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PHYSICAL REVIEW B VOLUME 61, NUMBER 5 1 FEBRUARY 2000-I

Disorder-induced desynchronization in a 22 circular Josephson junction array

A. S. Landsberg
W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711
(Received 16 August 1999

Analytical results are presented which characterize the behavior of a dc-biased, two-dimensional circular
array of overdamped Josephson junctions subject to increasing levels of disorder. It is shown that high levels
of disorder can abruptly destroy the synchronous functioning of the array. We identify the transition boundary
between synchronized and desynchronized behavior, along with the mechanism responsible for the loss of
frequency locking. Comparisons with recent results for arrays with rectangular lattice geometries are described.

[. INTRODUCTION etry to the overall synchronization process. For this same

reason, we choose to model the individual junctions making

Josephson junction arrays, comprised of multiple Josephdp the array in the simplest possible fashion, i.e., we use the

son junctions coupled to one another, offer many potentiatesistively shunted junctiofRSJ model? Although our cir-

benefits over solitary junctions in terms of possible devicecular plaquette model is admittedly quite special, we hope

applications(e.g., Refs. 1-b Since many common array that it might serve as a prototype and that a number of key
applications require that the junctions oscillate in a coherentesults which come out of our study will prove useful more

manner, a key design goal is determining which array typegenerally for studies of other lattice geometries. Specifically,
are most amenable to supporting a synchronous mode @fe will identify the principle physical mechanism respon-
operation. Achieving this goal is complicated, however, bysiple for (disorder-inducexddesynchronization in this system,

the presence of disorder in an arr@g., small variations in - 54 also analytically construct the transition boundary sepa-

the individual junction characteristigsvhich is unavoidably rating sychronized from desynchronized behavior by em-
introduced during the manufacturing process. Such nonunipk)ying a useful perturbative approach.

formities can potentially disrupt the coherent functioning of
the array. For this reason, understanding and designin
against the desynchronizing effects of disorder represents
important yet challenging consideration in array design.
At present, a number of different ways of promoting co-

Our focus on the two-dimensional circular-lattice struc-
fire of the plaguette model is motivated by twin consider-
Aions: First, recent work suggests that two-dimensional ar-
ray designs might enjoy a significant advantage over their
herent oscillations in arrays with disorder have been identi_one—dimgnsional counterparts _in their ability to maiqtain co-
fied. Some involve linking the array in an external fashionherence in the presence of dlsora‘ef’ Second, studies of
(e.g., coupling the array to an external load, applying a highprototype two—dmensmngl arrays Wlth. a re_ctangular Iattlcg
frequency external signal, etewhile others rely on various 980metry have recently y'%ded analytic estimations of their
spatially distributed array designs that demand a somewhaPility to tolerate disordet!**Thus, a detailed analysis of an
more sophisticated analysis to properly modsince the —array with circular geometry will permit a direct comparison
standard “lump circuit” analysis fails®® Though these ap- 0f the relative merits of these two types of lattice geometries.
proaches can at times be effective, a basic underlying ques- This paper is organized as follows. In Sec. Il we describe
tion remains largely unanswered: To what extent does thée basic circular plaquette model and construct the equa-
lattice geometryof an array determine its intrinsic robustnesstions of motion. Section Il presents a formal asymptotic
against disorder? In particular, are certain array geometrieanalysis leading to the construction of the transition bound-
naturally more conducive to maintaining coherence in theary separating synchronized from desynchronized behavior
presence of disorder than others? as a function of disorder. Our theoretical predictions are then

While we cannot fully address this larger question, ourcompared with results from numerical simulations. In Sec.
intention in this paper is to garner some modest insight intqQy we make a direct comparison betweeix 2 arrays with
this problem by examining the behavior of one particularcircular and rectangular geometries, and then discuss gener-
geometric mode(a “circular plaquette’). This model repre-  alizations to larger circular arrays as well as limitations of

sents the simplest possibleontrivial) two-dimensional cir-  our model. Section V summarizes our main findings.
cular array, and our aim is to provide a detailed description

of how disorder affects this system’s synchronization prop-

erti_es. Since our larger objeptive is to isolate the influeqce of || THE CIRCULAR PLAQUETTE: BASIC MODEL

Iatgce geometry on behawor, our mode! array is highly AND NUMERICAL BEHAVIOR

stripped down, i.e., the circular plaquette is a “bare” array

which is entirely free of external loads, signals, and spatial- The circular plaquette model represents>a2array con-
distribution effects like those described above which mightsisting of six overdampefd.e., RSJRef. 2] Josephson junc-
otherwise obscure the intrinsic contribution of lattice geom-tions. A dc bias curreritis fed in uniformly from the outside
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An inspection of these governing equations reveals that,
in the absence of disorder, there exists a synchronized solu-
tion in which the two radial junctions oscillate in perfect
synchrony[ ¢.1(t) = ¢¢»(t) ], while the azimuthal junctions
are completely inactive ¢a1(t) = dar(t) = dp1(t) = Ppa(t)
=0]. This solution, known as the “in-phase state,” is dy-
namically stable when no disorder is present, as a straight-
forward stability analysis reveals. For many potential device
applications involving Josephson junction arrays, the in-
phase state—a state of perfect synchrony—represents the
ideal operating state of the system.

Our main interest in this paper, however, is in the behav-
ior of the system when disorder is present. A numerical sur-
vey of our model for different realizations of the disorder

ences across the four azimuthal junctions @nd, ¢, denote the (obtained by varying the values of the critical currents

phase differences across the two radial junctionpresents the !ci:lc2:la1:la2.1b1.152) Shows that there exist two general

(imposed bias current, and;,A,, A4 the (spontaneously inducgd ~ categories of sqlutions. o _
shunt currents. (a) Synchronized statedere, the two radial junctions

overturn at the same average ratdip.,/dt)y=(d¢p.,/dt).
and extracted uniformly along the inner edge, as shown ilMeanwhile, the azimuthal junctions are active, but do not
Fig. 1. The governing equations for the array follow from theoverturn: (d¢,; /dt)=(d¢,, /dty=(d ¢y, /dt) =(d Py, /dt)
dual constraints of current conservation and flux quantiza=0. (The brackets) denote time averageskigure 2 de-
tion. Letting A;,A,,A; denote the spontaneously induced picts a representative example of a synchronized state.
shunt currents in the array, the requirements of current con- (b) Desynchronized statesn such states, the coherence
servation together with the fundamental Josephson relatior3etween the two radial junctions is lostdéc, /dt)
yield the basic equations of motion #(d¢c,/dt). The azimuthal junctions now overture.,
. their time averages are no longer zerbigure 3 illustrates
. . this loss of synchronization in the radial junctions.
ﬂd’clﬂclsm(d’cl): I—A1-Ay, (13 For a fixed value of the bias currehtone observes that
the array enters a synchronized state when the disorder is
) _ relatively low, while for high levels of disorder a desynchro-
SarPeatleaSin(der) =1+ A1+ 4,, (1b)  nized state is realized. If instead one fixes the level of disor-
der and varies the bias current, one finds synchronized be-
5o havior for high values of the bias current and desynchronized
E%ﬁlalsm( ba1)=A1, (1c)  behavior for low values of the bias current. The transition
between these two states is abrupt, as can be seen from the
5 |-V plot depicted in Fig. 4.
——hart 1 028N an) = Ay, (1d) Our objective is to explain these qualitative numerical ob-
2er servations and to construct an analytical characterization of
the transition from synchronized to desynchronized behavior.
We describe in the next section how this can be achieved

FIG. 1. The circular plaquetteThe crosses mark the locations
of the six junctions. Hereg,,, b4, dp1, Py are the phase differ-

ZerPor T loSiN(don) = As+As, (19 through an asymptotiémultiple-time scalg analysis.
A ,
@¢b2+ [ p2SIN(Ppo) =Ar—Ag, (1) I1l. ANALYSIS OF THE PLAQUETTE

. . To proceed, we must first put Egela—(1f), (2) into a
where the¢'’s denote the phase differences across the variz . : : :
ous junctions. Disorder has been included in the model bform more suitable for analysis. We begin by noting that

allowing the critical currents of the six junctions Yuhile Egs. (1—(1f) represents a six-dimensional system of
Lo gl N o b identical (Not J h equationgone for each of the six junctiohshe presence of
(Iex lea:la1i a2, Tb1:lb2) 0 b€ nonidentcal.(NOte, NOW= 00 constraint relation€) implies that there are in fact
ever, that we neglect disorder in the junction resistances

. . ; . . only three dynamically independent phases in the problem.
here, in keeping with most prior studies; see Ref. 15 for - .
discussion of this issu. ave arbitrarily chooseb.;,dc»,Pa as the three independent

. variables, where we have defingéd= ¢,1= ¢,».
The above equations must be supplemented by the add- Next, we nondimensionalize the equations by rescaling

ftlonal constraints |mposed_ by_flux quantization. In partlcular_?ime [t—(%/2er1)t] and introduce dimensionless critical
in the absence of magnetic fields, the sum of the phase d|C-urrents

ferences around any closed loop must be zero. This yields

ba1— $a2=0, dp1— Pp2=0, bart dcat dp1— de1=0. Codmtlea o Tyt

(2) iclzlclll! iczzlczll, A= 2l y Ip 2| .
Together, Egs(1a)—(1f), (2) constitute our basic model. 3
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FIG. 2. (@) A synchronized statdfor 1=3.0, 1;;=2.6, I, FIG. 3. (@ A desynchronized statéfor 1=3.0, 1;;=2.6, I,

=1.1,1,4=0.9, 1,,=0.7, 1,,=0.6, 1,,=0.8). The phases of the =1.1,121=0.1,1,,=0.05,1,,=0.2,1,,=0.8). Note that the two
two radial junctionsp, , ¢, are shown as a function of time. In the radial junctions(dashed curveb., solid curveg.,) have different
plot, the curves forp., (dashed lingand ¢, (solid line) are vir- average growth rategb) The corresponding voltage oscillations
tually indistinguishable, consistent with the fact that these two junc&cross the radial junctionsd, /dt, d¢c,/dt), illustrating the
tions grow at the same average ritempare to Fig. @)]. (b) The lack of coherent oscillations in the desynchronized state.
corresponding voltage oscillations across the radial junctions

(dgeq/dt, do,/dt). Note here that the instantaneous voltages dees
have been plotted, rather than the time-averaged voltages, to better =
accentuate the frequency-locked nature of the synchronized state. dt

1 1
1- giASin(¢A)_§iBSin( be1— Pco— ba)

1 2
Note that this procedure has the effect of normalizing the ~31c2SIN¢c2) — gl caSiN(ea), (4b)
bias currentl to unity, so that thedimensionlesscritical
currents (g1,ic2,ip,ig) become small as the bias current
becomes large. This will prove useful for our asymptotic doe, 1 1
analysis, which will focus on the high bias current regime, gt~ 1t giasin(¢a) T5iesiN(¢er— dea— da)
since the critical currents can then be treated as small param-
eters. 2 1
In dimensionless form, the equations for the circular ~3 1SN bea) — i caSiN( ).
plaquette become

(40)

do [Note here that the constraint relatiof® have been used to
A O 1 eliminate three of the six phases in Eq$a—(1f) and to
at - g ASIN@a) g lesiNder b~ Pa) reexpress the shunt curremts,A,,A5 in terms of the three
independent phasés.
N ot One final manipulation is needed to prepare the system
g1 e2SiNbe2) = FlerSiN(der), “a o analysis. We introduce new coordinates
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24 : ‘ ‘ : ‘ Note here that we use different scaling factors for the various
critical currents. This is motivated by our desire to capture
the transition from synchronized to desynchronized behavior
in the array, which only occurs if there is sufficient variation
in the critical currents(Recall that for weak disorder, the
array remains locked in a synchronized stdttence, if iden-
tical scaling factors had been used in Ef), one would have
found that the disorder would never have been large enough
to force the system out of a synchronized state. In effect
then, by choosing different scaling factors in E@)., we are
able to describe a wider range of behaviors in the array than
would otherwise have been possibl{@his situation is not
unusual; it is well known from general asymptotic theory
that a judicious choice of scaling factors often provides the
183 s = =3 = ‘ key to understanding a system’s behayidrhe choice of
A . . 8 24 25 . . . . .
T scalings in Eq.7) can also be justified by physical argu-
ments, since the radial and azimuthal junctions in a circular

FIG. 4. 1-V plot for the circular plaquette. The time-averaged array play very different roleghis point will be discussed in
voltage across each radial junctigde,, /dt), (d¢,/dt) as a more detalil latex
function of imposed currenit is shown. The transition from a de- We next introduce fast, slow, and superslow time scales
synchronized to synchronized state néar2.2 is clearly seen. ty=t, t;=et, tzzezt such that
(Here, 15,=0.3, 1.,=1.5, 1,,=0.06, 1,,=0.11, 1,,=0.4, Iy,

2.2F

{dder/dt)

=0.2)
a = at0+ 60"t1+ ezﬂtz (8)
¢c1+ ¢c2 ¢c1_ ¢02
be=—% 1 bscT— 5 ®)  and expand the phases
yielding A= dpot €dart €dpz, (93
déa 5 1, . 1
W:_6'AS|n(¢A)+6|BS|n(2¢AC_¢A)+6'025m(¢0 Bac=Pacot €bacit € baco, (9b)
1 = (wotot ity + woty) + o+ +€%pey. (9C
_¢AC)_€iclsin(¢C+¢AC)a 63) dc=(wolo+ w1t1+ woty) + deot €dert € der. (90
Note that in the expansion fop. we have explicitly in-
dé 1 1 1 cluded a linear growth termafpty+ wqt,+ woty). This is
ac_ ZiaSIN(hp) —=ipSIN2¢ac— Pp) +=i oSN Pe because, unlike the other phase variables, we expgdo
dt 3 3 6 grow approximately linearly with timgsee Eq(5) and Fig.
2(a)].
1
—dac)— Eiclsin(¢c+ dac), (6b) The general procedure is now as follows: We substitute

Egs.(7), (8), (98—(9¢) into Eqgs.(6a—(6c) and collect like

d powers ofe. In this manner we obtain an entire hierarchy of
ﬂzl_li Sin( pe— ¢ )—Ei SiN( e+ dac). equations. From these we extract so-called “nonresonance
dt 2% © Tach 2 ¢ E conditions,” which serve to suppress terms which might oth-

(60) erwise grow without bound and destroy the validity of our
Equations(6a—(6¢) are in final form. The impetus behind a@Symptotic expansiofsee Ref. 16 We now carry out this
coordinate transformatiof) has to do with the question of procedure(Since these calculanons.are.somewhat 'Iengthy,
synchronization. Since we are interested in understandingf® Present only the key landmarks in this construction.
whether the radial junctiong.;,¢., remain synchronized At leading order in the expansion we find
when disorder is present, the phase differedcg = (pc1
— ¢e,)/2 is the natural variable to monitor. In particular, Ot ba0=0; d baco=0; d Pco=1-wo. (10

when this phase difference remains bounded in time, the » ) ) )
plaquette is synchronized:; #,c grows in time, synchroni- The nonresonance condition associated with the third equa-

zation is lost. tion implies wg=1. Solving Eq.(10) yields
To analyze our model, we employ a variation of a
multiple-time-scale perturbation scherfeee Ref. 16 for a dpo= bao(tyt2), daco= Pacolts ta),
description of the basic methpd/Ne will work in the high-
bias-current regime, so that the rescaled critical curré)ts dco= dco(tyta), (11

may now be regarded as small. We make this explicit by

letting e denote a dimensionless small parameter and writindndicating that thep g, ¢aco, ¢co do not evolve on the fast
time scalet,.

i1 — €1, lgp—€icy, Ia—€%ip, ig—€ig. (7) At O(€), the resulting equations are
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1
Itgbar =~ a0~ gic,SiNloF witi + woly+ deot daco)

(129

1
+ 5l SiNto+ w1ty waly+ deo— daco),

1
ItgPac1= ~ 0y Paco™ gle,SiNltoF wits+ walat deo

1
+daco) T gle,SiNto+ wity+ oty + deo

—baco)s (12b)
1
dybcr= — w17 dy beo— i, SiNto+ w1ty +waly+ deo

1
+daco) ~ e, SN+ w1ty +woly+ deo— Paco)-
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1., . 1
F7t2¢Acozl—8(|c2_'cl)_g'Asm((ﬁAo)
1
— 318SIN(2¢aco™ ¢ao), (15b)

dr,pco=—

1., ., 1
w2+g(|cl+|c2) _g|cllc2005(2¢ACO)-
(150

Equations(159—-(150 represent the desired equations de-
scribing the basic behavior of the plaguette.

Observe that the first two equatio(iksa),(15h) decouple
from the third, and are readily analyzed. When the disorder is
small, there exist four fixed points in thebfg,drco) phase
plane: one sink, one source, and two saddles. The system
will be attracted to the sink. Accordinglysco, Which mea-
sures the phase difference between the junctifnsaand ¢,

[Eq. (5)], will not grow. This corresponds to the plaquette
being in a synchronized state.

If the level of disorder is increased, one finds that the four
fixed points approach one another in the phase plane. There

The nonresonance conditions are readily extracted anid a critical level of disorder at which these fixed points si-

(129
solved:
Oy, ppo=0— dao= Pao(ta), (139
dr, paco=0— daco= dbaco(ta), (13b)
w1t pco=0— Ppco=—wit1+ beolts). (139
Solving Eqgs.(12a—(120) yields
1 “
¢A1:g 1c1COgto+ woty+ deot Paco)
1 n
- g'czcoito"’ oty dco— Paco), (143
1 .
¢AC1:5| c1C0gto+ woto + ot daco)
1 .
5 c2C0to+ wotr + o= daco),  (14b)
1 .
¢01:§| 109 to+ woty + ot daco)
1 .
5 c2C0to+ wotr+ o= daco). (140
Lastly, atO(e?), the nonresonant conditions are
1., ., 5
f7t2¢Ao=E(|c2_ ic1)— 6|A5m( $no)
1
ts! 8SIN2daco— Pno)s (159

multaneously collide with one another and annihiléte a
“double saddle-node” bifurcation Above this critical
threshold, no fixed points exist, and the phase difference be-
tweeng, and ¢, begins to grow without bound, indicating
that the system has entered a desynchronized state. The pre-
cise bifurcation point can be determined via a linear stability
analysis of Egs(15a),(15b). We find
i2 P2
‘1 (ig1—ig) _1 (16)

12min(ip,ig)

where min{y,ig) denotes the lesser dfy,ig. Converting
back to our original parametefsee Eq.(3)], the transition
boundary separating synchronized from desynchronized be-
havior is given by

2 2
1 (Icl_ICZ)
6 1 min(la+1a,lp1+ 12

_
)‘—1. (17)

[When the left-hand side of EL7) exceeds unity, synchro-
nization is lost]

Equation(17) provides a quantitative prediction for the
maximum amount of disorder the circular plaquette can tol-
erate before frequency locking is lost. The only assumption
made in our derivation is that the array is operated in the
high-bias-current regimel&1:q,l¢,la1:1a2,1p1:1p2). We
tested our theoretical prediction against numerical simula-
tions by fixing the values of,1,145,1p1,1p2,1 @and sweeping
through different values of the critical currenitg,l.,. In
this manner, we numerically constructed the boundary in the
l.1— s parameter plane separating synchronized from de-
synchronized states. These results are illustrated in Fig. 5. As
this shows, the agreement between our numerical results and
the predictions of Eq(17) is excellent. We remark that this
agreement remains relatively good even if the bias cuidrent
is reduced so that we are no longer inside thah-bias
curren) regime where the asymptotic analysis is formally
valid (see, e.g., the transition point in Fig.. 4
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IV. COMPARISON TO RECTANGULAR PLAQUETTE

5r AND GENERALIZATIONS TO LARGER ARRAYS

Despite some distinctiongo be discussed shorjlythe
similarities between the circular plaguette model described
here and previous analytical studies of a rectangular
plaquette modét® are both striking and informative. First,
we observe that for both geometries, the arrays are able to
tolerate disorder and remain synchronized, provided the dis-
order lies below a critical threshold level. Second, and much
more revealing, we now knowbased on the analysis in Sec.
Il that the mechanism by which disorder destroys synchro-
nization in a Josephson plaquette with circular geometry is
identicalto that found in a plaquette with rectangular geom-
etry (see Ref. 1% Synchronization is lost when the super-
current through the azimuthal junctions reaches its maximum
allowed value(Note: the “horizontal” junctions of the rect-

FIG. 5. The transition boundary separating sychronized fromangular plaguette play the role of the “azimuthal” junctions
desynchronized behavior. Synchronized states lie in the interior rein the circular plaquettg The implications of this are signifi-
gion between the upper and lower curves. This plot was constructegant: This finding suggests that perhaps the principal mecha-
by fixing1=9, 1,,=0.0056,1 ,,=0.0111,1,,=0.30,1,,=0.07and  pjsm underlying disorder-induced desynchronization in a Jo-
sweeping through the;,— 1, parameter plane to locate transition sephson junction array is universal, i.e., independent of the
po!nts. Th_e circles _mark the numerically determlned trans't'o_nunderlying lattice geometryWe must emphasize, however,
p0|nt's, while the solld_ curves represent the theoretical boundarle,[s}1at this suggestion is only speculative at present—we can
predicted by the transition formuld.?). claim rigorous results only for the case of plaquettes with

circular and rectangular geometries. Moreover, the precise

The transition formula17) reveals that the plaquette is manner in which bias current is fed into an array most likely
robust against even very high levels of disorder. For explays a role here as well, but this issue has yet to be fully
ample, variations as large as 50% in the values of the criticagéxplored)
currents from one junction to the next are not sufficient to It is important to note that while the mechanism by which
desynchronize the arrayvith present fabrication techniques, disorder destroys synchronization may be the same for both
the typical size of variations can be reduced to about the 1%he circular and rectangular cases, this does not mean that
level). In this respect, then, the circular geometry of thethese two arrays are identical in terms of their ability to
plaquette is intrinsically good at fostering coherent oscilla-tolerate disorder. Indeed, a comparison of the transition for-
tions among the individual junctions even in the presence ofmula (17) with the corresponding transition formula for the
relatively high levels of disorder. The quantification of this rectangular-geometry cassee Ref. 1freveals that the cir-
result in the form of Eq(17) represents a key result of our cular plaguette is the more robust of the two against disorder
asymptotic analysis. (although only modestly more soThis ability to tolerate

Moreover, the mathematical analysis leading to B¢)  higher levels of disorder comes at a price, however, six Jo-
also uncovers the principal physical mechanism responsiblsephson junctions are required to construct the circular
for the onset of desynchronized behavior for sufficiently highplaquette, but only four are needed in the rectangular case.
levels of disorder. A stability analysis reveals that the bifur- Lastly, we speculate as to what might occur if we con-
cation described above in which the four fixed points collidesider generalizations of our circular plaqueti¢hich is a 2
and annihilate in the ¢ag,daco) Phase plane occurs pre- X2 circular array to larger N>X M) circular arrays. Are the
cisely when either|sin(¢ag)| or |sin(2paco— Pao)l €quals  synchronization properties of larger circular arrays similar to
unity. Now, the variableg,o represents the phase of the that of the plaquette, or might new features arise? This ques-
outer two azimuthal junctions of the circular plaquette, whiletion is especially intriguing in light of what has been learned
(2daco— dao) represents the phase of the inner two azi-recently about generalizations of the rectangular plaquette
muthal junctiongthis may be seen by tracing back the se-model(a 2X 2 array to larger (N X M) rectangular arrays. In
quence of transformations that led from Eq$a)—(1f) to  particular, if anNxX M rectangular Josephson junction array
Egs. (158—(150]. Therefore, the quantitiegsin(éag), (with N>2) is subjected to weak levels of disorder, the array
|sin(2paco— Ppo)] above are simply proportional to the only partially synchronizes: The junctions across any given
amount of supercurrent passing through the outer and inneow of the array all synchronize with one another, but there
azimuthal junctions, respectively. Hence, the meaning of thés no synchronization from one row to the né*{:'*In other
conditions|sin(---)|=1 is that the amount of supercurrent words, the synchronization mechanism observed in an iso-
being passed by any of the azimuthal junctions has attaineldted rectangular plaquette operates across rows in larger ar-
its maximum allowed value. In other wordsynchronization  rays, but not between rows. Ultimately, this failure to fully
is lost when the supercurrent passing through any azimuthasynchronize traces its origins to a highly unusual mathemati-
junction equals the critical current of that junctioifhis is  cal property possessed XM rectangular arrays in the
the fundamental physical mechanism behind the loss of syrabsence of disordeneutral stability*®°*°n this context,
chronization in a circular plaquette subject to strong disordemeutral stability refers to the fact that it is possible to perturb

1.25F
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FIG. 6. A3X 2 circular array. ¢;, d1,d2, b, denote the four 8 191 192 193 184 1.85
radial junctions, andba;, a2, Po1, o2 Pe1, dc2 the six azimuthal I
junctions. An externally imposed bias curréris fed into and ex- 39
tracted from the array as shown,,A,,A3,A,,A5,Ag represent | T
the spontaneously induced shunt currents in the array. 289 |
the junctions within any given row of a rectangular array in 568 4
such a manner that the system has no natural tendency tgv, ’ t
return to its original(preperturbef configuration(see Ref. . e i
18). [Indeed, it was the discovery of neutral stability and f (dera/dt)
related nongeneric mathematical propertiesy., Ref. 20 - (donjdt) (déis/t)
that originally stimulated a great deal of interest in Josephson (déndt) ; ’
junction arrays among the nonlinear dynamics commuity. 285 N
Hence, to understand the behavior of large circular arrays, ™ ‘

a natural starting point is to first askNfX M circular arrays 284
(N>2) also possess the neutral-stability property. If so, one e (b)
might reasonably speculate that such arrays will exhibit only ‘ . ‘
partial synchronization when subjected to weak disorder, i.e., 3.95 3.96 3.97 3.98 3.99 4

if one pictures the radial junctions in a circular array as form- I
ing a series of concentric rings, then the radial junctions
within any given ring should synchronize, but no synchroni-
zation would be expected as one moves radially inward fro
gne ring to e next. L . Lo L The critical currents were held fixed &t;,=0.3, I,;,=1.5, I},
We offer here a preliminary inquiry into this issue by _; ¢, ,=0.2, 1,,=0.06, 1 ,=0.11, 15,204, 15,=0.2, I,
considering the X2 circular array depicted in Fig. 6. The =0.1: IC;:O.OA:. (g) for |0\;V \jalues 0;‘ the bias, current, :':1II i‘our
equations of motion are constructed in the usual manner. W ctions are desynchronizeth) at higher bias current, the outer
find junctions¢,1, ¢,; become frequency locked, as do the inner junc-
tions ¢,,, &,,. Observe, however, that the outer and inner pairs are

FIG. 7. 1-V plot for the 3X2 circular array. The time-averaged
oltage across each radial junctiofde,,/dt), (d¢,q/dt),
d¢,,/dt), (d¢,,/dt) as a function of imposed currehts shown.

ho . not synchronized, owing to the neutral stability property of the 3
SarPitlasin(d)=I —A;—Ay, (183 5 array.
. . ho. ]
2_e',¢rl+|rls|n(¢rl):| +A1+A,, (18b) Eﬁbcl""lclsm(?bcl):ASv (189
. . ho. )
E¢|2+||2S|m¢|2):| —A;—Ay—Az—A,, (189 §¢a2+|a25|r‘(¢a2):A2a (18h
ho. . ho. . .
2_er¢r2+|r23|f‘(¢r2):| +A A+ Az+A,, (180 2_H¢b2+|b25m(¢bz):A4, (18i)
ho. , ho. . .
@Q”aﬁf la1SiN(a1) =A1, (18¢ gd’cz +1coSin(de2) = As, (18))
5 together with constraint relations
=—p1+ 1 p:Si =As, 18
2e r¢bl 1IN Po1) =As (181 a1~ $22=0, dp1— Pp2=0, ¢e1—d,=0, (199
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Gart D1~ Pp1— D11=0, dp1+ bro— Pe1— h12=0, pair). Observe, however, that the outer and inner pairs of
(19h  junctions do not synchronize with one another, see Fig). 7

A+ Ayt Ag+ A+ Ag+Ag=0. (190

Owing to the presence of the constraints, Ed8a—(18))
may be reduced down to a five-dimensional dynamical sys- In this paper we have presented a detailed analytical de-
tem. These calculations are lengthy and we do not reproducstription of the behavior of a:22 Josephson junction array
them here. with a circular geometry, culminating in a quantitative as-
Observe that if we set all the critical currents in Egs.sessment of its ability to remain synchronized in the presence
(189—(18j) the samdi.e., the zero-disorder case¢hen there  of disorder. The primary physical mechanism responsible for
exists an “in-phase” solution of the forng;,=¢,1=¢,  the loss of synchronization when disorder becomes too large
= ¢,o= ¢(t), with all the azimuthal junctions identically has also been identified, and has been shown to be identical
zero. Now, a straightforward check reveals thai=¢,;  to that found previously in a 22 rectangular array. This
= (1), Po= 2= p(t+ d) is also a solution of these equa- finding suggests that the underlying cause of disorder-
tions (with & an arbitrary constajitindicating that this cir- induced desynchronization in an array might be more general
cular array does indeed possess the neutral stability propertitan previously believed, and transcend the particular lattice
found previously in a rectangular arrésee Refs. 18 and 15 geometry of the array.
for a more general discussipn Moreover, our study of the circular plaquette indicates
This result is both significant androm a mathematical that larger circular arrays can also synchronize when disorder
perspectivie somewhat surprising. It is significant because itis present(provided the disorder is not too langebut that
suggests that indeed the circular array might exhibit onlythis synchronization is only partial, owing to tii@omewhat
partial synchronization when weak disorder is present. It isurprising existence of the neutral stability property in these
surprising because neutral stability is a nongeneric mathtarger arrays. Thus, in terms of tirinsic ability of lattice
ematical property that in general would not be expected tgeometry to promote synchronization, we have determined
persist if one makes changes to a system, and yet it hakat acircular lattice geometry is only partially successful in
survived the change from a rectangular to circular latticethis regard(i.e., the circular geometry does not naturally in-
geometry. We do not yet have a complete understanding afuce synchronization in the radial direction, though it does in
why this should be the case. the azimuthal direction Hence, while it may still be possible
To verify our hypothesis about partial synchronization into fully synchronize a circular array by other medagy., by
a 3X2 circular array, we ran a series of numerical simula-applying a high-frequency external signal, coupling the array
tions. The resulting-V diagram is shown in Fig. 7. We find to an external load, or through nonlocal mutual inductance
that for low values of the bias current, all four radial junc- effects, etg, the innate contribution of théirculan lattice
tions ¢y, b1, P12, .o are desynchronizeldig. 7(a)]. As  structure to the synchronization process has been demon-
the bias current is increased, the outer junctigng, ¢,;  Strated to be somewhat limited. It remains to be seen whether
eventually synchronize with one anotfjes in the plaquette other lattice geometries might exist that are intrinsically bet-
case(Fig. 4)]. Likewise, the inner paik,,, ¢, also even- ter at promotingfull) synchronization in an array compared
tually synchronizegthough not at the same time as the outerto the circular or rectangular cases.
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