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We consider the dynamics of scroll waves in the presence of rotating anisotropy, a model of the left
ventricle of the heart in which the orientation of fibers in successive layers of tissue rotates. By choosing
a coordinate system aligned with the fiber rotation and studying the phase dynamics of a straight but
twisted scroll wave, we derive a Burgers’ equation with forcing associated with the fiber rotation rate.
We present asymptotic solutions for scroll twist, verified by numerics, using a realistic fiber distribution
profile. We make connection with earlier numerical and analytical work on scroll dynamics.
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A central question in the field of cardiac dynamics is
the decay mechanism of ventricular tachycardia to fibril-
lation [1]. Tachycardia is thought to be characterized by
scroll waves of electrical wave activity, with an intrinsic
frequency (120 to 500 beats�min) more than twice that of
the heart’s natural pacemaker. Fibrillation is spatiotem-
porally incoherent electrical wave activity (greater than
500 beats�min), leading to failure of the heart’s pump-
ing, which rapidly results in death. Growing experimen-
tal evidence indicates that spiral waves (or scroll waves
in three dimensions) of electrical activity in cardiac tissue
are related to fatal arrhythmias [2]. It has been widely con-
jectured that the instability of a single spiral to a spatio-
temporally disordered state governs the transition from
tachychardia to fibrillation.

The focus of the present work is to explore the effect of
the strong anisotropy present in cardiac tissue on the dy-
namics of scroll waves. Panfilov and Keener [3] showed
numerically that rotating anisotropy could lead to scroll
wave breakup in three dimensions. Fenton and Karma [4]
have related this instability to the formation of localized
regions of large twist. Previous analytical studies [5,6]
have addressed the dynamics of scroll waves in isotropic
excitable media. In this Letter, we extend these works,
demonstrating analytically for the first time the destabiliz-
ing role fiber rotation may have on scroll wave dynamics.

Dissection results indicate that the left ventricle con-
sists of nested layers of cardiac muscle fibers [7]. Streeter
et al. [8] presented photomicrographs of successive layers
of ventricular tissue showing alignment of the elongated

muscle fibers in each layer, and gradual rotation of their
orientation between layers as one proceeds transmurally
from the outermost (epicardium) to the innermost (endo-
cardium) layer. As electrical conductivity along the fibers
is several times faster than in the perpendicular direction,
the fiber architecture of the ventricle gives rise to a rotat-
ing anisotropy, shown schematically in Fig. 1. The z axis
corresponds to the transmural direction, and Q�z� is the
angle between the fast axis of diffusion and the x axis.

The ratios of the fast�slow diffusion coefficients in-
plane �Dk�D�1� and out-of-plane �Dk�D�2 � are approxi-
mately equal for cardiac tissue and have been measured to
be between 4 and 9 [9]. Peskin [10] proposed a fiber dis-
tribution, Q�z�, to be

Q�z� � sin21�z�rL� ,

where 2L , z , L, and r $ 1 is a cutoff parameter, de-
termining the total fiber rotation through the thickness of
the ventricle. This agrees well with measured results [8].

The rotating anisotropy suggests a natural coordinate
system in which the new coordinate axes rotate with the
fiber orientation, Q�z�, and are rescaled by the in-plane
anisotropy, a �
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where �x̃, ỹ, z̃� denote the fixed Cartesian coordinates
(cf. Fig. 1).

The governing equations in the new coordinates are
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FIG. 1. Schematic diagram of the rotating anisotropy of car-
diac tissue: The z axis denotes the direction through the thick-
ness of the tissue. The coordinates �x̃, ỹ, z̃� are fixed in the lab,
while �x, y, z� rotate with the fiber direction. Here the fibers are
aligned with the y axis.

where �f denotes the nonlinear reaction kinetics, �u is a vec-
tor of concentrations (for example, the transmembrane po-
tential and gating variables in the case of a cardiac tissue),
D2 is the two-dimensional Laplacian, and Q 0�z� denotes
the fiber rotation rate (FRR). In the absence of fiber rota-
tion [Q0�z� � 0] a simple rescaling by

p
Dk�D�2 retrieves

the isotropic governing equation and solution. In the fol-
lowing, all terms involving both the anisotropy and the
fiber rotation rate will be treated as a perturbation.

Working in the new coordinate system allows us to iden-
tify a dimensionless small parameter e for the perturbation
analysis. To do so, we assume a solution given by

�u� �r, t� � �U0�r, u 2 v0t 1 Q�z� 1 f�z, t�� 1 e2 �u2��r , t� ,
(3)

where the base solution �U0�r, u 2 v0t 1 Q�z�� is the
straight, untwisted scroll in the original coordinates for
a � 1, and v0 is its frequency. Here we treat the sim-
plest case of a straight filament. [We relax this assump-
tion, accounting for the motion of the filament and its
coupling to the phase dynamics in [11].] The validity of
this assumption is based on previous work showing nu-
merically the existence of a finite threshold of twist be-
low which a twisted, straight scroll remains straight in an
isotropic excitable medium [12]. Note that for the filament
to be straight in both coordinate systems, it is necessary to
choose the z axis to lie along the scroll filament. [Wellner
et al. [13] have treated the intramural scroll wave (whose
filament lies within a fiber plane).]

The base solution is perturbed by a phase f�z, t� which
is assumed to vary slowly in space and time:

ft�v0 � O �e2�, �fz � O �e� ,

where � is a transverse length scale determined below.
Substituting this solution into the governing equation,
de-dimensionalizing according to t̂ � v0t, ẑ � z��, and
dropping hats, the linear equation for �u2 at O �e2� is

e2L �u2 � �g ,

where L � v0≠t 2 DkD2 2 F� �U0� is a linear differen-
tial operator and F � �f �uj �U0

, with
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The operators H1 and H2 are
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The transverse length scale � is determined by balanc-
ing the first three terms in �g, giving �2 � D�2 �v0. Re-
quiring all terms in �g to be &O �e2�, the physical small
parameter, e, is

e2 �
D�2

v0L2

g2�4 2 1
r2 2 1

,

where g�a� � a 1 1�a. Three dimensionless constants
contribute to e: (i) �D�2�v0L2�, the ratio of the trans-
verse diffusion length to the system size, (ii) 1��r2 2 1�,
determined by the (maximum) fiber rotation rate, and
(iii) �g2�4 2 1�, which measures the anisotropy and van-

ishes in the isotropic case. It is this product that must be
“small.”

Estimates for e vary between species and depend on the
thickness of the left ventricular wall, 2L. Consistent with
other works we take r � 1.5, corresponding to a total fiber
angle of 120±. For the human heart, the relevant parame-
ters are 2L � 1 cm, Dk � 1 cm2 s21, D� � 0.1 cm2 s21,
and n � 2 s21 [14]. With these parameters, we find
e2 � 0.45.

A solvability condition yields the phase equation at
O �e2�:
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where c3 � �g2 2 4�a1 2 �g 2 2�c1, c4 � � 1
2g 2 1�c1,

and c5 � � 1
2g 2 1�c2. The coefficients �a1, c1, c2� are

given by
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	 .
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In the preceding equation, the inner product � , 	 is
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Here �Y0 is a null vector of the adjoint linear operator,
Ly � ≠t 2 DkD2 2 F�� �U0�, such that � �Y0, �U0u

	 � 1,
where �U0u

is the corresponding null vector of the linear
operator L (assumed to be a Fredholm operator of in-
dex zero). The details of the perturbation analysis follow
closely the treatments by others [5,15], and are given else-
where [11]. There is no coupling to translational modes
since the filament is assumed to be straight and stationary.

Introducing a new variable,
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and rescaling t ! t�c2�2�L2� and z ! z��L reduces the
phase equation to the forced Burgers’ equation:

Ft 2 F2
z 2 Fzz � A�r�F�z; r� , (5)

where the forcing function is given by
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for 21 , z , 1. Determining Ã requires either numerical
computation of the null space of L y or simulation of the
full three-dimensional governing equations, allowing for
extraction of �a1, c1, c2� from the phase dynamics. Both
are numerically challenging, and have not yet been under-
taken; hence, these values are not explicitly known. We
do know that the “diffusion” constant, c2, is positive and
equal to D�2 for equally diffusive species. As diffusion
would be destabilizing for negative c2, we expect it to be
positive for the singly diffusive FitzHugh-Nagumo kinet-
ics, based on the stability of 3D numerical solutions [11].

With no anisotropy, the forcing term is identically zero
�A � 0�, and the known, unforced Burgers’ equation is
retrieved [5]. If FRR is constant, the unforced Burgers’
equation can again be obtained, by introducing a constant
frequency shift. However, the right-hand side is nontrivial
for nonconstant FRR.

The physiologically relevant boundary conditions are
no-flux at the vertical boundaries (epi-/endocardium). This
condition is exact if the FRR vanishes on the boundary or
in the absence of anisotropy. Otherwise, it holds in an
averaged sense as the scroll rotates if Fz � 0. We now
examine the behavior of the solution to Eq. (5) in certain
limits with these boundary conditions. We look for solu-
tions with a constant frequency shift, l:

F�z, t� �
Z z

21
k�z0� dz0 1 lt 1 F0 ,

where F0 is a constant. Furthermore, given the asymmet-
ric fiber distribution profile, the solution Fz�z, t� is also

odd under z ! 2z. Hence, we look for solutions with
k�61� � k�0� � 0.

a. Diffusive regime �Fzz ¿ F2
z �.—This solution is
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This numerical solution to Eq. (5) is shown in Fig. 2. In
this limit, the phase equation is linear, and the sign of the
forcing is irrelevant.

b. Twist-dominated regime �Fzz ø F2
z �.—This solu-

tion is formally valid when jAj ¿ 1. In this case, we must
distinguish between the two signs of forcing. It is useful
to transform the forced Burgers’ equation via the Cole-
Hopf transformation, k�z� � cz�z��c�z�, to the time-
independent Schrödinger equation:

d2c

dz2 1 �2l 2 V�z��c � 0 ,

where V �z� � 7A�r�F�z; r�, with �7� corresponding to
�6� forcing. The ground state is given by the smallest jlj
and the corresponding eigenfunction satisfying the symme-
try and boundary conditions. This ground state “energy”
is set by the behavior of the potential in the vicinity of its
minimum on 21 , z , 1, which occurs at the boundary
for positive forcing and at the origin for negative forcing.

Maintaining the first two terms in the expansion of the
potential, with l � l0 1 l1, gives the following results.

(i) Negative forcing: The Schrödinger equation for the
one-dimensional harmonic oscillator is obtained, with

l0 � 2Ā�r2, l1 � 2Ā1�2�r2,
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FIG. 2. Left axis: large forcing, jA�r�j � 227.3 and r � 1.2.
The solid line corresponds to A�r� . 0, and the dashed line
to A�r� , 0. Right axis: small forcing, jA�r�j � 1.0 and r �
1.01. The dot-dashed line corresponds to A�r� . 0, and the
long-dashed line corresponds to A�r� , 0.
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where Ā � Ã�g2

4 2 1�. In Fig. 2, the steady state solu-
tion k�z� for large negative forcing (dashed line) indicates
expulsion of twist from the bulk to boundary layers at the
boundaries.

(ii) Positive forcing: The Airy equation is obtained, with

l0 � Ā��r2 2 1�, l1 � h�2Ā�2�3��r2 2 1�4�3,

where h is the first zero of Ai0�z�. For this case, Fig. 2
(solid line) shows the formation of large twist in a bound-
ary layer in the bulk.

The analytical results for the frequency l with large
negative and positive forcing have been verified with nu-
merical evolution of the forced Burgers’ equation and are
in good agreement over a large range of jAj ¿ 1.

Twist is given by the variation of the phase of the scroll
along the scroll filament. For a straight scroll, with the
filament given by the z axis, it is the spatial derivative of

the phase in the new coordinates:

w�z, t� � fz�z, t� 1 Q0�z� .

There exists a large body of numerical and analytical
work on scroll twist, mostly in isotropic excitable me-
dia [12,16,17]. Recently, Margerit and Barkley [18] have
performed an asymptotic analysis of uniformly twisted
straight scrolls in the low excitability limit, deriving the
shape and frequency of waves at leading and first order. As
Winfree has pointed out, twist occurs naturally in physi-
cal excitable systems: for example, in cardiac tissue, a
transmural gradient in the electrophysiological properties
of the medium, resulting in the scroll wave rotating at dif-
ferent frequencies on the inner and outer surfaces, leads to
a twisted scroll. Our phase equation extends these works
to describe the dynamics of twist in the presence of rotat-
ing anisotropy.

By applying the coordinate transformation (1), twist in
the old coordinates is

w�z̃, t� � Q0�z̃� 2
2a�fz̃�z̃, t� 1 Q0�z̃��

�a2 2 1� cos2�v0t 2 f�z̃, t� 2 Q�z̃�� 1 �a2 1 1�
.

We note a time dependence at twice the frequency of the
unperturbed simple scroll. Although this subharmonic be-
havior has received attention [4], it is clear from our for-
mulation of twist in the new coordinate system that this is
an artifact of rotating anisotropic diffusion. Rather, it is
the phase dynamics f�z, t� that is relevant in the possible
formation of a twist singularity.

In summary, by identifying the natural coordinate sys-
tem to be given by the rotation of the muscle fiber orien-
tation in cardiac tissue, we have derived a forced Burgers
equation for the evolution of scroll twist. We found nu-
merical and asymptotic solutions in the limits of small and
large forcing using Peskin’s derived fiber distribution pro-
file. For small forcing, the maximum value of twist oc-
curs below the boundaries. For large forcing, the sign of
forcing determines whether this maximum occurs in the
bulk or is expelled to the boundaries. Given the numeri-
cal evidence [11,12] for the buckling instability of a scroll
filament above a finite threshold of twist, our results sug-
gest a combined role of electrophysiology, fiber architec-
ture, and anisotropy, reflected in the forcing constants Ã,
r, and g, respectively, in such an instability. These re-
sults demonstrate that rotating anisotropy generates scroll
twist, pointing to the possible destabilizing role of cardiac
tissue structure on scroll phase dynamics (for example,
through the “sproing” instability). Our finding reinforces
the need for taking this realistic feature into account in
model studies.
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