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FIG. 4. Maximum of |¢| with respect to & for R =70, y=4.71
(a = 0.0673) and for R = 70, y = 4.093 (a = 0.0584).

Many other cases were calculated with the following
general results. For a less than about 0.2, so that
R, (@) < R,(a) we found the following.

(1) If R < R, the wave packet decays steadily and rap-
idly as it moves downstream.

(ii) If R > R_,;, by a moderate amount up to about 10%
of R, the “packet” shows a slight growth before decaying
downstream. However, we did not calculate any cases with
R more than marginally beyond % ,. We also mention that
Allmen,® by a numerical solution of the time-dependent par-
tial differential equation governing the evolution of a distur-
bance initially close to 6(£), obtained very similar results.

The above results may throw some doubt on the description
of channel flows as “unstable” when R >R, (). At the
same time the results support the idea of “local instabilities”
of Ref. 1, for although our calculations are for flow in a
wedge, similar modes exist in curved-wall channels.® For a
curved-wall channel, where a(£) only locally exceeds the
value on the stability boundary R = R, («), it seems prob-
able that isolated disturbances would grow slightly and then
decay rapidly downstream. Thus Fraenkel’s® theory, includ-
ing cases of separation and reattachment of the main stream,
using values of a slightly beyond the boundary % ,, may be
in some cases a good approximation to the physics, albeit
possibly modified by small oscillations near separation or
reattachment in accord with the observations of Cherdron et
al’®
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The dynamics of two-dimensional Rayleigh—~Bénard convection rolls are studied in a finite
layer with no-slip, fixed temperature upper and lower boundaries and no-slip insulating side
walls. The dominant mechanism controlling the number of rolls seen in the layer is an
instability concentrated near the side walls. This mechanism significantly narrows the band of
stable wavenumbers although it can fake a time comparable to the long (horizontal) diffusion

time scale to operate.

Wavenumber selection mechanisms in Rayleigh-Bén-
ard convection have been intensively studied, both because
of their intrinsic interest,' and also to help explain the transi-
tion to turbulence, particularly in convecting layers of large
horizontal extent (shallow tanks).” To proceed analytically,
it has always been necessary to impose periodic or reflecting
boundary conditions in either the horizontal® or vertical®*
direction. The more physically relevant problem of deter-
mining what roll wavenumbers are allowed in a box where
all walls are no-slip has not previously been studied. Catton®
has performed the only work with experimentally realistic

3840 Phys. Fluids 30 (12), December 1987

0031-9171/87/123840-03%$01.90

velocity boundary conditions that provides some insight into
which wavenumbers are preferred in a box of large but finite,
horizontal extent. However, Catton’s work was linear, con-
cerned with finding the smallest Rayleigh number Ra, at
which convection could occur and the corresponding flow
field. Linear theory at best only tells which roll patterns will
not decay back to the purely conducting, no-flow state: non-
linear effects can prevent many more patterns from appear-
ing, or lead to their eventual destruction. This is the problem
of wavenumber selection that our work addresses.

The equations for Rayleigh-Bénard convection are tak-
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en in dimensionless form:

—3—':+u-Vu=a[ —Vp+Vu+Ra(T—142)Z),
(1)

_‘Z_f FuwVT=VT, Vau=0.

Here, u, 7, and p are the velocity, temperature, and pressure
fields, respectively, made dimensionless with respect to
depth d and vertical diffusion time d >/, where « is the ther-
mal diffusivity. The Prandtl number o = v/, where v is vis-
cosity, was fixed at o = 2.5 (typical of water at 70 °C). Grav-
ity acts in the z direction; boundary conditions 7' =1 at
z=0, T=0at z =1 were imposed. The Rayleigh number
Ra, the dimensionless measure of temperature difference
across the layer, was taken to be Ra = 2000, close to Ra, but
large enough that the influence of the side walls is expected
to be restricted to a region one or two roll wavelengths dis-
tant.® At all wallsu = 0.

The FLOW3D' is a code developed to study heat transfer
problems subject to realistic, no-slip velocity boundary con-
ditions and a variety of thermal boundary conditions. Up-
winding gives FLOW3D good nonlinear stability characteris-
tics: upwinding schemes often also remain qualitatively
accurate at parameter values where formally more accurate
schemes are unstable or produce meaningless wiggles as a
result of Gibbs’ phenomenon. The nonlinear equations (1)
are solved by first linearizing, solving the resulting equations
by standard spaise matrix techniques, and then coupling
their solutions as described by Issa.® FLOW3D is fast because
it includes sparse matrix solvers that have been carefully
tailored for execution on CRAY-architecture machines.
Hence the code was chosen to perform direct simulations of
the onset of turbulence in convection in shallow tanks, which
is ongoing work; however, it is also possible to use FLOW3D
efficiently for 2-D problems and we discuss here only results
where variation in one horizontal direction, the y direction,
was suppressed.

The specification of the 2-D problem (1) is completed
by selecting the aspect ration of the box to be 16, a number
not so large that visualizing the whole volume accurately
becomes too difficult, and making the side walls noncon-
ducting, i.e.,d7T /dx =0atx =0and x = 16. A 8 X98 mesh
was used: at Ra = 2000 the Reynolds number Re of the flow
is O(1), so despite the low formal accuracy of the upwind
scheme, results may be expected to be quantitatively as well
as qualitatively accurate. This was confirmed by repeating
some calculations on a 18 X 194 mesh.

The initial conditions used were u = 0 everywhere:

T=1—z+44][1+ cos(mxny/16)].

Thus n, corresponds to the number # of rolls expected to be
seen in the resulting convection. To compare with the stabil-
ity boundary calculated in Ref. 2, separate calculations were
begun with n, = 12, 13, 14,..,20, and run to ¢ = 12, i.e., for
about 12 roll turnover times, since Re = O(1). Solutions
with » = 12 and n = 20 are not expected because the corre-
sponding wavenumber lies outside the band that is Eckhaus
stable.? The other instabilities which limit the band of stable
wavenumbers a are three dimensional in character and will
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not of course be operative in these 2-D simulations; in any
case at this Ra, Eckhaus (2-D) instability is the major factor
limiting the band.

Simulations confirm that » = 12, 19, and 20 solutions
are so unstable that they cannot be said to develop; the out-
come of these calculations were flows with, respectively, 14,
17, and 18 rolls filling the box. There were no surprises from
using the other initial conditions: this series of runs indicated
that patterns with between 14 and 18 rolls were stable. The
corresponding wavenumbers fit closely to the range predict-
ed to be stable in Ref. 2.

However ¢ = 12 is only a fraction of the horizontal ther-
mal diffusion time scale = 16 or 256 in these units; more-
over it was noticed that slight changes—in the fourth digit—
of monitored quantities were still occurring up to this time.
Runs were therefore continued with the result shown in
Fig. 1. After along time, which we identify with the horizon-
tal thermal diffusion time scale, the 18-roll solution loses
stability. The most significant changes occur near the side
walls, and almost simultaneously around ¢ = 27-42. The
roll nearest either wall becomes compressed laterally and the
flow close to the wall very slow: in the near-wall region this
roll of short wavelength shrinks and gets absorbed by its
neighbor (which expands). Therefore a slow readjustment
takes place until all rolls have almost the same width. The
transition from a 13- to a 15-roll solution occurs similarly
but in reverse, i.e., either roll near a side wall elongates and a
new short wavelength roll grows near the wall. The mecha-
nism, which also eliminates 14-roll solutions (they go to
n = 16), is somewhat reminiscent of the way in which the
most linearly unstable roll pattern changes as aspect ratio
varies,” notably in the way symmetry is preserved.® Finally
we remark that the patterns with » = 15, 16, and 17 were
found to remain stable for ¢ up to 360, and no changes in
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FIG. 1. (a) Streamlines and {b) isotherms for convectionina 1 X 16 box at
R = 2000, o = 2.5 as time increases in units of 12 down the page. The region
x<4is shown; the overall transition is from a pattern with 18 rolls filling the
box to one with 16.
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FIG. 2. (a) Amplitude function 4(x) and (b) local wavenumber function
k(x) for the transition from a 13-roll to a 15-roll pattern. As time increases,
A grows while k increases towards more uniform distribution (the plots are
for times t = 2.4, 4.2, 6.0, 21, and 96).

monitored quantities were seen during the last 25% or more
of this interval.

The band of stable wavenumbers is apparently reduced
by the long time scale instability from 1.2 to 0.4, a factor of 3,
at Ra = 2000. Runs at other Ra, however, suggest the band
is narrowed only by an absolute amount Aa ~0.4 at either
end, rather than by some fixed proportion: the band of stable
wavenumbers is narrower the smaller Ra is. There is no rea-
son why the instability mechanism discovered here should
not operate at other Pr. The principal result of this investiga-
tion is therefore to answer the old question'® about the effect
of large but finite box width in favor of those believing that
the range of stable a is reduced.* However, the discrete size
of the box means that the stability boundary in (Ra, k) space
is not two straight lines,* but rather has a stepped appear-
ance.

A qualitative interpretation of the instability in terms of
the phase dynamics for convection can be given. Modulation
theory methods suggest that the dynamics of convection
near threshold are governed by the Newell-Whitehead-
Segel equations,"!

Ar=A+ Ay —A|A]* +0(e"?),
where € = (Ra — Ra_)/Ra, is the reduced Rayleigh num-

ber. The amplitude A is related to the horizontal velocity u
by
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u = e"?A(X,T) exp(ik,x)F(z) + c.c. + O(e),

where F(z) describes the vertical structure of the convection
roll and X = €'/’x, T = et are slow length and time scales,
respectively. If the change of variables 4 = Re' is made, and
the flow assumed steady, the equations can be integrated to
give

R*kK=h, R%Y+h*R*+R>—}R*=E,

where K = 6,. It has been argued* that when the width of
thebox is L >de /2, the amount of phase winding in the box
is limited by the minimum value of R, achieved near the
boundaries. Cross ef al.* have shown that this value is of
order €'/? and therefore A is of order €'/? and K of order €'/2.
Thus the wavenumber k(x) = k, + €'/2K is restricted to be
within order € of the critical value, as opposed to a band of
width €'/2 in the case of an infinite layer.

For the FLOW3D simulations, A(x) and k(x) were de-
termined by a frequency shift and filtering technique. (The
results were found to correlate well with naive measures
based on using zeros of u, or u, to determine cell width, then
calculating amplitude by integrating #> or u? over each
cell.) In the evolution studied here (Fig. 2) & is seen first to
relax to a nearly constant solution in the interior. Eventual-
ly, this relaxation results in an instability in the side wall
region. An extra roll is created at the boundary, and the
interior layer adjusts to a slightly decreased wavenumber. It
is this side wall instability that leads to a reduced band of
stable wavenumbers; in sharp contrast to an Eckhaus-type
instability which would decrease the wavenumber by intro-
ducing a roll pair into the interior of the layer.
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