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Abstract

According to the World Health Organization, surgically removable cataract
remains the leading cause of blindness worldwide. In sub-Saharan Africa,
cataract surgical rate targets should ideally be set based on cataract inci-
dence (the number of new cataracts developed each year). Unfortunately,
the longitudinal studies necessary to measure incidence have not yet been
feasible in these areas. Our research instead proposes a method for estimat-
ing incidence based on available cataract prevalence data.

We extend a method proposed by Podgor and Leske (1986) to estimate
age-specific incidence from age-specific prevalence in single diseases with
differential mortality. A two-stage disease extension is created in order to
differentiate between unilateral cataract and bilateral cataract. The new
model, along with a numerical simulation method to generate confidence
intervals, is implemented in the statistical programming language R. The
model is then applied to Rapid Assessment of Avoidable Blindness sur-
vey data from parts of Eritrea, The Gambia, Kenya (two regions), Mali,
Rwanda and Tanzania. Our results suggest significant geographic varia-
tions in cataract incidence, a hypothesis to be further investigated as the
RAAB survey expands and improves. We also show how the model can be
further extended to model any n-stage progressive disease with differential
mortality.
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Chapter 1

Introduction

Surgically removable cataract remains the leading cause of blindness world-
wide. Blindness due to cataract is much more common in developing coun-
tries due to the absence of ophthalmologists who can perform cataract sur-
gery and the lack of infrastructure to utilize existing resources. Though
many factors can influence cataract development, the vast majority of cases
are age-related and develop in persons over 50 years old. Studies show
that women are more susceptible to cataract and, in Africa, women tend
to have less access to treatment. The World Health Organization’s VISION
2020 project, which seeks to eliminate the main causes of avoidable blind-
ness by 2020, includes an important focus on increasing the number of cat-
aract surgeries in Africa (World Health Organization, 2009b). Ideally the
number of surgeries performed each year would at least equal the number
of incident cataracts (new cataracts developed) that year. Unfortunately,
measuring cataract incidence directly would require longitudinal studies
that survey the same group of people over a number of years to see when
cataracts were developed, a procedure that has not been possible in Africa.
For the past several years, because of the lack of data, sub-Saharan Africa
has been assumed to be homogeneous in terms of cataract incidence, and
cataract surgical rate (CSR) targets have been set equally across these re-
gions.

1.1 The Need for Incidence Estimation

While cataract incidence is difficult to measure, new Rapid Assessment of
Avoidable Blindness (RAAB) surveys provide data about age-specific cat-
aract prevalence (the percentage of the population with cataracts in one or
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both eyes). RAAB surveys are conducted on an age-stratified sample of
people over 50 years of age from a district of one to two million people.
Each person surveyed receives an eye exam and any eyes found to have vi-
sual acuity (VA) < 6/18 (indicating blindness or low vision in that eye) are
re-examined to determine visual acuity and the cause of limited vision in
that eye (Limburg and Meester, 2007). Previous cataract surgeries are also
noted in this exam. Lewallen et al. (2010) computed age-specific cataract
prevalence at several visual acuity levels based on data from seven RAAB
surveys in sub-Saharan Africa. The authors also demonstrated that cataract
prevalence can be easily computed from future RAAB survey data.

The RAAB survey methodology is well suited to the assessment of avoid-
able blindness. The survey is feasible to carry out in sub-Saharan Africa.
There are some limitations on the data collected, notably that only a few
visual acuity levels can be distinguished using RAAB methodology. How-
ever, since the goal is to assess blindness, the data is sufficient for our pur-
poses. An important advantage of RAAB surveys is that the same survey
methodology was used in all seven districts studied, allowing comparison
between regions. The consistency of our data means that we expect that
our methodology will be easily applicable to new RAAB data as it becomes
available for additional districts.

The challenge addressed by our research is the estimation of cataract in-
cidence from the available age-specific prevalence data. In simple chronic
diseases that are not age-dependent and do not affect death rate, there is
a simple dependence between incidence, prevalence, and disease duration,
such that any of these variables can be calculated from the other two. How-
ever, cataract has been shown to affect death rates, and age dependence is
an important factor. Podgor and Leske (1986) propose one incidence esti-
mation strategy for a single disease with differential mortality. We extend
their method in order to treat cataract as a bilateral disease. While our
methodology is inspired by characteristics of cataract disease progression,
especially differential mortality, the method itself is not cataract-specific
and could likely apply to other bilateral diseases that affect mortality.

This report is organized as follows. Chapter 2 extends Podgor and
Leske’s model to bilateral diseases. Chapter 3 illustrates a parametric boot-
strap method for computing confidence intervals for incidence estimates.
In Chapter 4, cataract incidence in sub-Saharan Africa is discussed in detail
and incidence is calculated for those African countries where RAAB survey
data is available. Chapter 5 further extends the model to enable incidence
estimation for an n-stage progressive disease. Chapter 6 discusses the im-
pact of our model and gives suggestions for future work.



Chapter 2

Estimating Incidence of a
Bilateral Disease

Our main research goal is to estimate cataract incidence using data on age-
specific cataract prevalence available from RAAB surveys. This is a chal-
lenging task because “incidence” (the number of eyes developing cataract
each year) is a dynamic measure of the impact of cataract on a population,
whereas only static “prevalence” data (the percentage of the population
having cataract at the time the survey was taken) is available. However,
previous work by Podgor and Leske (1986) uses the age-dependence of
prevalence data to estimate incidence of a single disease. Previous inci-
dence estimation work is described in Section 2.1. In Section 2.2, we ex-
tend Podgor and Leske’s work in order to apply it to a two-stage disease.
Our two-stage extension is intended to be applicable to the case of cata-
ract, where unilateral cataract (clouding of one eye) and bilateral cataract
(clouding of both eyes) form the two disease stages. Here the new model
is described in general terms that could also apply to other two-stage dis-
eases; Chapter 4 discusses the application of this model to cataract.

2.1 Previous Work on Incidence Estimation

Incidence estimation for various diseases has been of interest to epidemi-
ologists and others since at least the 1970s. However, the most common
strategies rely on the availability of data that is prohibitively difficult or
expensive to obtain in Africa, specifically longitudinal or serial prevalence
data showing how prevalence evolves in the same population over time.
Hallot et al. (2008) and Sakarovich et al. (2007) both published recent pa-
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pers estimating HIV incidence in certain African populations. Unfortu-
nately, a major part of each research effort was a longitudinal study of HIV
prevalence evolution over time in a single population of interest. This
type of study is too expensive to carry out in a systematic way across
many areas, as would be necessary in order to investigate geographic vari-
ations in the incidence of a disease across sub-Saharan Africa. Brunet and
Struchiner (1999) and Marschner (1997) develop non-parametric methods
for incidence estimation. Both authors do sophisticated work: Brunet’s
model allows modeling of rapid changes in incidence and Marschner’s pa-
per includes sensitivity analysis to certain parameters. In a later paper,
Brunet (2002) develops a compartment model that gives important rela-
tionships between incidence and prevalence. However, both authors again
rely on serial prevalence data that is unavailable to us.

While many sophisticated incidence estimation techniques exist in the
literature, most depend on the availability of a great deal of data obtained
through expensive survey methods that are difficult to repeat on a large
scale. In the case of cataract disease in Africa, the RAAB survey represents
a breakthrough in data collection methodology, because it provides a rela-
tively cheap and standardized way to collect age-specific prevalence data.
However, RAAB surveys often take several years to complete, and it has
not yet been feasible to collect any kind of longitudinal data, because it
is prohibitively difficult to find the same people again after a number of
years. These same challenges presumably apply to longitudinal surveys or
the collection of serial prevalence data on other diseases in Africa.

Podgor and Leske (1986) do develop a method for incidence estima-
tion based on age-specific prevalence from a single prevalence survey. The
authors make certain assumptions that the district of interest represents
a closed, steady-state system, then use age-dependence to estimate the
time-dependence of cataract prevalence and thus estimate incidence. Their
method is described in some detail in the next section, and the assumptions
made are reasonable in many African districts. However, the method only
envisioned a single disease of interest, whereas in the case of cataract we
wish to separate unilateral and bilateral cataract. In Section 2.2, we extend
Podgor’s method to a model for bilateral diseases.

2.1.1 Incidence Estimation for a Single Disease

Podgor and Leske (1986) propose a method to estimate incidence in a sin-
gle, irreversible disease with differential mortality. Podgor’s method al-
lows one to estimate the age-specific incidence of a single disease based on
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known age-specific prevalence and mortality rates. The method consists of
a closed, three-state model in which all people are described as healthy (H),
infected (I), or dead (D), as shown in Figure 2.1.

 

λHD 
 

λID 
 

λHI 
H I 

D 

Figure 2.1: Podgor and Leske’s Model of Disease Progression.

Because the disease is irreversible, there is no transition from state I
back to state H. Podgor assumes the distribution of each transition time
to be exponential with parameters λHD, λHI , and λID giving the rates of
healthy mortality, disease incidence, and diseased mortality respectively.
By distinguishing healthy mortality λHD from diseased mortality λID, the
model accounts for mortality to be affected by the disease, an important
feature in the case of cataract. Figure 2.1 shows a visual representation of
the allowed transitions in Podgor’s model.

Podgor and Leske assume that the system is closed (no people move
into or out of the region) and that the prevalence at all ages is static in time.
Based on these assumptions, they argue that to maintain the (assumed)
steady-state, the population in a particular age range a must evolve, through
the processes of mortality and incidence over a time interval t, to have the
composition of people of age a + t. Given these assumptions, the age di-
mension of prevalence can be treated as a time dimension. The authors
are then able to make conservation arguments that relate prevalence and
transition probabilities. Specifically, because the disease is irreversible, the
healthy people at time a + t must all have been healthy at time a. So the
number of healthy people at age a+ t must be the number of healthy people
at time a times the probability, PHH, that a healthy person at age a remains
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alive and healthy during the time period. This can be expressed

N1(1− π1) = N0(1− π0)PHH, (2.1)

where N0 and N1 are the size of the total population at ages a and a + t
and π0 an π1 give the disease prevalence at ages a and a + t. Similarly, the
number of infected people at age a + t is the number of healthy people at
age a times the probability, PHI , that they become infected but survive, plus
the number of infected people at age a times the probability, PI I , that they
survive. This gives

N1π1 = N0(1− π0)PHI + N0π0PI I . (2.2)

Based on the exponential model, Podgor and Leske calculate the proba-
bilities PHH, PHI and PI I in terms of λHD, λHI , and λID. Though I elaborate
more fully on the details of their derivation when I extend it in Section 2.2.3,
their transition probabilities, for comparison, are given by

PHH = e−(λHD+λHI), (2.3)

PHI =
λHI

λHD + λHI − λID

(
e−λID − e−(λHD+λHI)

)
, and (2.4)

PI I = e−λID . (2.5)

Here we have taken the time interval between prevalence age groups to be
t = 1 and therefore will get incidence rates expressed per time interval (for
example if t = 5 years, then λHI will give incidence per 5 years.

Combining these equations eliminates N1 and N0 and leaves a single
equation. Incidence (λHI) is related to known prevalence (π0 and π1) and
mortality (λHD and λID) by

(1− π0)π1

(1− π1)
e−(λHD+λHI)=

λHI(1− π0)

λHD + λHI − λID

(
e−λID−e−(λHD+λHI)

)
+π0e−λID .

(2.6)

This equation can be solved numerically using Newton’s method. In
this way, incidence in each age range can be estimated for a single disease
with differential mortality if age-specific prevalence and mortality rates are
known.

2.2 Extension to Bilateral Diseases

Our extension of Podgor and Leske’s method follows the same basic strat-
egy as the original method. Section 2.2.1 explains the need for a two-stage
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model for cataract and identifies a new compartment model based on the
possible transitions. Section 2.2.2 derives new equations relating various
transition probabilities to prevalence, and Section 2.2.3 gives these tran-
sition probabilities as a function of known mortality rates and unknown
incidence rates based on our exponential model. Finally, Section 2.2.4 de-
scribes a way of gaining additional insight into the disease progression by
comparing incidence estimates (once obtained) to each other and to mor-
tality rates.

2.2.1 Compartment Model of Disease Progression

In the case of cataract, Podgor and Leske’s method is very appealing be-
cause it uses age-specific prevalence and mortality rates (obtainable from
RAAB surveys and a WHO database, respectively, as described in Chap-
ter 4), to calculate age-specific incidence. The method also accounts for
differential mortality in the presence of the disease and makes reasonable
assumptions about the stability of the population. However, the method
accounts for only a single disease. In the case of cataract, the disease has
two stages of interest: “unilateral cataract” (cataract in one eye only) and
“bilateral cataract” (cataract in both eyes). These disease stages are likely
to have the same mortality because increased mortality is primarily due to
physical weakening from the disease rather than blindness itself (Lewallen,
2010). However, it is important to distinguish between the states because a
person with bilateral cataract has twice as many operable eyes than a per-
son with unilateral cataract. This chapter describes a four-compartment
extension of Podgor and Leske’s method that is effective in estimating both
unilateral and bilateral cataract incidence.

We define four states: healthy (H), unilateral cataract (U), bilateral cata-
ract (B), and deceased (D), with allowed transitions as shown in Figure 2.2.
Like Podgor, we considered mortality with a separate death state because
of differential mortality (people with cataract are more likely to die). We
assume that everyone who develops cataract first develops opacity in one
eye, then at any later time may develop cataract in the second eye. Because
we use a continuous model, these transitions might or might not both occur
in the same five-year period.

We assume that the transition time between any two states i and j is
governed by an exponential distribution with parameter λij, although cer-
tain aspects of the model do not depend on this assumption. The transi-
tion rates λHD, λUD, and λBD (for transition to state D from states H, U,
and B respectively) are known or approximated mortality rates, which can
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Figure 2.2: Bilateral Model of Disease Progression.

be different for each stage of the disease. Mortality rates can generally be
obtained at least as readily as disease prevalence data. For example, in
the case of cataract, healthy mortality rates were obtained from the World
Health Organization and diseased mortality rates were estimated as dis-
cussed in Section 4.2. λHU and λUB are closely related to unilateral and
bilateral incidence, respectively, and are the target quantities to calculate.

2.2.2 Disease Progression Equations

In our extended model, as in Podgor and Leske’s model, we assume a
closed group of people with cataract prevalence at each age fixed in time.
In the case of cataract, these assumptions are likely appropriate and are
forced by the scarcity of data. For example, if prevalence were non-static,
to see whether it increased or decreased in time we would need to know
prevalence at two time points, and that data is unavailable. It therefore
seems reasonable to treat the age-dependence of cataract as a time variable,
and derive model equations based on the conservation of people as they
age.

The pool of people who are healthy at age a1 would be those who were
healthy at age a0 and neither died nor developed cataract in the first eye
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(second eye incidence is not possible directly from this state). That is,

NH
1 = NH

0 PHH

N1(1− πU
1 − πB

1 ) = N0(1− πU
0 − πB

0 )PHH, (2.7)

where N0 and N1 are the total population at a0 and a1, respectively and
PHH is the probability that a person who is healthy at time a0 stays alive
and healthy until time a1.

The pool of people with unilateral cataract at time a1 would be those
who had unilateral cataract at time a0 and survived without developing
cataract in the second eye, plus those who were cataract free at time a0 but
developed cataract in one eye only. This give us

NU
1 = NH

0 PHU + NU
0 PUU

N1πU
1 = N0(1− πU

0 − πB
0 )PHU + N0πU

0 PUU , (2.8)

where PHU is the probability that an initially healthy person stays alive but
develops cataract in one eye only, and PUU is the person that a person with
unilateral cataract at time a0 survives without developing bilateral cataract.

Finally the pool of people with bilateral cataract (2nd eye affected) at
time a1 has three sources: healthy individuals at time a0 who develop uni-
lateral, then bilateral cataract; those with unilateral cataract at time a0 who
survive and develop bilateral cataract; and those with bilateral cataract at
time a0 who survive. This gives

NB
1 = NH

0 PHB + NU
0 PHU + NB

0 PBB

N1πB
1 = N0(1− πU

0 − πB
0 )PHB + N0πU

0 PHU + N0πB
0 PBB, (2.9)

where PHB is the probability that a person healthy at a0 develops unilateral,
then bilateral, cataract by age a1. PUB is the probability that a person with
unilateral cataract at a0 survives but develops bilateral cataract by age a1.
PBB is the probability that a person with bilateral cataract at a0 survives
until age a1.

We combined the three equations above, eliminating the total number
of people at each time, to yield two equations for the two unknowns λHU
and λUB in terms of prevalence and probability of death only. In terms of
probabilities Pij, these equations are

(1− πU
0 − πB

0 )

(1− πU
1 − πB

1 )
πU

1 PHH = (1− πU
0 − πB

0 )PHU + π0PUU , and (2.10)

(1− πU
0 − πB

0 )

(1− πU
1 − πB

1 )
πB

1 PHH = (1− πU
0 − πB

0 )PHB + πU
0 E + πB

0 . (2.11)
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Notice that these equations are derived directly from our disease pro-
gression model (which transitions are possible) and are independent of the
distribution of time it takes to progress from any state to any other state.
In the next section, we choose a specific model for these transition times in
order to calculate the transition probabilities in terms of known mortality
rates and the incidence rates we wish to calculate.

2.2.3 Transition Probabilities

To find the transition probabilities, we follow the logic described by La-
gakos (Lagakos, 1976) and later used by Podgor (Podgor and Leske, 1986)
to derive the transition probabilities in his model. We assume that the time
at which people make any allowed transition can be described by an ex-
ponential model with appropriate characteristic rate, λ. For transitions to
state D, the rate parameters λHD, λUD, λBD are determined by known death
rates with and without cataract. The other rate parameters, λHU and λUB,
are the first and second eye cataract development rates we wish to calculate
and are closely related to the unilateral and bilateral incidence rates.

The first set of probabilities, PHH, PUU , and PBB, represent, respectively,
the chance of remaining in the state H, U, or B for the full time period (zero
state transitions). To calculate PHH, for example, notice that because inci-
dence and mortality are independent events, the probability density func-
tion (pdf) for leaving the H state by any means is

fT(t) = (λHD + λHU)e−(λHD+λHU)t.

So the probability of remaining in state H for at least one unit of time is

PHH =
∫ ∞

1
(λHD + λHU)e−(λHD+λHU)tdt

= e−(λHD+λHU). (2.12)

Similarly, transition out of state U has an exponential distribution with
parameter (λUD + λUB) and transition out of B has rate parameter λBD
since mortality is the only remaining transition option. This gives us

PUU = e−(λUD+λUB) (2.13)

PBB = e−λBD . (2.14)

To evaluate the integrals, we make the explicit choice that a1 = a0 + 1.
The result is that all rates will be expressed in units of people per time inter-
val between age groups in the data set (usually 1− 5 years). Notice that we
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were able to take t = 0 at the beginning of the time interval we’re consider-
ing (age a0), when the known distribution of T has t = 0 when the person
first enters the state of interest. This simplifies the calculation greatly, and it
is possible because of the memoryless property of the exponential distribu-
tion. PHH is really the conditional probability that a person remains healthy
at age a1 = a0 + 1 given that they were healthy at age a0. However, due to
memorylessness, this conditional probability is the same as the probability
that a person is healthy at age 1 given that they are healthy at age 0.

Transition probabilities PHU and PUB represent the chance of progress-
ing by exactly one state, from H to U and from U to B, respectively. These
are analogous to one-stage advancement probability in Podgor and Leske’s
model (probability B in that model, or the probability of advancing to state
I from state H). In the case of PHU , we have the joint pdf

fTD ,TU (tD|tU) =
λHU

λHD + λHU
(λHD + λHU)e−(λHD+λHU)tU

· (λUD + λUB)e−(λUD+λUB)(tD−tU),

for the time TU of transition from H to U and time TD of leaving state U (of-
ten due to death but also due to a transition to state B). Here λHU

λHD+λHU
is the

probability that a person who leaves the healthy state develops unilateral
cataract (rather than dying). So

PHU = P(TD > 1, 0 < TU < 1)

=
∫ ∞

1

∫ 1

0
λHUe−(λHD+λHU)tU (λUD + λUB)e−(λUD+λUB)(tD−tU)dtUdtD

=
∫ 1

0
λHUe−(λHD+λHU)tU e−(λUD+λUB)(1−tU)dtU

=
λHU

λHD + λHU − λUD − λUB

(
e−(λUD+λUB) − e−(λHD+λHU)

)
. (2.15)

Similarly, probability PUB is given by

PUB =
∫ 1

0
e−(λUD+λUB)tB λUBe−λBD(1−tB)dtB

=
λUB

λUD + λUB − λBD

[
eλBD − e−(λUD+λUB)

]
. (2.16)

The probability, PHB, of having bilateral cataract at age a + t given that
a person was healthy at age a is more complicated than any transition
probability in Podgor and Leske’s model because it represents a two-stage
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disease progression. Nevertheless, the extension is fairly straightforward
when we assume exponential distributions for all the processes. The joint
pdf for transition times TU to unilateral cataract, TB to bilateral cataract,
and time of death TD is

fTU ,TB,TD(tU , tB, tD)=λHUe−(λHD+λHU)tU λUBe−(λUD+λUB)(tB−tU)λBDe−λBD(tD−tB).

So PHB, the probability that 0 < TU < TB < 1 < TD, is given by

PHB =
∫ 1

0

∫ 1

tU

∫ ∞

1
λHUe−(λHD+λHU)tU

· λUBe−(λUD+λUB)(tB−tU)λBDe−λBD(tD−tB)dtDdtBdtU

=
∫ 1

0

∫ 1

tU

λHUe−(λHD+λHU)tU λUBe−(λUD+λUB)(tB−tU)e−λBD(1−tB)dtBdtU

=
λHUλUB

λUD + λUB − λBD

·
[

e−(λHD+λHU) − e−(λUD+λUB)

λHD + λHU − λUD − λUB
− e−(λHD+λHU) − e−λBD

λHD + λHU − λBD

]
. (2.17)

Substituting the transition probabilities derived above into Equations 2.10
and 2.11, we obtain

(1− πU
0 − πB

0 )

(1− πU
1 − πB

1 )
πU

1 e−(λHD+λHU) =
(1− πU

0 − πB
0 )λHU

λHD + λHU − λUD − λUB

·
(

e−(λUD+λUB) − e−(λHD−λHU)
)
+ π0e−(λUD+λUB), (2.18)

and

(1− πU
0 − πB

0 )

(1− πU
1 − πB

1 )
πB

1 e−(λHD+λHU) = (1− πU
0 − πB

0 )
λHUλUB

λUD + λUB − λBD

·
[

e−(λHD+λHU) − e−(λUD+λUB)

λHD + λHU − λUD − λUB
− e−(λHD+λHU) − e−λBD

λHD + λHU − λBD

]

+ πU
0

λUB

λUD + λUB − λBD

[
eλBD − e−(λUD+λUB)

]
+ πB

0 e−λBD .

(2.19)

Equations 2.18 and 2.19 are two equations in terms of the two unknown
quantities of interest, λHU and λUB, and can be solved numerically. It is im-
portant to note that since Equations 2.18 and 2.19 are nonlinear, we have no
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guarantee that they uniquely determine incidence. In practice for bilateral
cataract, we solve these equations for two different starting values for every
set of prevalence data points to test for consistency. The two solutions are
consistent for cataract prevalence data or realistic simulated data. (In fact,
in practice inconsistent solutions can be used to detect unrealistic randomly
generated data used for confidence intervals, as described in Section 3.1.1).
Future work should include a more formal check for uniqueness. For exam-
ple, a grid of starting values spanning a square feasible region of incidence
from 0 to 5 for both unilateral and bilateral incidence could be covered by
900 points in a 30 by 30 square with resolution smaller than our confidence
intervals for incidence.

The λHU value we find in this way can be interpreted directly as five-
year (if the time interval between the two prevalence endpoints is five
years), first eye cataract incidence. To find the bilateral incidence from
λUB (which indicates incidence of second eye cataract among those who
already have cataract in one eye), we multiply by the prevalence of unilat-
eral cataract averaged over the initial and final age periods. Notice that the
calculated incidence is a rate and can be easily converted to any desired
time interval. For example, an incidence rate per five years can be divided
by five to give an annual incidence rate.

2.2.4 Comparing Unilateral and Bilateral Incidence

The memorylessness of the exponential model invites an additional com-
parison between unilateral incidence, bilateral incidence, and mortality that
could be helpful to ophthalmologists. Once mortality and both incidences
are known (or estimated), we can easily compute both the expected time
to remain in a given disease stage and the percentage of people who die
before progressing to the next stage.

For example, for people in the healthy stage, there are two possible tran-
sitions leaving that stage: death and development of unilateral cataract.
Adding the two transition rates, the overall time to leave state H is expo-
nentially distributed with parameter λHD + λHU . Therefore the expected
time to remain in stage H is

E(Tremain healthy) =
∫ ∞

0
(λHD + λHU)e−(λHD+λHU)tdt

E(Tremain healthy) =
1

λHD + λHU
. (2.20)

Additionally, the percentage of people age a who develop unilateral
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cataract before dying is

P(U|transition at a) =
λHU

λHD + λHU
. (2.21)

Similarly, for people with unilateral cataract we have an expected time

E(Tremain unilateral) =
1

λUD + λUB
. (2.22)

to remain in the unilateral cataract stage by either developing bilateral cat-
aract or dying. For people who leave the unilateral stage at age a, the prob-
ability of developing unilateral cataract is

P(B|transition at a) =
λUB

λUD + λUB
. (2.23)



Chapter 3

Confidence Intervals for
Incidence

Confidence intervals for incidence were calculated by a parametric boot-
strap method, described in Section 3.1. We made the assumption that the
primary source of error in incidence was from random error in our preva-
lence data. Section 3.2 contains a discussion of excluded sources of error,
efforts to minimize them, their likely impact on incidence estimates. How-
ever, because our motivation to estimate incidence stems from the limited
amount of prevalence data, we first estimate the impact of prevalence data
limitations on incidence results.

3.1 Numerical Simulation for Confidence Intervals

Prevalence data is directly used to calculate incidence data points for each
age group, geographic district, and visual acuity level. We therefore first
derive (Section 3.1.1) confidence intervals for these incidence data points
based on simulated prevalence data. Confidence intervals for age-specific
incidence are then combined (Section 3.1.2) to form confidence intervals for
overall incidence in a particular geographic district at the specified visual
acuity level.

3.1.1 Confidence Intervals for Age-Specific Incidence

Each incidence data point (for a particular district, VA level, and age group)
is calculated based on four prevalence values (unilateral and bilateral preva-
lence at times a and a + 1), known healthy mortality rates, and a mortality
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ratio estimate (1.5 for cataract). To generate confidence intervals, we sim-
ulate the four prevalence values, but leave the mortality values fixed (as-
suming they are not a significant source of error, comparatively).

For each age-specific incidence value, our simulation implemented the
following steps:

1. The specified number of trial prevalence values are generated (we
use 200 trials) based on distributions that model the expected random
error in the original prevalence values. Trial unilateral and bilateral
prevalence at time t = 0 (pU

0 and pB
0 ) and at time t = 1 (pU

1 and pB
1 ) are

generated from two multinomial distributions. That is, each person
is randomly chosen to be in either state H, U, or B with probabilities
based on prevalence. The probability mass function (pmf) for this
distribution is

f (nU
t , nB

t ; nt, πU
t , πB

t ) = Pr(NU
t = nU

t , NB
t = nB

t

and NH
t = nt − nU

t − nB
t ) (3.1)

=
nt!

nU
t !nB

t !(nt − nU
t − nB

t )!
(πU

t )
nU

t

· (πB
t )

nB
t · (1− πU

t − πB
t )

(nt−nU
t −nB

t ), (3.2)

where nt is the total number of people at time t and πU
t and πB

t
give data-generated unilateral and bilateral prevalence, respectively,
at time t. Trial prevalence for state s at time t is then computed
from the number of people in each state by the normalizing relation
ps

t = ns
t /nt.

2. Unilateral and bilateral incidence are calculated from each set of trial
prevalence values. Incidence calculations are complicated by the fact
that it is possible to randomly generate unrealistic prevalence value
combinations, for example if prevalence decreases more with age than
can be accounted for by mortality, even with zero incidence. How-
ever, in practice such unrealistic prevalence values occur only in 1−
2% of trials, and can be found by solving for incidence twice using
two different sets of starting values for Newton’s method. If the trial
prevalence values are unrealistic, the two solutions for incidence will
be inconsistent (and perhaps very large, since Newton’s method will
not converge). These trials are discarded so they do not influence
mean and variance computations.
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3. The mean and variance of each resulting vector of incidence values
are computed.

4. 95% (age-group specific) confidence intervals for incidence are given
by

( Īa − 1.96 · σIa , Īa + 1.96 · σIa) , (3.3)

where Īa is the mean and σIa is the square root of the variance of the
incidence trials for the age group a. This confidence interval is based
on an approximation that simulated incidence values are normally
distributed (see Section 3.1.3 for discussion).

3.1.2 Confidence Intervals for Overall Incidence

Earlier, we calculated overall incidence for each district and visual acuity
level by taking a weighted average of incidence in each age group, with
weights equalling the percentage of the surveyed population falling into
each age group. That is, the overall incidence I is given by

I = ∑
age groups a

pa · Ia, (3.4)

where pa and Ia are, respectively, the proportion of this district’s population
having age a and the age-specific incidence at age a.

Therefore, by properties of linear combinations of random variables,
the mean and variance of overall incidence are given by

Ī = ∑
age groups a

pa · Īa, (3.5)

σ2
I = ∑

age groups a
p2

a · σ2
Ia

. (3.6)

To obtain confidence intervals from sample mean and variance, we again
make the approximation that I is normally distributed; this assumption is
justified in the next section.

3.1.3 Normality

The method just described for computing confidence intervals for incidence
depends on the assumption that simulated incidence trials are normally
distributed. For age-specific incidence, the mean and variance were com-
puted directly from trial data, however the confidence intervals themselves
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assumed normality of the trial data. Similarly, since overall incidence is
simply a linear combination of age-specific incidences, variance in over-
all incidence could be computed in a distribution-independent way based
on the variance of age-specific incidences. However, to obtain confidence
intervals from variance we assumed that simulated overall incidence was
also normally distributed. In this section, we argue that in practice simu-
lated age-dependent cataract incidence is normally distributed. We use this
observation to justify our normality assumption about overall incidence as
well.

We looked at histograms and quantile-quantile plots of a few sets of
age-specific incidence trials that were least likely to be normally distributed
because of their small sample size. For example, incidence trials for Mali at
age 83-87 at VA < 6/18 are shown in Figure 3.1a and Figure 3.1b.

Both the histogram and quantile-quantile plot support the claim that
the age-specific incidence trials are normally distributed. It therefore seems
reasonable to assume that incidence trials for other age and visual acuity
combinations with larger sample sizes would also be normally distributed.
If age-specific incidence trials are normally distributed, then their linear
combinations will also be normally distributed.

3.2 Discussion

Because the difficulty of obtaining large quantities of data in Africa was
a primary motivation for our research, random error in prevalence (based
on sample sizes relative to the proportion of people with cataract) was the
main source of error considered when estimating confidence intervals for
incidence. Other possible sources of error would depend on specific appli-
cations of our model, such as prevalence data collection methodology and
sources of mortality rate data.

In the case of cataract prevalence data in sub-Saharan Africa, possible
sources of error include systematic error between RAAB district surveys
conducted by different teams, error in the mortality rates reported by the
World Health Organization or systematic error introduced by our use of
the same mortality rates for all countries, or error introduced by our as-
sumptions about the ratio of diseased to healthy mortality. Two of these
sources of error are especially important: systematic biases in data collec-
tion methodology between districts (discussed in Section 4.6), and error
in mortality parameters that were also input into our model (investigated
through sensitivity analysis in Section 4.4.1).
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(a) Sample Histogram of Incidence Trials.

(b) Normal Quantile-Quantile Plot of Incidence Trials.

Figure 3.1: Example Normality Tests For Trial Incidence Data (From Mali,
Ages 83-87 at VA < 6/18).





Chapter 4

Application to Cataract
Incidence in Africa

Having developed an incidence estimation model for bilateral diseases, we
are ready to address the challenge of cataract incidence estimation in sub-
Saharan Africa. In Section 4.1, we discuss the survey methodology used
to obtain data on cataract prevalence in Africa. Section 4.2 describes the
details of how our incidence estimation model is implemented to process
this data. Section 4.3 presents incidence estimation results for Africa. In
Sections 4.4 and 4.5, we further analyze our results in order to address, re-
spectively, questions about geographic variation in cataract incidence and
differences between unilateral and bilateral incidence. Finally, Section 4.6
discusses the assumptions of our model and their validity in the case of
cataract incidence estimation in sub-Saharan Africa.

4.1 Survey Methodology

Data on cataract prevalence in Africa was derived from Rapid Assessment
of Avoidable Blindness (RAAB) surveys in seven African districts. The
RAAB survey methodology was designed to assess avoidable blindness
due to cataract and other diseases. Survey teams consist of ophthalmolo-
gists, ophthalmic assistants, and support staff including a data entry clerk.
The teams attend training which includes a standardization workshop mea-
suring the agreement of their surveys with surveys conducted by more ex-
perienced teams (Limburg and Meester, 2007).

Survey participants are selected via a cluster sampling method, where
population units of 50 people over age 50 (experience has shown that teams
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can generally survey 50 people in one day if they live within a small geo-
graphic area) are randomly chosen based on census data from among all
population units in a 1-2 million person district of interest. Only people
over age 50 are surveyed since 80% of cataract cases occur in people over
50, and this greatly reduces the sample size necessary compared to a sur-
vey of the entire population. Surveys generally reach 1500− 3000 people
using this cluster sampling method (Limburg and Meester, 2007: p. 6-12).

Each survey participant receives a standard eye exam. People with vi-
sual acuity (VA) less than 6/18 on the Snellen scale in meters (20/60 vision
in feet) are categorized as visually impaired and examined further using a
pinhole to categorize VA as either < 6/18, < 6/18 but ≥ 6/60, < 6/60
but ≥ 3/60, < 3/60 but ≥ 1/60, light perception, or no light perception.
People with visual acuity less than 3/60 in the better eye with best optical
correction are considered blind. To determine cause of blindness or visual
impairment, the lens of the eye is also examined and classified as normal,
obvious lens opacity, aphakic (likely because the lens was surgically re-
moved in a cataract surgery), or pseudophakic. Participants found to have
cataract or previous surgery are also asked about the surgery or why sur-
gery was not performed (Limburg and Meester, 2007). Figure 4.1 shows the
form used to collect RAAB survey data.

In deriving cataract prevalence from this survey data, Lewallen et al.
(2010) considered all persons with lens opacity, aphakia or pseudophakia
caused by cataract to have ‘cataract’ at a given visual acuity level. Thus
both those with cataract and those who had previously had cataract re-
moval surgery could be counted as having cataract.

4.2 Model Implementation

We applied our model to known prevalence and mortality data in order to
estimate both unilateral and bilateral incidence in sub-Saharan Africa. Age-
specific prevalence data for Africa was obtained from previous analysis of
seven RAAB surveys by Lewallen et al. (2010). The survey districts used
were: Kilimanjaro, Tanzania (Habiyakire et al., 2010); Kericho, Kenya (Ki-
mani et al., 2008); Nakuru, Kenya (Mathenge et al., 2007a); Western Region,
Rwanda (Mathenge et al., 2007b); The Gambia (Oye et al., 2009b); Koulikor,
Mali (Oye et al., 2009a); and Eritrea (Mueller et al., 2009).

An important question raised by the work of Lewallen et al. (2010) is
to what extent geographic variation in cataract prevalence translates into
variation in incidence. The prevalence data suggests significant geographic
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65 

Annex 1.              RAPID ASSESSMENT FOR AVOIDABLE BLINDNESS SURVEY RECORD 
    

A. General Information  Year – Month: !!!!!!!!!!!!!!!! - !!!!!!!! 
Survey area 
ey-area 

 !!!!!!!!   Cluster no. !!!!!!!!!!!! Individual no. !!!!!!!! 
Name   Sex: Male ! (1) Age (years) !!!!!!!! 
  Female ! (2)   

Optional 1 !!!!!!!! Examination status:   
Optional 2 !!!!!!!! Examined: ! (1) (go to B) Refused: ! (3) (go to E) 

  Not available: ! (2) (go to E) Not able to communicate: ! (4) (go to E) 
      
      

B. Vision – Presenting Vision  C.  Lens examination Right eye Left eye 
Glasses without glasses: ! (1) Normal lens/minimal lens opacity ! (1) ! (1) (go to D) 

with available distance glasses: ! (2) Visually impairing lens opacity ! (2) ! (2) (go to D & F) 
 Right eye Left eye Lens absent (aphakia) ! (3) ! (3) (go to D & G) 
   Can see 6/18 ! (1) ! (1) Pseudophakia without PCO  ! (4) ! (4) (go to D & G) 
   Cannot see 6/18,   Pseudophakia with PCO ! (5) ! (5) (go to D & G) 

but can see 6/60 ! (2) ! (2) No view of Lens ! (6) ! (6) (go to D) 
   Cannot see 6/60,       

but can see 3/60 ! (3) ! (3) D.  Main cause presenting VA<6/18 Mark one 
   Cannot see 3/60         (mark only one cause for each eye) principal 

but can see 1/60 ! (4) ! (4)  Right eye  Left eye disorder 
   Light perception (PL+)  ! (5) ! (5) Refractive error ! (1) ! (1) ! (1) 

   No light perception (PL-) ! (6) ! (6) Cataract, untreated ! (2) ! (2) ! (2) 

   Aphakia, uncorrected ! (3) ! (3) ! (3) 

Best Vision – with best correction or pinhole Surgical complications ! (4) ! (4) ! (4) 

 Right eye Left eye Trachoma ! (5) ! (5) ! (5) 

   Can see 6/18 ! (1) ! (1) Phthisis ! (6) ! (6) ! (6) 

   Cannot see 6/18,   Other corneal scar ! (7) ! (7) ! (7) 

but can see 6/60 ! (2) ! (2) Globe abnormality ! (8) ! (8) ! (8) 

   Cannot see 6/60,   Glaucoma ! (9) ! (9) ! (9) 

but can see 3/60 ! (3) ! (3) Diabetic retinopathy  ! (10) ! (10) ! (10) 

   Cannot see 3/60   ARMD     ! (11) ! (11) ! (11) 

but can see 1/60 ! (4) ! (4) Onchocerciasis ! (12) ! (12) ! (12) 

   Light perception (PL+)  ! (5) ! (5) Post. segment / CNS disorder ! (13) ! (13) ! (13) 

   No light perception (PL-) ! (6) ! (6) Not examined – can see 6/18     ! (14) ! (14) ! (14) 
       

       

E.  History, if not examined G.  Details about cataract operation 
      (From relative or 
neighbour) 

   Right eye Left eye 
  Right eye Left eye Age at operation (years) !!!!!!!! !!!!!!!! 

Believed   Place of operation   
Not blind ! (1) ! (1)   Government hospital ! (1) ! (1) 

Blind due to cataract ! (2) ! (2)   Voluntary / charitable hospital ! (2) ! (2) 

Blind due to other causes ! (3) ! (3)   Private hospital ! (3) ! (3) 

Operated for cataract ! (4) ! (4)   Eye camp / improvised setting ! (4) ! (4) 

     Traditional setting ! (5) ! (5) 

 Type of surgery   

F.  Why cataract operation was not done   Non IOL ! (1) ! (1) 

  (mark 1 or 2 responses, if VA<6/18, not improving with   IOL implant ! (2) ! (2) 

  pinhole, with visually impairing lens opacity in one or both eyes)  Couching ! (3) ! (3) 
  Cost of surgery   

Unaware that treatment is possible !  (1)   Totally free ! (1) ! (1) 

Believes it to be destiny / God's Will !  (2)   Partially paid  ! (2) ! (2) 

Told to wait for cataract to mature !  (3)   Totally paid ! (3) ! (3) 

Surgical services not available or very far !  (4) Cause of VA<6/18 after cataract surgery 
Don't know how to get surgery !  (5) Ocular co-morbidity (Selection) ! (1) ! (1) 

Cannot afford operation !  (6) Operative complications (Surgery) ! (2) ! (2) 

No one to accompany !  (7) Refractive error (Spectacles) ! (3) ! (3) 

No time available / other priorities !  (8) Late complications (Sequelae) ! (4) ! (4) 

Old age and need not felt !  (9) Not applicable, can see 6/18 ! (5) ! (5) 

One eye adequate vision / need not felt ! (10) Are you satisfied with results of cataract surgery? 
Fear of operation ! (11) Very satisfied ! (1) ! (1) 

Fear of loosing eyesight ! (12) Partially satisfied ! (2) ! (2) 

Other disease contra-indicating operation ! (13) Indifferent ! (3) ! (3) 

  Partially dissatisfied ! (4) ! (4) 

  Very dissatisfied ! (5) ! (5) 
     

 

Figure 4.1: RAAB survey instrument (Limburg and Meester, 2007: p. 65).
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variation in prevalence, so as a preliminary measure of this variation, Lewallen
et. al. grouped the seven surveyed districts into two groups based on 95%
confidence intervals of prevalence. Group 2 (Eritrea, Mali and The Gam-
bia), when pooled, showed prevalence 2.6, 2.6, and 2.5 times higher than
Group 1 ( Kenya, Tanzania, and Rwanda) at the three visual acuity levels
of < 6/18, 6/60, and 3/60 respectively (Lewallen et al., 2010). In addi-
tion to computing incidence for each individual district, we also computed
incidence for the pooled prevalence data of each of these groups.

The age-specific probability of death over the interval for each coun-
try was taken from life tables published by the World Health Organiza-
tion (World Health Organization, 2009a). We used the average of the for
the African countries from which we had RAAB survey data. The 5-year
healthy death rate, λHD, was calculated from the 5-year probability of death,
nqX, as follows: λHD = − ln(1− nqX), where nqX is a mortality table col-
umn described in depth in World Health Organization (2001). We assumed
that the death rate in a person with cataract in one or both eyes would be
1.5 times that of someone without cataract. That is, we let λUD = λBD =
1.5λHD.

First and second eye cataract incidence were calculated for each age in-
terval and using each of three visual acuity levels (<6/18, <6/60, <3/60)
as cutoffs for blindness due to cataract. Incidence results are given in Sec-
tion 4.3 and a discussion of time to develop unilateral and bilateral cataract
is given in Section 4.5.

Confidence intervals for incidence were computed using the parametric
bootstrap method described in Chapter 3. We generated 200 trial incidence
values for each true (age-specific) incidence value estimated.

4.3 Incidence Results

Cataract incidence was found to increase with age at all visual acuity levels.
To calculate the overall incidence in the survey population (50+ years old),
we multiplied the age-specific incidence by the proportion of population in
each age group. The 1-year incidence of blindness due to cataract in per-
sons over 50 in each survey district is shown in Tables 4.1 and 4.2. Incidence
values are given per 100 people, with overall incidence indicating the num-
ber of eyes per 100 people per year that develop cataract. Figure 4.2 shows
the age dependence of incidence among four districts (Rwanda, Tanzania,
and Kenya) that are both geographically close and show an overlap of 95%
confidence intervals for prevalence. Figure 4.3 shows age dependence of
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pooled prevalence for the same four districts.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

53-57 58-62 63-67 68-72 73-77 78-82 82+
Age Group

C
at

ar
ac

t I
nc

id
en

ce
 

(e
ye

s/1
00

 p
er

so
ns

)

VA < 6/18

VA < 6/60

VA < 3/60

Figure 4.2: Age Dependence of Pooled Cataract Incidence.

Tables 4.1 and 4.2 give overall incidence (with confidence intervals) by
district at each visual acuity level and Figure 4.4 shows a representative
subset of the data in visual form, specifically, incidence by eyes at visual
acuity < 6/18. The significance of the VA < 6/18 cutoff is that the World
Health Organization defines low vision due to cataract at this threshold,
and blindness due to cataract at VA < 3/60 (Limburg and Meester, 2007).
Both thresholds represent significant lifestyle impact from cataract, hence
we present both thresholds
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< 6/18 VA

First Second
Study Site Eye Eye Overall

Nakuru, Kenya 1.7 0.6 2.3
(1.3,2.2) (0.4,0.9) (1.8,2.8)

Kilimanjaro, Tanzania 1.8 0.7 2.5
(1.4, 2.3) (0.5, 1.1) (2.1, 3.1)

Western Province, Rwanda 1.5 0.6 2.2
(1.1, 2.1) (0.4, 1.1) (1.6, 2.9)

Kericho, Kenya 2.2 0.8 3.0
(1.7, 2.8) (0.5, 1.3) (2.4, 3.8)

Koulikor, Mali 4.6 1.8 6.4
(3.9, 5.5) (1.3, 2.4) (5.5, 7.5)

Gambia 2.7 1.1 3.8
(1.7, 4.2) (0.6, 2.2) (2.6, 5.5)

Eritrea 3.9 1.6 5.5
(3.3, 4.7) (1.2, 2.1) (4.8, 6.4)

< 6/60 VA

First Second Overall
Study Site Eye Eye Cataract

Nakuru, Kenya 1.3 0.4 1.7
(0.9, 1.7) (0.2,0.7) (1.3,2.2)

Kilimanjaro, Tanzania 1.1 0.4 1.5
(0.8,1.5) (0.2,0.7) (0.8,1.8)

Western Province, Rwanda 0.9 0.3 1.2
(0.6, 1.4) (0.2, 0.7) (0.8, 1.8)

Kericho, Kenya 1.7 0.6 2.2
(1.2, 2.3) (0.3, 0.9) (1.7, 2.9)

Koulikor, Mali 3.0 1.1 4.1
(2.4, 3.8) (0.8, 1.6) (3.4, 5)

Gambia 1.6 0.7 2.4
(0.9, 2.9) (0.3, 1.7) (1.5, 3.8)

Eritrea 2.9 1.1 4.0
(2.4, 3.6) (0.8, 1.6) (3.4, 4.8)

Table 4.1: Incidence of Visual Impairment Due to Cataract.
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< 3/60 VA

First Second Overall
Study Site Eye Eye Cataract

Nakuru, Kenya 1.1 0.4 1.5
(0.8, 1.5) (0.2, 0.6) (1.1, 1.9)

Kilimanjaro, Tanzania 1.0 0.3 1.3
(0.7,1.4) (0.2,0.6) (1,1.8)

Western Province, Rwanda 0.8 0.3 1.1
(0.5, 1.3) (0.1, 0.6) (0.8, 1.6)

Kericho, Kenya 1.4 0.5 1.9
(1, 2) (0.3, 0.8) (1.4, 2.5)

Koulikor, Mali 2.5 0.9 3.4
(2, 3.2) (0.6, 1.4) (2.8, 4.2)

Gambia 1.3 0.8 2.1
(0.7, 2.5) (0.3, 1.8) (1.2, 3.5)

Eritrea 2.6 1.0 3.6
(2.1, 3.2) (0.7, 1.4) (3, 4.3)

Table 4.2: Incidence of Blindness Due to Cataract.
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Figure 4.4: Incidence of Low Vision (Visual Acuity < 6/18) Due to Cataract.
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4.4 Geographic Variation in Cataract Incidence

Our model provides new data regarding differences in cataract incidence
among districts in sub-Saharan Africa. The difference in incidence between
Mali and Kenya, for example, is large compared to the 95% confidence in-
terval on either data point, indicating that random error in prevalence is
unlikely to account for this difference. This type of geographic variation
has great practical significance and should be explored further as more
RAAB survey data becomes available.

We also compute incidence estimates for pooled cataract prevalence for
each of the two rough groups suggested by Lewallen et al. based on confi-
dence intervals for prevalence. Group 1, low-prevalence countries, consists
of both Kenyan districts, Tanzania, and Rwanda. Group 2, high-prevalence
countries, consists of Mali, The Gambia, and Eritrea Lewallen et al. (2010).
This grouping is clearly not a perfect representation of the geographic vari-
ation in incidence, however it allows us to obtain a quasi-quantitative mea-
sure of geographic variation for comparison to other effects, such as vari-
ation based on age. Table 4.3 gives pooled incidence results for these two
groups.
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< 6/18 VA

First Second Overall
Study Site Eye Eye Cataract

Group 1 1.8 0.7 2.5
Kenya, Rwanda, Tanzania (1.5,2.0) (0.5,0.9) (2.2,2.8)

Group 2 4.0 1.6 5.6
Eritrea, The Gambia, Mali (3.5,4.5) (1.3,2) (5.1,6.2)

< 6/60 VA

First Second Overall
Study Site Eye Eye Cataract

Group 1 1.2 0.4 1.6
Kenya, Rwanda, Tanzania (1,1.4) (0.3,0.6) (1.4,1.9)

Group 2 2.7 1.1 3.8
Eritrea, The Gambia, Mali (2.4,3.2) (0.8,1.3) (3.3,4.3)

< 3/60 VA

First Second Overall
Study Site Eye Eye Cataract

Group 1 1.1 0.4 1.4
Kenya, Rwanda, Tanzania (0.9,1.3) (0.3,0.5) (1.2,1.7)

Group 2 2.3 0.9 3.2
Eritrea, The Gambia, Mali (2,2.7) (0.7,1.2) (2.8,3.7)

Table 4.3: Pooled Cataract Incidence.
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4.4.1 Sensitivity to Mortality Parameter Estimate

When analyzing geographic variation in cataract incidence, it is impor-
tant to consider whether any part of our model introduces geographic bi-
ases. Bias could originate either in data collection procedures (discussed in
more detail in Section 4.6) or in the model itself. In addition to prevalence
data, we use age-dependent mortality rates as data in our model. Since we
use the same average mortality rate for all countries studied, it is unlikely
that mortality introduces a geographic bias. However, we also introduce a
mortality ratio parameter giving the ratio of diseased to healthy mortality,
which could significantly impact incidence estimates. Although we also
use the same mortality ratio for all countries, it is important to verify that
different mortality ratios do not affect the relative scale of geographic dif-
ferences and confidence intervals, which could render our results less sig-
nificant. Here we give an initial, quantitative estimate of the impact of this
parameter on incidence and discuss whether this parameter could account
for the geographic variation in incidence noted in the previous section.

We varied the mortality ratio parameter over its range of reasonable
values, from 1 (indicating cataract disease has no impact on mortality) to
2 (indicating cataract doubles mortality), in increments of 0.25. Figure 4.5
shows the impact of mortality ratio on incidence for the highest-incidence
district (Mali) and lowest-incidence district (Nakuru, Kenya) surveyed. In
both cases, the data suggests a linear relationship between incidence and
the mortality rate parameter. For both countries, incidence estimates for a
mortality ratio of 1.25 or 1.75 fell within a 95% confidence interval for our
original incidence estimate with mortality ratio 1.5. This suggests that error
in incidence due to our mortality ratio estimate is comparable to or less than
our confidence intervals for incidence based on RAAB survey sample sizes.

While mortality ratio estimates are not the most significant source of
error in our model, it is important to consider whether they could intro-
duce a geographic bias between countries. We computed incidence by
eyes with each mortality estimate for all seven districts at visual acuity
< 6/18. Figure 4.6 shows the effect of decreasing the mortality ratio be-
low 1.5 and Figure 4.7 shows the effect of increasing this ratio. While inci-
dence increases with the mortality ratio parameter, the differences between
incidence levels in different districts remain unaffected by the mortality
ratio. In all cases, Eastern African districts (both Kenya districts, Tanzania,
and Rwanda) had overlapping 95% confidence intervals. The difference be-
tween Eastern African districts and Mali and Eritrea remained large com-
pared to the confidence intervals shown, and the confidence interval for



Geographic Variation in Cataract Incidence 33

0

1

2

3

4

5

6

7

8

9

10

0.75 1 1.25 1.5 1.75 2

Ratio of Diseased to Healthy Mortality

In
ci

d
e
n

ce
 

(E
y
e
s/

1
0

0
 P

e
o

p
le

 a
t 

V
A

 <
 6

/
1

8
) Mali

Nakuru, Kenya

Figure 4.5: Incidence Dependence on Mortality Ratio.



34 Application to Cataract Incidence in Africa

the Gambia remained large and continued to overlap those of most other
districts.

The sensitivity analysis presented here is certainly preliminary. Future
work could further investigate the role of mortality rate estimates in our
model, especially our assumption that mortality rates with unilateral and
bilateral cataract are equal. It is likely that allowing the ratio of unilateral to
bilateral mortality to vary as well would affect unilateral and bilateral inci-
dence, the ratio of unilateral to bilateral incidence, and incidence by eyes.
A more complex version of our model could also include a mortality ratio
parameter that varied with age. However, while more sophisticated mor-
tality estimates could improve the accuracy of incidence calculations, they
are unlikely to account for the strong geographic variations in incidence we
observe.
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(a) Incidence with Mortality Ratio 1.
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Figure 4.6: Effect of Reduced Mortality Ratio.
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(a) Incidence with Mortality Ratio 1.75.
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Figure 4.7: Effect of Increased Mortality Ratio.
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4.5 Comparison of Unilateral and Bilateral Incidence

One feature of our model is that it allows separate calculation of unilateral
and bilateral incidence. These two types of incidence behave qualitatively
differently in a way that suggests future research in this area could give
more information about the development of cataract disease itself. Here
we explore some of these differences. Figure 4.8 shows pooled unilateral
incidence and bilateral transition rates for Group 1 and Group 2. Unilat-
eral incidence (λHU in our model) is compared with the rate of transition to
bilateral cataract among those who already have unilateral cataract (λUB,
or “bilateral transition rate”) in order to separate the processes of devel-
oping first and second-eye cataract. The bilateral transition rate was used
instead of bilateral incidence since bilateral incidence in the full population
depends on the prevalence of unilateral cataract as well as the rate people
with unilateral cataract develop bilateral cataract.

Interestingly, a comparison of the two graphs shows qualitatively dif-
ferent behavior of unilateral and bilateral transition rates. Unilateral inci-
dence increases with age and there is a clear distinction between incidence
in Group 1 and in Group 2; the difference between groups is usually larger
than the difference between different visually acuity levels. The latter dif-
ference is known to be significant to policy decisions since in many areas
cataract surgical rate (CSR) targets are set differently for the visual acuity
levels shown in an attempt to manage scarce resources. In contrast, in the
case of bilateral transition rates, noise seems to dominate over both age-
based and country group distinctions. Further work in both data collection
and statistical analysis of the data presented would help illuminate this is-
sue. One extremely interesting hypothesis is that perhaps the progression
from unilateral to bilateral cataract is more characteristic of the cataract dis-
ease itself rather than of specific environmental or genetic influences in any
given region.

The transition from unilateral to bilateral cataract may be especially in-
teresting to ophthalmologists. Due to limited resources, ophthalmologists
may need to choose between operating on a person with unilateral cataract
or waiting until they develop bilateral cataract to do a more efficient dou-
ble surgery. In order to evaluate such a strategy, two types of data from
our computed transition rates may be helpful. Our model allows us to cal-
culate the probability of a person in a given state (healthy or unilateral)
progressing to the next state, that is, the probability that a person ever de-
velops the next stage of cataract before passing away. Figure 4.9 compares
probability of progression to unilateral and bilateral cataract states. A sec-
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Figure 4.8: Comparison of Unilateral and Bilateral Transition Rates.
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ond, related calculation gives the expected time to remain in a given state
(again, healthy or unilateral) before the transition (either developing the
next stage of cataract disease or death) takes place. Figure 4.10 compares
expected transition times to leave the healthy and unilateral states, which
correspond respectively to transitions to the unilateral (or deceased) and
bilateral (or deceased) states.

Our initial results suggest that the strategy of waiting until a person
develops bilateral cataract before operating is problematic for two reasons.
For younger persons, the waiting time to develop cataract in the second
eye may be significant, causing a significant period of lower quality of life
for that person due to partial blindness. For older persons, the percentage
who develop bilateral cataract at all drops well below 50%, so this policy
would bar the majority from access to any type of cataract surgery. Our
data complements the safety argument based on our colleague’s experi-
ence that earlier cataract surgeries are safer and have higher success rates
(Lewallen, 2010). Again, future work especially additional statistical anal-
yses of this data could prove fruitful. Our intention here is to show the rich
variety of information available in the transition rate data estimated by our
model, and suggest avenues that our work opens for future study.



40 Application to Cataract Incidence in Africa

0

0.1

0.2

0.3

0.4

0.5

0.6

53-57 58-62 63-67 68-72 73-77 78-82 82+

Age Group (Years)

P
(U

n
il
a
t 

b
e
fo

re
 D

e
a
th

)

Group 1 (3/60)

Group 1 (6/60)

Group 1 (6/18)

Group 2 (3/60)

Group 2 (6/60)

Group 2 (6/18)

(a) Probability of Developing Unilateral Cataract.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

53-57 58-62 63-67 68-72 73-77 78-82 82+

Age Group (Years)

P
(B

il
a
t 

b
e
fo

re
 D

e
a
th

)

Group 1 (3/60)

Group 1 (6/60)

Group 1 (3/18)

Group 2 (3/60)

Group 2 (6/60)

Group 2 (6/18)

(b) Probability of Developing Bilateral Cataract.
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4.6 Discussion

The RAAB survey provides an important breakthrough in survey method-
ology that provides a great deal of new data on cataract prevalence in
Africa. It is standardized, feasible and much less expensive than the longi-
tudinal studies historically used to measure incidence in developed coun-
tries. Data from seven surveyed districts already suggests significant ge-
ographic variations in the impact of cataract that is important to take into
account when allocating resources to meet the ambitious but necessary goal
of eliminating blindness due to cataract in Africa. The incidence estimation
method developed in our research fills a key role in the analysis of these
data, because it allows the incidence estimates needed by policymakers to
be generated from RAAB and mortality data alone. Further work collect-
ing additional data and improving data collection and analysis methods
can build on our research and continue to assist efforts to send ophthalmo-
logical teams where they are needed most.

Because of the importance of our work, it is important to thoroughly
discuss the assumptions and limitations of our model. Due to the lim-
ited data available, our model can only estimate, rather than calculate, in-
cidence. Our model makes several key assumptions in order to estimate
incidence:

1. People in each district form a closed system (immigration and emi-
gration are neglected).

2. Prevalence and mortality rates are time independent (though they are
age dependent).

3. Mortality and disease development follow an exponential distribu-
tion.

4. Mortality is the same for patients with unilateral and bilateral cata-
ract.

5. The ratio of diseased to healthy mortality is the same for all age groups
and geographic regions.

6. Because visual acuity levels at the time of past surgeries are unknown,
all people with previous cataract surgery are counted as having “cat-
aract” at whatever visual acuity level is relevant at the date of the
surgery.
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Many of the above assumptions are entirely appropriate in the case of
cataract or reflect unavoidable limitations due to the lack of available data.
For example, since we only know prevalence at one point in time, we must
assume that the district forms a closed, steady-state system in order to use
age as a time-like variable. Fortunately, the steady-state assumption is rea-
sonable as cataract incidence depends on genetic or environmental factors
rather than transmission, and these factors are unlikely to vary enough to
affect cataract within the 35-year age span of the study. Similarly, the as-
sumption that mortality and disease development follow exponential dis-
tributions is common in the literature, and we have no evidence that cata-
ract does not follow this familiar pattern.

However, the assumption that each district forms a closed system bears
further investigation. Our model assumes that the elderly population of
each district remains fixed, with no significant immigration or emigration
among people 50 years old or older over the 35-year span preceding the
study. In many parts of Africa, the elderly do indeed have limited mobility
and this assumption is valid. However, our model should not be applied
to districts where turmoil has caused a great deal of recent immigration or
emigration. It is not clear how to estimate the extent of this effect since sur-
vey participants do not give information about their immigration history.

Ophthalmologists and survey teams in Africa recognize the danger of
having separate survey teams collect data in different regions, and have
spent a great deal of time and energy working to standardize the process.
Standardization workshops are included as part of the training of survey
teams, as well as explicit warnings about the importance of certain survey
procedures (for example, trying to re-contact people who are not home) for
good data collection. In addition, the cataract categories (both clouded lens
and aphakia from a previous surgery) diagnosed were coarse enough that
it is likely that different ophthalmologists would agree on almost all classi-
fications (Lewallen, 2010). The survey data we used was mainly based on
medical diagnoses rather than verbal questions that could be more cultur-
ally sensitive in some areas than in others. It is impossible to quantify the
possible error from differences in survey teams and comparisons between
countries should be regarded as preliminary. However, a critique of RAAB
survey methodology is beyond the scope of our research. We hope that as
survey and standardization practices continue to improve, the importance
of this source of error will diminish. Therefore, we have focused our anal-
ysis on sources of error introduced by the model itself.

It is also important to consider error arising from mortality rates. Healthy
mortality rates are drawn from a World Health Organization database. How-
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ever, diseased mortality rates were based on a parameter estimate of 1.5
for the ratio of diseased to healthy mortality. Our sensitivity analysis in
Section 4.4.1 begins to address this issue, and suggests that mortality ra-
tio estimates are unlikely to be responsible for the geographic variation in
incidence we observed. However, the mortality ratio used certainly does
affect incidence estimates across the board in a way that has practical im-
plications for resource allocation. Future work should include further in-
vestigation into this issue.

In spite of the limitations, our results already provide valuable infor-
mation on cataract incidence that can aid policy decisions and guide future
research. A specific geographic grouping of countries into regions of simi-
lar incidence is not yet possible, especially in the case of The Gambia where
the sample size was not large enough to clearly distinguish the district from
any other district. However, the difference in incidence between Eastern
African countries (Kenya, Rwanda and Tanzania) and other African coun-
tries (Eritrea and Mali) is of great practical significance and unlikely to be
accounted for by variations due to RAAB sample size, inaccurate estimates
of the mortality ratio parameter, or lack of standardization between survey
teams. This suggests that a more systematic analysis of geographic patterns
as more RAAB data becomes available may be extremely fruitful.

Our separation of unilateral and bilateral incidence also sheds light on
the development of cataract disease itself. Our comparison of unilateral
and bilateral incidence suggests that while unilateral incidence does vary
between districts, the transition rate from unilateral to bilateral cataract
varies much less. This could indicate that while the incidence of cataract
disease depends on genetic or environmental factors, disease progression
does not depend as much on these factors. As additional RAAB data be-
comes available, it will be interesting to see whether this pattern persists.
In answering this question, it will also be important to continue sensitivity
analysis to the mortality ratio parameter. In particular, it will be necessary
to test whether the surprising lack of consistent patterns in bilateral inci-
dence persists if the mortality rates for people with unilateral and bilateral
cataract are allowed to vary with respect to each other, rather than being an
artifact of our assumption that these mortality rates are equal. A more so-
phisticated model for mortality ratios, for example allowing mortality ratio
to vary with age, would also be an important goal for future work.



Chapter 5

Estimating Incidence of a
n-stage Progressive Disease

Some features of our incidence estimation model for bilateral diseases sug-
gest that the model could easily be extended to an irreversible, n-stage pro-
gressive disease. In the present chapter, we exploit these similarities to gen-
eralize our two-stage disease model to a more robust model for any n-stage
progressive disease.

In Section 2.2.2, we extended Podgor and Leske’s two equations for dis-
ease progression to three equations that modeled the addition of a disease
state. This process can be extended arbitrarily to an n-stage disease, and we
do so explicitly here. Furthermore, we already noted in Section 2.2.3 that
transition probabilities may be grouped by the number of stages traversed
in a time step. For example, the expressions for PHH, PUU , and PBB were
extremely similar and only differed by a substitution of the relevant trans-
fer and mortality rates. The two one-stage transition probabilities, PHU and
PUB were also similar. Viewed in this way, we have already derived the
zero-, one- and two-stage transition probabilities needed for any n-stage
disease progression. We now formalize this generalization and extend it to
probabilities for arbitrary transitions through m successive disease stages.

Our generalized model applies to irreversible, n-stage progressive dis-
eases, where a person at stage j of the disease can only move forward to
stage j + 1 or die; a person can never move backward and must pass at
least briefly through all disease stages even if not all stages are observed.
That is, if a person is observed to be in disease stage 1 at the beginning of
a time interval and in stage 3 at the end of the time interval, the person is
assumed to have passed through stage 2 for at least a short portion of that
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interval. This could be represented by the flow chart shown in Figure 5.1
with healthy state 0, diseased states 1 through n, and an allowed death state
D.

 

λ0D 
 

λ1D 
 

λnD 
 

λ0,1 0 1 

D 

n λ1,2  … λn-1,n 
 

Figure 5.1: Generalized Model of Disease Progression.

Here, the allowed transitions leaving each state j are to state j + 1 and
D, both with exponential distributions characterized by parameters λj,j+1
and λj,D, respectively. Since state n is the final disease state, there is no
allowed transition from state n to n + 1; we write λn,n+1 = 0 to simplify
the formulas that follow. The model allows mortality rates λ0,D, . . . , λn,D
for different disease stages to be set separately, which is very desirable in
many diseases such as cancer where progression to a new stage implies
a new mortality rate. Given this information and the prevalence values
π1, . . . , πn for each diseased state, our goal is to compute the n unknown
transition rates λ0,1, . . . , λn−1,n. These can later be converted to incidence
rates Ij,j+1, if desired, by taking

I j,j+1
t = π

j
t · λj,j+1. (5.1)

That is, incidence is the conditional transfer rate λj,j+1 given that a person

is in state j, times the probability π
j
t that the person is in state j at time t.
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As in the two-stage disease case, we can find n + 1 equations represent-
ing the conservation of people as they progress through different disease
stages. As before, π1

t . . . πn
t represent the prevalence of all diseased stages

at time t = 0, 1 and Nt is used to represent the number of people at time
t (t = 0 denotes the beginning of the timestep whereas t = 1 denotes the
end). Equation 5.2 represents the possible ways people could arrive in state
j at time t = 1. Since people are allowed to move forward through arbitrar-
ily many disease stages in a time interval, the N1π

j
1 people who end up in

state j could have started the time interval in any state i satisfying 0 ≤ i ≤ j.
N0πi

0 gives the number of people in state i at the beginning of the time pe-
riod, and Pi,j gives the probability (which we subsequently compute) that
these people will end up in state j at the end of the time period. Summing
over all allowed i, we obtain

N1π
j
1 =

j

∑
i=0

N0πi
0Pi,j, 1 ≤ j ≤ n. (5.2)

Note that for consistency we have introduced π0
t , denoting the “healthy

prevalence” and given by

π0
t = 1−

n

∑
i=1

πi
t. (5.3)

This healthy prevalence condition represents the requirement that all peo-
ple not in any disease stage are considered healthy for purposes of our
model. In other words, all of the people observed alive at each time point
must be in one of the n + 1 living stages of our model, so the prevalences
of all n + 1 stages counting the healthy stage must sum to 1.

To find transition probabilities Pj,j+m from stage j to j + m in one time
step, we first consider the pdf for transition times Tj+1, . . . Tj+m, TD. The
differences between consecutive transition times are independent, expo-
nentially distributed random events, with distribution

fTk+1−Tk(tk+1 − tk) =
λk,k+1

λk,k+1 + λk,D
(λk,k+1 + λk,D)e−(λk,k+1+λk,D)(tk+1−tk),

(5.4)

because the time spent in state k before leaving (either through death or
by progressing to state k + 1) is exponentially distributed with parame-
ter (λk,k+1 + λk,D). Also, the conditional probability that the person leaves
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state k because of disease progression (rather than death) is given by λk,k+1
λk,k+1+λk,D

.
Simplifying, we obtain

fTk+1−Tk(tk+1 − tk) = λk,k+1e−(λk,k+1+λk,D)(tk+1−tk), (5.5)

for j ≤ k < j + m. The final time difference, TD − Tj+m, differs slightly from
the others because in order to represent a person who stays in state j + m,
we consider both death and disease progression as exits from this state and
therefore do not include the factor of λj+m,j+m+1

λj+m,j+m+1+λj+m,D
. The pdf for this term

is

fTD−Tj+m(tD−tj+m) =
(
λj+m,j+m+1 + λj+m,D

)
e−(λj+m,j+m+1+λj+m,D)(tD−tj+m).

(5.6)

Multiplying these independent terms, the overall joint pdf is

fTj+1,Tj+2,...,Tj+m,TD(tj+1, tj+2, . . . , tj+m, tD) =[
j+m−1

∏
k=j

λk,k+1e−(λk,k+1+λk,D)(tk+1−tk)

]
·
(
λj+m,j+m+1 + λj+m,D

)
e−(λj+m,j+m+1+λj+m,D)(tD−tj+m). (5.7)

The transition probability from the jth stage to the j + mth stage is then
the probability that Tj+1 . . . Tj+m occur sequentially between times 0 and 1,
but that TD of leaving the j + mth state occurs after time 1. That is,

Pj,j+m = P(0 ≤ Ti+1 ≤ Ti+2 ≤ . . . ≤ Ti+m ≤ 1 ≤ TD). (5.8)

This probability corresponds an integral of the pdf:

Pj,j+m =
∫ 1

0
dti+1

∫ 1

ti+1

dti+2 · · ·
∫ 1

ti+m−1

dti+m

∫ ∞

1
dtD

fTj+1,Tj+2,...,Tj+m,TD(tj+1, tj+2, . . . , tj+m, tD) (5.9)

Pj,j+m =
∫ 1

0
dti+1

∫ 1

ti+1

dti+2 · · ·
∫ 1

ti+m−1

dti+m

∫ ∞

1
dtD[

j+m−1

∏
k=j

λk,k+1e−(λk,k+1+λk,D)(tk+1−tk)

]
·
(
λj+m,j+m+1 + λj+m,D

)
e−(λj+m,j+m+1+λj+m,D)(tD−tj+m). (5.10)
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Notice that, as in the case of our two-stage model, we have a set of n+ 1
equations in n + 1 unknowns (n desired λ values plus the ratio N1/N0,
which we eliminate). The dependence of these equations on λ0,1, . . . , λn−1,n
is via probabilities Pj,j+m. All of these integrals can be evaluated in closed
form because they consist of constants times exponential functions. The
bounds on each integral do depend on the subsequently integrated vari-
able, which adds some complexity at each step. However, neither the in-
tegration steps nor the evaluation of bounds changes the integrand from
its current form of an exponential function of a linear combination of vari-
ables, which is easily integrable in closed form. The n + 1 equations found
in this way are by no means linear, and before solving them one would
need to check numerically that they have a unique solution within the fea-
sible range of interest. Confidence intervals could still be computed by the
simulation method described in Chapter 3, again generating all prevalence
values at initial and final times from two multinomial distributions, and
using the n-stage incidence computation method just discussed to simulate
all trials.

For n above 3 or 4, the time to numerically solve the system of equations
generated by our model may be prohibitive. Some approximations might
be helpful to simplify computations. For example, in some diseases it may
be very unlikely that a person would progress from the healthy stage to
stage n of the disease in a single time interval (likely 1− 5 years). In this
case, some of the most computationally intensive transition probabilities
could be eliminated by setting a maximum number of states through which
a person could progress in a single time step. For example, if the cutoff were
a maximum of 2 states, only transition probabilities of the form Pj,j, Pj,j+1
and Pj,j+2 would be used, with the remaining probabilities set to zero. This
would ensure that each model equation had a maximum of three terms,
simplifying the computation.





Chapter 6

Conclusions

Inspired by the need in sub-Saharan Africa for cataract incidence estima-
tion, we have developed an incidence estimation method based on age-
specific prevalence for any n-stage disease with differential mortality. Our
method includes a numerical simulation method to compute confidence
intervals for incidence estimates based on random error in prevalence. We
explicitly solved for incidence and implemented our solution numerically
in the case of bilateral diseases, and applied the bilateral solution to RAAB
survey data to generate incidence estimates for unilateral and bilateral cat-
aract that can be compared across Africa. We hope that the incidence data
we provide provides a useful first look at variations in cataract incidence
across sub-Saharan Africa and the different resources that will be needed
to achieve the goal of eliminating blindness and visual impairment due to
cataract in Africa. More importantly, we regard this work as a proof of con-
cept that incidence estimates can be generated at all based on data from
one-time, feasible RAAB surveys.

Most assumptions of the bilateral disease model apply to our gener-
alized model of n-stage progressive diseases as well. In both cases, the
disease is assumed to be irreversible and progress at least briefly through
all disease stages in order. In the case of cataract, it is clear that no per-
son with bilateral cataract will again develop unilateral cataract. However,
many diseases do not show this straightforward progression. Importantly,
our generalized method also assumes that the group surveyed is represen-
tative of a closed system, with no immigration or emigration. The model
should not be applied to regions in political or economic turmoil or to any
area where people are mobile on during the time period of interest, usually
at least the previous 30 years. This assumption becomes more problematic
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when we consider applying our model beyond our original population of
elderly persons in developing countries.

However, several of the above assumptions invite future research. In
the case of cataract in Africa, previously operated eyes were counted as
having developed cataract on the date of the surgery. However, more data
is available through RAAB surveys related to these eyes, for example, time
of surgery in each eye. This data was collected in a censored way and was
difficult to include in our model. Perhaps other statistical techniques could
be used to include this data. Survival analysis techniques may be espe-
cially suited to the inclusion of censored data without biasing the remain-
ing analysis (See, for example, Kleinbaum and Klein, 2005; Tableman and
Kim, 2004). This approach could also be useful beyond cataract as many
data collection methods could result in additional, censored data beyond
age-specific prevalence.

Future investigation could also reevaluate assumptions we made re-
garding diseased mortality. So far, we have data only for healthy mortality
and made an assumption that mortality rates with unilateral and bilateral
cataract are equal and 1.5 times the healthy rate. This was an important
first step in considering differential mortality, but potentially misses certain
subtleties. Perhaps unilateral and bilateral cataract cause different mortal-
ity rates. Alternately, it seems likely that the ratio of diseased to healthy
mortality changes with age. Our incidence estimation code could be used
analyze in greater detail the sensitivity of our results to differential mor-
tality assumptions. New models for mortality may need to be developed,
especially in the case of multiple-stage diseases where the differential mor-
tality between stages is of interest, or where the mortality ratio between
disease stages is likely to be influenced by a third variable, such as age.

In spite of the assumptions required, the model developed here is quite
general, describing a disease that progresses through distinct phases with
age dependence and differential mortality. Very little in the model is spe-
cific to cataract. Our methodology could likely be applied to other diseases
in the developing world or anywhere incidence data is difficult to obtain
directly. In particular, most of the other incidence estimation work in the
literature is related to modeling of HIV/AIDS in Africa, so perhaps this
work can contribute to the discourse on AIDS modeling.

Disease modeling in developing countries is not easy. We have tremen-
dous respect for the ophthalmologists and RAAB survey teams on the ground
in Africa. Without their daily perseverance, no amount of theoretical work
in this area would be meaningful. We recognize the major frustrations in-
volved in working, with extremely limited resources and funding, to meet
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the challenge of eliminating blindness due to cataract in Africa. Yet these
same teams, impelled by a sense of human dignity, often seek to go beyond
the removal of cataracts at a certain advanced threshold of blindness. They
see the need to provide higher quality surgeries, perform surgery earlier
in the development of cataract and thus reduce the risk of surgery, and
provide access to surgery in more remote regions outside the districts of
currently practicing ophthalmologists. In this context, it is heartening to
us that ophthalmic teams have begun to receive theoretical support in the
form of RAAB methodology development and analysis. We are excited
that, from halfway around the world in Claremont, California, we have
been able to contribute to their efforts. We are glad to have found a re-
search area that both is intellectually rewarding and has social impact, and
have high hopes for future collaborative efforts of this kind.
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