987)). Two fully specified functions can’t
be computed by the same circuit, so to prove a lower bound we count the
number of functions in the class, and the number of circuits with a number

The Present Work 5

n of elements. To get every function, we must at least increase n until the
latter is greater than the former.

This is simply an upper bound for the most difficult function in the
class. However, as long as the size of Bn is growing fast enough, in most
cases almost all (that is, a fraction tending to one) of the functions in Bn
will also need that many gates. This is known as the Shannon effect; see for
example Wegener (1987).

Upper Bounds

We are interested in asymptotic behavior, so by a lower bound, we mean a
theorem like: as n goes to infinity, L(Bn) . q(n) for some function q

In general, upper bounds in this field are proved by explicit construc-
tion.

Main Theorem

The main theorem proved in this thesis is:

Theorem 1.1. Let Bn be the set of all (n, Rn)-partially specified boolean functions,
where Rn ≥ n log1+δ

2 n for some δ > 0. Then

LE(Bn) ∼ (1− H(E))
Rn

log(Rn)
.

Here H is the binary entropy function

H(p) = −p log p− (1− p) log(1− p).

Here and in the sequel, log means log2.

Chapter 2

The Lower Bound

In this chapter, we prove the lower bound of the claimed theorem. We show
this by means of a counting argument.

Theorem 2.1. Let Bn be the set of partially specified boolean functions on n inputs.
Then for large n, LE(Bn) ≥ (1− H(E)) Rn

log(Rn)
.

The key idea is that, to use the method of proving lower bounds de-
scribed above, one needs only to consider those partially specified func-
tions where the function is specified on the first Rn rows (lexicographi-
cally); this means we don’t have to account for the fact that two functions
can be computed by the same circuit—for example, the two partially spec-
ified functions given by the truth tables in Table 2.1 and Table 2.2 can be
computed by the same circuit.

The lower bound follows from a counting argument. First we will es-
timate the number of partially specified functions with Rn specified rows
(this will only be a lower bound, because we will only count those where
the first Rn are specified). Second, we will use a theorem of Pippenger to

Input 1 Input 2 Output

0 0 0
0 1 1
1 1 X
1 1 X

Table 2.1: A partially specified function which can be computed by the
same circuit as Table 2.2.

8 The Lower Bound

Input 1 Input 2 Output

0 0 X
0 1 X
1 1 1
1 1 0

Table 2.2: A partially specified function which can be computed by the
same circuit as Table 2.1.

determine the smallest number of strings we could use and still be within
some error of each of those. Finally, by using a standard argument, we will
compute a lower bound on the size of the largest circuit for the class.

Let Cn be a minimal set of circuits for which, for every b in Bn, there is
some circuit c in Cn which computes b to within the error E. We can view
Cn as a set of strings in the usual lexicographic truth table encoding. Since
these strings, restricted to the first Rn characters, E-approximate (in the
sense of Pippenger (1976), §2.1.1) each of the 2Rn possible strings of length
Rn, but each E-approximates no more than 2H(E)Rn of them (by Pippenger,
2.1.2-3, with c = 0), we have that the size of Cn is at least

2Rn /2H(E)Rn = 2(1−H(E))Rn .

Now we will prove a lower bound on LE(Cn) by a counting argument.
This follows the arguments in Wegener (1987). Let S(b, n) be the number of
circuits using b or fewer gates and having n inputs. We have by Wegener
(1987)

S(b, n) ≤ (b + n + 1)2b16b/b!.

Since we have shown that Cn has at least 2(1−H(E))Rn different functions, we
have that, if b = L(Cn),

2(1−H(E))Rn ≤ |Cn| ≤ S(b, n) ≤ (b + n + 1)2b16b/b!.

We can weaken this bound to make the algebra easier. For large n, we have
that b > n + 1, and we can use b! ≥ (b/2)b to get

Sb,n ≤ (2b)2b42b/(b/2)b.

Taking logs, we have (setting q = (1− H(E)) for brevity)

qRn ≤ 2b log(2b) + 2b log 4− b log b + b log 2
= 2b(log b + 1) + 8b− b log b + b
= b log b + 11b

9

Now we make the assumption that b ≤ (1−H(E))Rn
log((1−H(E)Rn)

. The result of this
assumption is

qRn ≤
qRn

log qRn
(log qRn − log log qRn) + 11

qRn

log qRn
,

which implies

0 ≤ qRn

log qRn
(11− log log qRn),

which is clearly false. Hence, we have, for large n, b ≥ (1−H(E))Rn
log((1−H(E))Rn)

,
which proves the theorem.

Chapter 3

The Upper Bound

In this chapter, we will show the upper bound of the claimed theorem, that
is that if f is a partially defined defined boolean function with Rn specified
rows, having for large n

Rn ≥ n log1+δ
2 n,

then for large n,

LE(f) . (1− H(E))
Rn

log Rn
.

Together with the lower bound, this shows

LE(f) ∼ (1− H(E))
Rn

log Rn
.

In order to show an upper bound, we give an explicit construction. This
construction is similar to that in Sholomov (1969), and will follow his proof
closely.

3.1 A Covering Lemma

First we show a covering lemma, similar to one proved in Sholomov (1969)
but allowing for errors.

Lemma 3.1. Let µ and ν be integers, having µ < ν, and let 0 ≤ E < 1. Let
S be the set of all words over {0, 1, X} of size length ν having exactly µ specified
elements. Then there is a set T of words over {0, 1} having the properties that:

• For every word s in S, we have a word t in T so that t disagrees with s on at
most Eµ of its specified position.

12 The Upper Bound

• |T| < 2µ(1−H(E))(1 + µ + ν).

where H(E) is the binary entropy function.

Proof. We proceed by considering the words t over {0, 1}ν and the words
s over {0, 1, X} as vertices of a bipartite graph where there is an edge be-
tween t and s if the first condition above is satisfied. We can see that each t
will have degree (

ν

µ

)(
µ

Eµ

)
.

By Pippenger (1976), Lemma 2.1.3-1, there is a cover T having

|T| ≤
(ν

µ)2
µ

(ν
µ)(

µ
Eµ)

(
1 + log

(
ν

µ

)
+ log

(
µ

Eµ

))
.

By taking advantage of the fact that (a
b) ≤ 2a we conclude

|T| ≤ 2µ

(µ
Eµ)

(1 + ν + µ),

and by Pippenger (1976), Lemma 2.1.2-1, we have (µ
Eµ) ≥ 2H(E)µ, hence

|T| ≤ 2µ(1−H(E))(1 + µ + ν).

This cover gives exactly the set desired in the statement of the lemma.

3.2 Proof of the Upper Bound

In the paper Sholomov (1969), the author divides the proof of the upper
bound into cases. We will follow those cases.

3.2.1 The First Case

The first case is when log Rn ∼ n.
Let f be an arbitrary (n, Rn)-partially specified boolean function. We

must give a circuit which computes f . Given a parameter λ (the value
of which is to be determined later), we can divide up the set {0, 1}n by

Proof of the Upper Bound 13

thinking of the function f as defined on a table A:

0 0 0 σλ+1 · · · 1 xλ+1
...

...
...

...
. . .

...
...

0 0 1 σn−1 · · · 1 xn−1
x1 · · · xλ−1 xλ 0 0 1 σn · · · 1 xn

0 · · · 0 0
...

0 · · · 0 1
...

0 · · · 1 0
...

...
...

... 0
...

σ1 · · · σλ−1 σλ · · · · · · · · · ∗
...

...
...

...
1 1 1 1

where at the position marked ∗ we have one of {0, 1, X}, that is, the value
of f (σ1, . . . σλ, σλ+1, . . . σn). We subdivide this table in the following ways:

Columns A column Ai is one column of the table (the values of the func-
tion obtained by projection, that is, by fixing the last n− λ variables).

Pieces We further subdivide the columns into pieces, which are contigu-
ous and cover the entire column. Each piece in a column (excepting,
perhaps, the last) has exactly µ specified elements, where µ is to be
determined later, but subject to

µ = o(λ).

Groups A piece has a starting position within a column, an ending po-
sition within a column, and a number of specified elements (which
must be µ unless the piece is the last piece in the column). We place
two pieces in the same group if they have all these things in common.

Next, we will define a completely specified boolean function g which
approximates f to within an error E. The function g is most easily defined
in view of a table B analogous to the table A for f . Each group in A is a set
of strings of length at most 2λ with at most µ specified elements. Hence by
Lemma 3.1, we can fill in the table B with at most 2µ(1−H(E)) (1 + 2λ + µ

)
different completions. The resulting table will agree with A on all but at
most a fraction E of its specified entries.

14 The Upper Bound

The number of groups is bounded above by 23λ, as there are no more
than 2λ choices for each of the defining characteristics (start position, end
position, and number of specified elements). Hence the total number of
completions a particular piece can have is at most

23λ2µ(1−H(E))
(

1 + 2λ + µ
)
≤ 2µ(1−H(E))+6λ,

and so can be encoded using µ(1− H(E)) + 6λ bits. We will call the encod-
ing of which completion a particular piece Bij gets χ(Bij). We can encode a
column by concatenating the encodings of its pieces:

χ(Bi) = χ(Bi,1)χ(Bi,2) . . . χ(Bi,mi),

and we can encode an entire function g by concatenating the encodings of
its columns

χ(g) = χ(B0)χ(B1) . . . χ(B2n−λ−1).

We will call the length of this code h. There are at most (Rn/µ) + 2n−λ

pieces and the encoding of each piece has (1− H(E))µ + 6λ bits, hence the
length of this code is bounded by

h ≤ ((Rn/µ) + 2n−λ)((1− H(E))µ + 6λ)

bits. By virtue of λ = o(µ) and (1− H(E)) being a constant, this gives us

h = O
(

Rn + 2n−λµ
)

Hence log h = O(n).
We will also be concerned with the length Q of the longest word χ(Bi).

It’s clear that in each column there are at most

W =

⌈
2λ

µ

⌉
pieces, hence

Q ≤
(

2λ

µ
+ 1
)
(6λ + (1− H(E))µ).

We can see that log Q = O(n). We may now construct a circuit which
computes g. We begin by describing the various blocks in the circuit briefly
in Tables 3.1 and 3.2.

The pieces are assembled as indicated in Figure 3.1.

Proof of the Upper Bound 15

x1 . . . xλ xλ+1 . . . xn

A(1) A(2)

U

D

K

R

Figure 3.1: A block diagram describing the blocks of the circuit which
proves the upper bound.

16 The Upper Bound

Inputs Outputs

A(1) n− λ dlog he
A(2) n− λ dlog Qe
U dlog he+ dlog Qe W(6λ + µ(1− H(E))
D W(6λ + µ(1− H(E))) W2λ

K W2λ 2λ

R 2λ + λ 1

Table 3.1: Parameters of the blocks in the upper-bound construction.

Purpose

A(1) Find the index of the start of χ(Bi)

A(2) Find the length of χ(Bi)
U Compute the word χ(Bi).
D Compute each Bi,j
K Assemble the Bi,j into Bi
R Use the first λ inputs to select a particular output.

Table 3.2: Purpose of the blocks in the upper-bound construction.

The Blocks A(1) and A(2)

These two blocks take the last n− λ elements of the input word and com-
pute the binary representations of the index of the start of the correspond-
ing column in χ(g) and the length of the encoding of that column. It is a
well known theorem of O.B. Lupanov (see, for example, Wegener (1987))
that an arbitrary function from a inputs to b outputs can be computed using
g gates, where

g .
b2a

a
gates. Hence A(1) can be computed using

O
(

2n−λ

n− λ
log h

)
gates, and A(2) can be computed using

O
(

2n−λ

n− λ
log Q

)
gates.

Proof of the Upper Bound 17

We have both log h = O(n) and log Q = O(n), so the two A blocks
together require O

(
n2n−λ

n−λ

)
gates.

The Block D

The block D consists of W sub blocks Di, which decode the codes χ(Bi,j)

into a vector of length 2λ, which is zero outside the piece Bi,j. Hence Di can
be computed using

O

(
2W(6λ+µ(1−H(E)))

W(6λ + µ(1− H(E)))
W2λ

)

gates, which by virtue of the fact that W ≤ 2λ and λ > µ is

O

(
27λ+µ(1−H(E))

µ

)
.

Hence the entire operator D requires no more than W times this many, or

O

(
28λ+µ(1−H(E))

µ

)
gates.

The Block K

This block performs a large disjunction and clearly requires

O(W2λ) = O(22λ)

gates. The effect is to output the entire column Bi.

The Block R

This block is a selector—given λ bits (the selection) and 2λ bits (the op-
tions), it uses the first λ bits (these being the first λ bits of the input) to
choose one of the values from the options. We can see how many gates this
takes by iteratively conditioning on the most significant bit. Let Rλ be the
number of gates for a selector on 2λ + λ inputs. It’s clear that with a con-
stant amount of circuitry and two copies of Rλ−1, we can condition on the
most significant bit. Hence, the minimal size of this circuit is

L(Rλ) ≤ c + 2L(Rλ−1)

18 The Upper Bound

and so
L(Rλ) = O(2λ).

The blocks K and R together require

O(22λ)

gates.

The Block U

The block U does most of the actual work. We begin by dividing the code
χ(g) into chunks, of size at most 2λ. This chunk size is the same as the
entropy of a completely unencoded column, so an encoded column spans
at most two of them. The circuit for the operator U is composed of two
parts: first, from the output of A1, which is the index of the column start
in the code χ(g), we generate the code for chunk in which the code for
the appropriate column Bi lies. Since this code might straddle chunks, we
also generate the following chunk; by a construction due to Ulig, in Ulig
(1974), this does not increase the complexity of the operator U. Second,
using (small) selector circuits, we output just the column code χ(Bi). We
refer to these two pieces as U1 and U2, respectively. We will show that the
complexity is, asymptotically,

L(U) ∼ (1− H(E))
Rn

log Rn
.

The number of chunks is at most h/2λ; hence the number of inputs to
U1 is log h

2λ . The number of outputs is the maximum code length, which is
Q. Hence the complexity of U1 is bounded by

L(U1) <

Rn+2n−λµ

2λ (2λ + µ)(1− H(E))

log Rn+2n−λµ

2λ

.

By virtue of µ < λ, we have that 2λ + µ ∼ 2λ. Hence, asymptotically,

L(U1) .
(Rn + 2n−λµ)(1− H(E))

log(Rn)
.

Now we show that
Rn + 2n−λµ ∼ Rn

Proof of the Upper Bound 19

by considering the fraction

Rn + 2n−λµ

Rn
= 1 +

µ2n

Rn2λ

→ 1 +
µ2n

2λ2n (Since log Rn n)

→ 1 +
µ

2λ

→ 1.

Hence,

L(U1) . (1− H(E))
Rn

log Rn
.

Next we will consider the complexity of U2. It first computes the index
of χ(B) in the chunk, which is to say it computes some log(h)-bit number
mod a (fixed) 2λ-bit number. Secondly, it the pair of chunks to the left by
this number so that χ(Bi) are the first bits of the shifter’s output.

Computing the modulus can be done by a sort of binary search: com-
pare the index to the starting index chunk halfway through the code; if
appropriate, subtract off this index, then recurse. This requires a number
of comparisons about equal to the log of the number of chunks; each com-
parison requires O(log h) gates. Hence this computation requires

log(h) log(h/2λ) = O(n2)

gates. Second, we must take the two chunks and shift them so that χ(Bi)
is at the start. For this, we consider a gadget we call a conditional shifter. A
conditional shifter for a permutation σ takes k+ 1 inputs and has k outputs;
if the last input (the condition) is high, then the σith output is the ith input;
otherwise it is the σith input (that is, the shifter acts like a wire). This can
be done in O(k) gates. To shift by a number of bits described by a b-bit
number, we need one shifter for each bit (taking advantage of the fact that
a shift by 2α + 2β is the same as a shift by 2α followed by a shift by 2β).
Hence to shift the input pair of chunks to the left up to the length of one
chunk, we have b = k = log 2λ, meaning we need λ2 gates. Therefore the
complexity of the operator U2 is given by

L(U2) = O(λ2 + n2).

20 The Upper Bound

The Total Complexity

The total complexity of the auxiliary operators (those which are not U) is

L′ = O

(
n2n−λ

n− λ
+

28λ+(1−H(E))µ

µ
+ 22λ + n2 + λ2

)
.

Let Φ = 2n

Rn
. Then log(nΦ) ∼ n. We can now choose values of µ and λ. We

let λ = d2 log(nΦ)e
1−H(E) and µ =

⌈
n−17 log nΦ
(1−H(E)

⌉
. Then we have

L′ = O

(
n2n−2 log(nΦ)

n− 2 log(nΦ)
+ (1− H(E))

2n−log(nΦ)

n− 17 log(nΦ)
+ 24 log(nΦ) + n2

)

= O
(

2n−2 log n +
2n−log n

n
+ (nΦ)4 + n2

)
= O

(
2n

n2 + n4
)

So, it is clear that

L′
log Rn

Rn
→ 0.

3.2.2 Remaining Cases

In all the remaining cases, in which the conditions on Rn are changed,
Sholomov’s construction given in Sholomov (1969) produces a sub-block
which recursively uses previous cases to compute new cases, whose com-
plexity dominates the complexity of the entire circuit. Hence the above
result carries through these results as well; for full detail see Sholomov
(1969).

Chapter 4

Other Classes and Future Work

Other than incompletely specified functions, we considered some other
classes of n-variable boolean functions. In the first class, we consider skewed-
ness: the functions with at most s2n ones (0 ≤ s ≤ 1). The second class is
the class of functions whose binary string representation (in lexicographic
order of input strings) has at most a2n alternations (0 ≤ r ≤ 1). Finally we
consider the class which has both these restrictions together.

The motivation for considering these classes is that, in some cases, the
circuit complexity seems to exhibit a factoring behavior, that is: in some
cases, almost all circuits having property P1 will require f12n/n; almost all
circuits having property P2 will require f22n/n gates, and almost all circuits
having both properties P1 and P2 will require f1 f22n/n gates.

4.1 Counting

We begin by counting the number of functions over n inputs in each of the
three classes. Of those functions which have s2n ones, there are (2n

s2n). Of
those functions with a2n alternations (here we assume the value f (~0) = 0,
otherwise we count this as a position-0 alternation) there are (2n

a2n). Finally,
if we have both restrictions together, the behavior is a little more compli-
cated. We will count all the strings with R runs and S ones. An ordered
k-partition of n is an ordered list of k strictly positive integers which add to
n. There are (n−1

k−1) of these. In order to count the number of functions in
the intersection class, we first fix the number of 1s in each run, followed by
the number of 0s between them. This is a pair of ordered k-partitions - the
runs uniquely determine an ordered R-partition of S, and the distribution
of zeros determines an ordered R + 1-partition of 2n − S + 2. Hence the

22 Other Classes and Future Work

total number of such functions is(
S− 1
R− 1

)(
2n − S + 1

R

)
.

The conversion between (S, R) and (s, a) is straightforward. These func-
tions were chosen to study the interaction of two different circuit proper-
ties; that all three lower bounds are readily calculable is promising for their
study for this purpose. The further study of the behavior of these classes is
a prime target for future study.

Bibliography

Livnat, A., and N. Pippenger. 2008. Systematic mistakes are likely in
bounded optimal decision-making systems. Journal of Theoretical Biology
250(3):410–423.

Pippenger, N. 1976. Information theory and the complexity of Boolean
functions. Mathematical System Theory 10(1):129–167.

Sholomov, L.A. 1969. On the realization of incompletely-defined Boolean
functions by circuits of functional elements. Problemy Kibernetiki 10:215–
226. Trans: System Theory Research, 21 (1969) 211-223.

Ulig, D. 1974. On the synthesis of self-correcting schemes from functional
elements with a small number of reliable elements. Mathematical Notes
15(6):558–562.

Wegener, I. 1987. The Complexity of Boolean Functions. Teubner.

	Abstract
	Introduction
	Previous Work and Motivation
	The Present Work

	The Lower Bound
	The Upper Bound
	A Covering Lemma
	Proof of the Upper Bound

	Other Classes and Future Work
	Counting

	Bibliography

