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Large-scale synchrony in weakly interacting automata
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We study the behavior of two spatially distributed~sandpile! models which are weakly linked with one
another. Using a Monte Carlo implementation of the renormalization-group and algebraic methods, we de-
scribe how large-scale correlations emerge between the two systems, leading to synchronized behavior.
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I. INTRODUCTION

Interacting systems have long been the subject of consid-
erable interest and study, and they can display a rich variety
of behaviors. One of the premier concepts that has emerged
from such studies is the notion of synchronization, both in its
traditional sense as well as in one of its modern variants
~e.g., phase synchronization, lag synchronization, etc.! @1–4#.
A particularly interesting class of systems to consider in light
of these broadening notions of synchronization is provided
by automata~‘‘sandpile’’! models. Automata offer a rich as-
sortment of well-studied, complex behaviors~e.g., self-
organized criticality@5#!, and have been used extensively in
the literature to model a variety of physical phenomena~e.g.,
@6#!. If two such automata are permitted to weakly interact
@7#, an interesting type of synchronization effect is seen to
emerge: While small events on one sandpile are essentially
uncorrelated with small events on the other, large-scale
events are so highly correlated that not only is a large event
on one sandpile almost always concomitant with a large
event on the other sandpile, but the two events are in fact
approximately equal in magnitude~with rms fractional de-
viation approaching zero! ~see Fig. 1!. This result holds de-
spite the weakness of the coupling between the sandpiles.
Note that this ‘‘synchronization’’ between sandpiles is not
periodic ~i.e., the time interval between synchronized large-
scale events is not fixed!, nor is it completely random~since
correlations exist between temporal spacing of events and
event size.!

We can glean some basic insight into the origin of this
form of synchronization from a relatively simple plausibility
argument: As a large avalanche sweeps across one sandpile,
it will, owing to the weak coupling, spill some small yet
nontrivial number of grains onto the other sandpile. Since
sandpile models~like other self-organized critical systems!
are capable of generating avalanches of all sizes, these
spilled grains could conceivably induce a large subsidiary
avalanche in the second sandpile. In turn, this subsidiary
avalanche could spill some grains back onto the first sand-
pile, and so on. In this manner, it is possible to imagine how
high levels of correlations might develop between the two
sandpiles during large events. It is thus reasonable to conjec-
ture that through such feedback and mutual reinforcement, a
large avalanche starting on one sandpile would have a very
high probability of inducing a~simultaneous! avalanche of
comparable magnitude on the other sandpile, despite the

weakness of the coupling. Indeed, from this scenario one
might also infer that perhaps these avalanches would not
merely be comparable in size, but in fact nearlyequalin size
~that this should be the case is certainly plausible, though,
admittedly, not compelling!.

While this intuitive argument is helpful, understanding the
actual process by which intersandpile correlations develop
proves to be surprisingly subtle and interesting. The purpose
of this paper is to examine the nature of this complex inter-
play between interacting automata, and to show how it pro-
duces the observed large-scale synchronous behavior. To do
so, we use a modification of a renormalization-group proce-
dure originally developed by Refs.@8–10# for single-
sandpile models, along with an algebraic technique. Our
renormalization procedure, in fact, turns out to be interesting
in its own right, since it is implemented using a Monte Carlo
method which proves to be highly efficient, thus rendering
previously intractable renormalization calculations easily
computable. As a result, the methodology we employ here is
likely to be applicable to a variety of related automata prob-
lems. This paper is organized as follows. In Sec. II we
present a prototype interacting-sandpile model and describe
numerical simulations which demonstrate the emergence of
large-scale synchrony. Section III contains a detailed discus-
sion of the renormalization procedure itself and its predic-
tions. We also describe an alternative algebraic approach
which proves useful for understanding certain key features of
the model, including the appearance of so-called ‘‘coupling
symmetry.’’ Generalizations of the basic model are also de-
scribed.

II. BASIC MODEL AND PHENOMENOLOGY

To begin, we recall a classic sandpile model studied by
Dhar and Ramaswamy@11#. The system consists of a two-
dimensional square lattice, where to each lattice sitei j one
ascribes a non-negative integerh( i , j ). The functionh( i , j ) is
called the ‘‘height’’ and represents the number of
‘‘sandgrains’’ on a given site. The system evolves as fol-
lows: A lattice site is selected at random, and one grain is
added to that site. Provided the new height does not exceed a
certain critical value~taken throughout this paper to be 4!,
then nothing further happens. If, however, the critical height
is exceeded, then that site will ‘‘topple’’@h( i , j )→h( i , j )
22# and spill one grain to its neighbor on the right
@h( i , j 11)→h( i , j 11)11# and one to its neighbor above
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@h( i 21,j )→h( i 21,j )11#. The affected sites on the right
and above may in turn topple~if their heights are above the
critical threshold!, and so on. In this manner, it is possible
for an avalanche to spread across the lattice. This type of
model is referred to as a ‘‘directed’’ sandpile, since an ava-
lanche can only propagate upwards or to the right. Once an
avalanche has exhausted itself, a new grain is dropped onto a
randomly selected site~from either sandpile!, and the process
repeats.~We mention here that the asymptotic behavior of
this model remains unchanged under a wide choice of drop-
ping rules, as analyzed in Ref.@11#.! The dynamics of this
model ~which is representative of a large class of related
automaton models! is surprisingly complex and has been
well documented@11,10#. One of its key features is that it
exhibits avalanches of all sizes, where ‘‘size’’ refers to the
total number of lattice sites that topple upon the addition of a
single grain to the system.

Now consider a system of two~independent! directed
sandpile models, each evolving according to the rules out-
lined above. The two sandpiles are assumed to be of identical
dimension, so that for every lattice site on the first, one can
associate a corresponding lattice site on the second.~Visu-
ally, we imagine two planar lattices, one atop the other. Each
site on the top sheet is matched with the site immediately
below.! We shall refer to these two lattices as ‘‘sheet A’’ and
‘‘sheet B,’’ respectively. We now allow the two sheets to
interact according to the following rule: If a site on a given
sheet topples, it will, as before, always spill two grains onto
its own sheet~one to each of its neighboring sites on the
right and above!. Now, however, we assume this toppling
site also has some nonzero probabilityr of spilling an addi-
tional two grains onto the other sheet~one to each of the
neighboring sites on the right and above!. In this latter case
we requireh( i , j ;s)→h( i , j ;s)24, wheres denotes the sheet

on which the toppling site lies, so that sand is ‘‘conserved.’’
~Since this model is directed, it does not matter if the updat-
ing rules for the lattice are implemented sequentially or in
parallel.! Note that whenr50, the two sheets are dynami-
cally independent. Our study focuses on the weak-coupling
regime (r!1). We shall henceforth refer to this particular
model as the ‘‘two-sheet model’’~generalizations will be
described later!.

In a series of numerical simulations on this coupled sys-
tem, we added grains~one at a time! to randomly selected
sites ~on either sheet!, and monitored the resulting ava-
lanches.~Most simulations were carried out forL51000 and
very few avalanches in the simulations reached the edge, so
we expect edge effects to be minimal.! For each avalanche,
we tracked the number of sites that toppled in each of the
two sheets (NA ,NB), explicitly counting multiplicities if a
given site underwent multiple topples. A representative
graph is shown in Fig. 2. The high density of datapoints
along thex and y axes of Fig. 2 for small avalanche sizes
indicates that these small avalanches remain largely confined
to the sheet on which they started; only rarely will they spill
over to the other sheet. This is not surprising, since the two
sheets are only very weakly coupled to one another (r
50.05) and thus the dynamics on each can be expected to be
essentially independent. However, for large avalanches, a
new trend is clearly seen to emerge: Even though, at each
individual lattice site, the probability of a grain spilling over
to the other sheet remains very low, nonetheless a large ava-
lanche starting on one sheet is seen to have anequally large
effect on the other sheet. In particular, the total number of
sites that topple on each sheet~in a given avalanche! become
nearly equal in magnitude~Fig. 2!, with a root-mean-square
fractional deviation that approaches zero~Fig. 3, solid line!.
Qualitatively, it is as though the effective coupling strength

FIG. 1. A representative time
series. Shown is the total number
of topples on each sandpile for
each in a series of avalanches.
Note that large peaks occur simul-
taneously and are approximately
equal in magnitude, while smaller
peaks are relatively uncorrelated
in both time and size.~The data
set was generated from an au-
tomata model described in Sec. II.
Note that for illustrative purposes,
we have added one to the ava-
lanche sizes in order to avoid sin-
gularities associated with the loga-
rithmic scaling in the plots.!
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between the two sheets increases with spatial scale~we will
return to this point later!. We note here~for emphasis! that
had we included in Fig. 2 only those avalanches that were
touched off by the addition of grains to, say, sheet A only,
then the prominent trend towards the diagonal seen in the
figure for large avalanche size would be unaffected.

Our goal is to show how this type of ‘‘large-scale syn-
chrony’’ ~LSS for short! arises between two such weakly

interacting systems. We mention here that LSS also appears
in a larger class of models than just the numerical example
described above. For instance, one can construct ‘‘general-
ized two-sheet models,’’ in which sites are allowed to spill
either one or two grains onto neighboring sites on either/both
sheets according to some probability matrix. As we will
show later, these generalized systems~subject to some mild
restrictions, namely, an overall right/above symmetry! fall
into the same universality class as our original two-sheet
model and hence also exhibit LSS.~We have, in fact, found
that power-law behavior—which is a characteristic of all the
sandpile models to be discussed in this paper—is indeed not
essential for the appearance of LSS!.

III. RENORMALIZATION-GROUP ANALYSIS

The fundamental behavior of these weakly interacting au-
tomata can be understood using a renormalization-group
analysis, as we now describe. We base our work on the
renormalization procedure developed by Hasty and Wiesen-
feld @10# for ~single sheet! directed-sandpile models, which
extended key work by Pietronero and co-workers@8,9#.
Adapting this procedure for systems of interacting automata,
we show how it can be used to explain the emergence of
LSS.

The basic idea behind the renormalization method is to
repeatedly coarse grain the automaton lattice into cells of
successively larger sizes. In our model, this means grouping
the lattice sites on each sheet into 232 blocks, then 434
blocks, then 838, and so on. At each stage, dynamical evo-
lution rules are constructed which describe the behavior of
the cells. Each time the basic cell size is increased, new
dynamical evolution rules are constructed. The so-called
‘‘RG map’’ is a mapping that links the evolution rules for
these different cell sizes. The behavior of the original au-
tomaton model on large spatial scales can then be deduced
by examining the limiting behavior~i.e., fixed points! of this
RG map. Before proceeding, we remark here upon an impor-
tant distinction between the course-graining procedure used
here for our two-automata model and the procedure used for
single-sheet models, as described by Refs.@10# and@8#. Spe-
cifically, because we are interested in how each sheet be-
haves individually, we do the coarse graining on each sheet
individually, rather than following the standard procedure
which would naturally treat the full two-sheet lattice as a
single entity and coarse grain it into cells which span both
sheets.~If this latter procedure is followed, one finds that
under the RG mapping, the two-sheet model converges to the
single-sheet model of Refs.@10# and @11#, proving that the
two models have the same critical exponent@12#. Unfortu-
nately, all information regarding correlations between the
two sheets is lost.!

In our model, the procedure works as follows. Imagine
that the sites on sheets A and B have already been coarse
grainedn times, so that the individual sheets are divided up
into large ‘‘cells,’’ each comprised of 2n32n individual lat-
tice sites. Adapting the renormalization scheme of Refs.
@8–10# to our system, the evolution rules for a cell can be
expressed in terms of a 333 probability matrixPn. In par-

FIG. 2. Large-scale synchrony. The number of topples on each
sheet during avalanches in the two-sheet model with coupling pa-
rameterr50.05 is shown. Observe that for large avalanche sizes
strong correlations develop, withNA and NB becoming approxi-
mately equal.

FIG. 3. The root-mean-square fractional deviationf rms ~solid
line! betweenNA andNB vs avalanche size (N5NA1NB) for the
data shown in Fig. 2. The decrease inf rms with size indicates that,
on large length scales, the two sheets behave as though they were
strongly coupled. A related phenomenon, ‘‘coupling symmetry’’
~see text!, is illustrated by the dashed curve showing the average
fractional deviation@ f ave5^(NA2NB)/(NA1NB)&#, where the av-
erage is computed over only those avalanches that were initiated by
the addition of one grain to sheet A. Observe that such avalanches,
if small, remain primarily confined to sheet A~as expected!, while
large ones divide equally between the two sheets~since f ave→0).
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ticular, if a grain is added to a cell on a particular sheet, then
the associated probability matrix is Pn5$Pa,b

n %
~a,bP$0,1,2%!, wherea specifies the number ofdirectionsin
which the cell spills grains~within its own sheet!, andb is
the number of spill directions on the other sheet. For in-
stance,P2,1

n is the probability that a cell spills both upwards
and to the right on its own sheet, and either up or to the right
on the other sheet. Ifa51 ~or b51! then the direction of the
spill ~up or right! is chosen at random. For example, in our
original two-sheet model, only spills of the typesP0,0

0 , P2,0
0 ,

andP2,2
0 can occur.@This characterization of a cell’s dynam-

ics is not quite complete. It is also necessary to distinguish
between two subcases ofP1,1

n , namely, the case when the
spills on sheets A and B are in the same direction~i.e., both
to the right or both up!, and when they are not~i.e., one to
the right and one up!. We shall denote these symmetric and
antisymmetric subcases asP1,1,s

n , P1,1,a
n , respectively (P1,1,s

n

1P1,1,a
n 5P1,1

n ).#
The next step is to course grain the cells again~into

2n1132n11 blocks!, and construct the corresponding evolu-
tion rules governing the new, enlarged cells. In other words,
we wish to determine the RG map that relatesPn to Pn11.
To do so, we utilize the procedure developed in Ref.@10# for
the case of a single-sheet automaton model. This method
involves considering two-by-two blocks of the smaller (2n

32n) cells, and going through all possible combinatoric pos-
sibilities to derive the probabilities for the enlarged cells. We
refer the reader to Ref.@10# for a description of this basic
method. There is, however, one critical departure that we
make from the procedure cited in Ref.@10#. Namely, con-
struction of the RG map for the single automaton case in
Ref. @10# proved arduous but analytically tractable~the RG
map contained on the order of 100 terms!. However, for our
case of two weakly interacting automaton, the resulting RG
map is much more complex~it contains several orders of
magnitude more terms!!, rendering its explicit calculation in-
feasible. As described below, to surmount this difficulty we
use Monte Carlo simulations to numerically sample the vari-
ous combinatoric possibilities associated withPn, and in this
manner can approximate the probability matrix of the en-
larged cellsPn11. We then repeat this procedure and look at
the limiting behavior of the resulting sequence of probability
matrices.

Specifically, the renormalization mapping is computed as
follows. Assume that the evolution matrixPn, which de-
scribes the dynamics of cells of size 2n32n, is known. We
now consider enlarged cells of size 2n1132n11, formed by
grouping together four (2n32n) cells into 232 blocks. The
rules governing the behavior of these enlarged cells are ob-
tained in the following manner. Imagine dropping a single
grain onto the lower-left subcell of a (232) enlarged cell.
For sake of argument assume this cell lies on the top sheet
~sheet A!. The subcell will respond according to rules de-
fined by the evolution matrixPn. For example, the probabil-
ity of that subcell not toppling is given byP0,0

n , while the
probability of that subcell toppling onto all four of its down-
stream neighbors~two on each sheet! is given byP2,2

n . We
continue to follow the avalanching process until all subcells

~in both the cell on sheet A and the corresponding cell on
sheet B! are quiescent. We now check where grains have
exited the large cell. For example, if grains are spilled to the
right on sheet A and to the right and up on sheet B, then we
have an event of type~1,2!. Thus we only count the number
of directions in which grains exit the large cell, not the total
number grains in each direction, for this part of the analysis.
We then repeat this procedure a large number of times.
~Typically about 106 trials are necessary for adequate accu-
racy.! At the end of this procedure we have a unnormalized
matrix of evolution numbersLa,b which is the total number
of type (a,b) events which occurred. However, as discussed
in Refs. @8# and @10#, we need to ‘‘normalize’’ these prob-
abilities in a specific manner. In order to do this we compute
L0,0 differently than the other elements of the matrixL. The
procedure we use is that for each sample we take~i.e., for
each drop onto the initial subcell!, we count the total number
of grains that exit the large cell. If this number is larger than
zero we add one less than this number toL0,0. This ‘‘nor-
malization’’ is very similar to the one used by Hasty and
Wiesenfeld but slightly easier to compute in simulations~but
would be more difficult analytically!, and also easier to gen-
eralize for more complex sandpiles~such as ones in higher
dimensions!. In fact, when applied to the single sheet model
studied by Hasty and Wiesenfeld, it leads to slightly more
accurate estimates of the critical exponent than their proce-
dure does.~In the single-sheet model, the difference between
the two procedures arises when an upper-right subcell spills
two grains in the same direction out of the large cell. In this
case our procedure adds one more toL0,0 than Hasty and
Wiesenfeld’s would.!

Given the matrixL it is straightforward to computePn11.
Let uLu be the sum of all the elements ofL. We view the
elements as probability amplitudes and thus we need to con-
vert them into true probabilities to continue the renormaliza-
tion procedure, thusPa,b

n115La,b /uLu.
Representative results for the renormalization process are

as follows~accurate to about60.002):

P05S 0.500 0.000 0.000

0.000 0.000 0.000

0.475 0.000 0.025
D ,

P45S 0.583 0.067 0.011

0.088 0.105 0.034

0.014 0.038 0.055
D ,

P165S 0.700 0.001 0.000

0.001 0.185 0.001

0.000 0.001 0.112
D ,

P`5S 0.702 0.000 0.000

0.000 0.185 0.000

0.000 0.000 0.113
D .

This has three immediate consequences:
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~i! Having set the initial probability matrixP0 to corre-
spond with our original two-sheet model with weak coupling
(r50.05), we find that the RG map quickly converges to the
limiting probability matrix P`. The principal result here is
that this limiting matrix is diagonal. This shows that in any
large avalanche~i.e., on large spatial scales! the number of
topplings on the top sheet and bottom sheet will be approxi-
mately equal, thereby establishing the emergence of LSS in
this model.

~ii ! If we instead vary the values of the starting probability
matrix P0 ~corresponding to the generalized two-sheet mod-
els!, we find that all~nontrivial! choices of starting configu-
rations P0 display thesame limiting behavior P` in the
renormalization analysis. Hence these generalized models
fall into the same universality class as the original, and there-
fore will all exhibit the same behavior~LSS! on large spatial
scales. In particular, this shows, for example, that our origi-
nal two-sheet model with weak coupling (r50.05!1) is in
the same universality class as a two-sheet model with full
coupling (r51). In other words, when viewed on larger and
larger spatial scales, the weakly interacting automata begin
to act as though they were very strongly coupled. This
strengthening of effective coupling constant with length
scale can be regarded as the source of the high level of cor-
relation between the two systems.

~iii ! If we examine the intermediate stages of the transi-
tion processP0→P1→•••P`, an interesting feature ap-
pears: Under the RG map a general starting matrixP0 will
first become approximately symmetric~e.g.,P4) prior to be-
coming nearly diagonal~e.g.,P16). ~In the symmetric phase,
Pab

n 'Pba
n , and Pn

11a'0.) Hence the renormalization
analysis leads to a prediction that, in our original two-sheet
automaton model, adding a grain to a site on, say, sheet A,
has an equal likelihood of inducing an~intermediate-size!
avalanche on sheet B as on sheet A, even though the local
dynamics dictate that small avalanches are much more likely
to occur on the sheet to which the additional grain was added
than on the other sheet. This is surprising in that we started
with a model in which the coupling between neighboring
lattice sites was highly asymmetric@in the sense that each
site is strongly coupled with its neighbors on its same sheet
but only weakly coupled with its neighbors on the other
sheet~i.e., r50.05)#, and yet we are led to the conclusion
that on larger length scales the effective inter-sheet coupling
becomes equal in strength to the intrasheet coupling. A type
of large-scale ‘‘coupling symmetry’’ has thus emerged. This
prediction was tested and borne out by numerical simulations
of the automaton, as illustrated~by the dashed line! in Fig. 3.

We can gain further insight into the nature of this statis-
tical synchrony and, in particular, the onset of this coupling
symmetry, by forgoing the above renormalization approach
and instead utilizing an algebraic argument based on work by
Dhar @13# for an analogous model~see also Zhang@14#!. We
will take our original two-sheet model and calculate the two-
point correlation functionC(x,y), which describes the ex-
pected number of topplings at sitey, due to the avalanche
caused by adding a single grain to lattice sitex. What we will
prove is that if two sitesx and y are sufficiently far apart,
then a symmetry in the correlation functionC(x,y)

'C(x,ȳ) develops, whereȳ denotes the site corresponding to
y but on the opposite sheet. This calculation will show that
adding a grain to a given site on one sheet will induce the
sameexpected number of topplings on some distant site on
its own sheet as it will on the corresponding~distant! site on
the other sheet—despite the weakness of the coupling be-
tween the two sheets.~In what follows, it will be convenient
to let xL ,xB denote the the neighboring sites immediately to
the left or below a sitex, on the same sheet.!

First, define a toppling matrix2D(x,y), which specifies
the average number of grains that will spill directly from a
sitex to sitey in the event thatx topples.~Note that here we
count onlydirect spillage between the two sites, not grains
that might spill fromx to y by way of intermediate sites.!
For our original two-sheet model, we have2D(y,y)
522(11r); 2D(yL ,y)51; 2D(yB ,y)51; 2D(yL̄,y
5r;2D(yB̄,y)5r. All other components ofD(x,y) are
zero. As in Dhar@13#, it is straightforward to show that the
toppling matrix and correlation function obey the following
general relation:(zC(x,z)D(z,y)5dx,y . For our model, the
only terms in the toppling matrix which contribute to the
summation are the four neighboring sites ofy. Thus the re-
lationship reduces to C(x,yL)1C(x,yB)1rC(x,yL̄)
1rC(x,yB̄)52(11r)C(x,y). We observe, however, that
this relation is precisely the formula for the probability that a
certain random walk starting at sitex will hit site y. In this
random walk, at every step the walker is equally likely to go
up or right, and switches between sheets with probability
r/(11r). It follows then that the probability that a walker
starting on one sheet will end up on that same sheetk steps
later is „11@(12r)/(11r)#k

…/2. Since this approaches 1/2
for large k, we conclude thatC(x;y)'C(x; ȳ) for x and y
sufficiently far apart.„More precisely, the fractional differ-
ence between these correlations scales like@(12r)/(1
1r)#k, wherek is the distance between sitesx andy in the
‘‘taxicab’’ metric, assuming of course thaty is reachable
from x, else both correlations are 0. Note here that the ‘‘taxi-
cab’’ metric is defined by the minimum number of steps
separating two points on a lattice.… Hence this demonstrates
that on sufficiently large spatial scales, the intrasheet and
intersheet coupling become equal.

IV. CONCLUSIONS

In summary, we have examined~in the context of a few
specific examples! the nature of the complex correlations
arising between weakly interacting automata, and have used
a Monte Carlo implementation of a renormalization-group
analysis to understand the appearance of large-scale statisti-
cal synchrony in these systems. Since both our methods of
analysis and the properties of SOC systems are extremely
robust~e.g., the extension of the algebraic analysis to more
general models is straightforward!, we believe that the types
of intersandpile correlations found here will likely be a ge-
neric feature of other weakly coupled SOC systems. In fact,
preliminary analysis suggests that these properties even arise
in some automata models which do not exhibit SOC, such as
dissipative models. We note that our Monte Carlo approach
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for studying the RG map turns out to be remarkably efficient
and may in fact provide the key to applying renormalization
to more complex automaton models.

Last, we remark that the emergence of strong statistical
correlations described here raises a number of interesting
questions, including~i! is there some universal scaling law
describing how the length scale at which strong correlations
arise varies with the intersheet coupling strength; and~ii !

might it be possible to recast this phenomenon as a type of
phase transition that occurs with increasing spatial scale?
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