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Abstract

Under adequate conditions on g, we show the density in L2((0, π), (0, 2π))
of the set of functions p for which

utt(x, t)− uxx(x, t) = g(u(x, t)) + p(x, t)

has a weak solution subject to

u(x, t) = u(x, t + 2π)

u(0, t) = u(π, t) = 0.

To achieve this, we prove a Saddle Point Principle by means of a refined
variant of the deformation lemma of Rabinowitz.

Generally, inf-sup techniques allow the characterization of critical val-
ues by taking the minimum of the maximae on some particular class of
sets. In this version of the Saddle Point Principle, we introduce sufficient
conditions for the existence of a saddle structure which is not restricted to
finite-dimensional subspaces.
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Chapter 1

Introduction

In this thesis, under adequate conditions on g, we show the density in
L2((0, π), (0, 2π)) of the set of functions p for which

utt(x, t)− uxx(x, t)− g(u(x, t))− p(x, t) = 0 (1.1)

has a weak solution subject to

u(x, t) = u(x, t + 2π) and u(0, t) = u(π, t) = 0 (1.2)

for all x ∈ [0, π], t ∈ R.
This extends the results of Willem (1981) and Hoffer (1982), which relate

the asymptotic behavior of g to the eigenvalues of � subject to Equation 1.2.
To achieve this, we prove an extension of the Saddle Point Principle

(Rabinowitz, 1984: Theorem 4.6) by means of a refined variant of the defor-
mation lemma (Rabinowitz, 1984: Lemma A.4). Sup-inf techniques such as
used here allow the characterization of critical values by taking the mini-
mum of the maximae achieved by some particular class of sets. In this ver-
sion of the Saddle Point Principle, we place more stringent restrictions on
the functional I in order to permit a saddle-structure which is not restricted
to a finite-dimensional subspace.

In order to state our Saddle Point Principle, recall that a functional
K : E → E on a real Hilbert space E is compact if it is continuous and if
for every bounded sequence {wn} ⊂ E, {K(wn)} has a convergent subse-
quence.

Theorem 1 (Refined Saddle Point Principle). Let E be a real Hilbert space, and
let E = U ⊕ V where U and V are closed subspaces. Let P : E → V be the
projection of E onto V.

Consider I ∈ C1(E, R) such that
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(S1) P∇I = Pid + K0(u + v) for some compact function K0 : E→ V,

(S2) There exists a compact function φ : V → U, an α ∈ R, and a neighborhood
D of 0 in V such that I(v + φ(v)) ≤ α for all v ∈ ∂D,

(S3) There exists β > α such that IU ≥ β.

Define

Γ = {h ∈C(D̄, E)|h is bounded,
Ph(v) = d(v)u + K(v)

for K compact, d(v) > δ1 > 0 ∈ C(D̄, R),
and K|∂D = 0 and d|∂D = 1.}

(1.3)

Then
c = inf

h∈Γ
sup
v∈D̄

I(h(v)) (1.4)

is either a critical value of I, or else there exist {wn} ∈ E such that I(wn) → c
and ||∇I(wn)|| → 0.

This saddle point principle can be applied to a suitable functional to
allow us to find weak solutions of Equation 1.1 subject to Equation 1.2. We
first construct this functional.

Let Ω = [0, 2π]× [0, π].
The eigenvalues of � = ∂tt − ∂xx subject to Equation 1.2 are λk,j = k2 −

j2, for k = 1, 2, . . . and j = 0, 1, . . . . Each λk,j has orthonormal associated
eigenfunctions

φk,j =
sin kx cos jt∫

Ω(sin kx cos jt)2dxdt
,

ψk,j =
sin kx sin jt∫

Ω(sin kx cos jt)2dxdt
.

Let σ be the set of these eigenvalues.

Definition 2. We will let H be the subspace of L2(Ω) of elements of the
form

∞,∞

∑
k=1,j=0

ak,jφk,j + bk,jψk,j

where
∞,∞

∑
k=1,j=0

|λk,j|(a2
k,j + b2

k,j) < ∞.
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We define the inner product〈
∞,∞

∑
k=1,j=0

ak,jφk,j + bk,jψk,j,
∞,∞

∑
k=1,j=0

αk,jφk,j + βk,jψk,j

〉
1

=
∞,∞

∑
k=1,j=0

(1 + |λk,j|)(ak,jαk,j + bk,jβk,j).

We denote by || · ||1 the norm defined by < ·, · >1.
Define the subspace U as the closure of

span{φk,j, ψk,j|k2 − j2 ≤ 1} (1.5)

and V as the closure of

span{φk,j, ψk,j|k2 − j2 > 1}. (1.6)

For w1 = ∑j,k ak,jφk,j + bk,jψk,j ∈ H and w2 = ∑k,j αk,jφk,j + βk,jψk,j ∈ H,
define

B(w1, w2) = ∑
k,j

λk,j(ak,jαk,j + bk,jβk,j). (1.7)

Note that for w ∈ C1(Ω), B(w, w) =
∫

Ω(wt)2 − (wx)2dxdt.
Define J : E→ R by

J(w) =
B(w, w)

2
−
∫

Ω
(G(w(x, t)) + pw(x, t))dxdt, (1.8)

where G =
∫ s

0 g(t)dt.

Definition 3 (Weak Solution). We say w ∈ E is a weak solution of Equa-
tion 1.1 subject to Equation 1.2 if w is a critical point of J.

Note that for all w, y ∈ E,

< ∇J(w), y >= B(w, y)−
∫

Ω
(g(w) + p)ydxdt. (1.9)

In defining the asymptotic behavior of G(x), we make use of the Fucik
spectrum (see Chapter 2), and in particular the characterization of b1(a), the
smallest b ≥ a such that (a, b) is in the Fucik spectrum, found in Castro and
Chang (2010).
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Theorem 4. Let a0, a ∈ (1, 3) and b ∈ (a, b1(a)), C and M ∈ R. If g(s) is
Lipschitz continuous, and for all s ∈ R,

a0s2

2
− C < G(s) <

a(s+)2

2
+

b(s−)2

2
+ C, (1.10)

either Equation 1.1 subject to Equation 1.2 has a weak solution, or there exists
some sequence pn converging in L2(Ω) to p such that there exists a weak solution
to �u = g(u + pn for all n.



Chapter 2

Preliminaries

Let Ω be an open subset of Rm.
Let E be a real Hilbert space and E? its dual. If the functional I : E→ R

is continuous, and there is a continuous linear operator A(u) : E → R

such that for all ε > 0, there is a neighborhood δr(0) of 0 such that for all
h ∈ δr(0),

|I(u + h)− I(u)− < A(u), h > | ≤ ε||h||E,

then we say I is differentiable at u. If A : E → E? is continuous, we say
I ∈ C1(E, R). By the Riezs representation theorem, there exists a unique
element v ∈ E such that < v, y >=< A(u), y > for all y ∈ E. We denote v
as ∇I(u) and call it the gradient of I at u.

2.1 Lp spaces

Let Lp(Ω) be

{u : Ω→ R|u is measurable and
∫

Ω
|u|pdµ < ∞},

and then let
||u||Lp = (

∫
Ω
|u|pdµ)

1
p .

2.2 Sobolev Space

In order to define Sobolev spaces, we first define the notion of weak deriva-
tive (or distributional derivative), which extends the standard notion of
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derivative. Let α = (α1, α2, . . . , αn) be a n-tuple of nonnegative integers,
and let

Dα =
∂α1+α2+···+αn

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

If φ ∈ C∞(Ω), we say that φ has compact support in Ω if the closure of
{x|φ(x) 6= 0} is a compact subset of Ω. If, for any C∞ function φ with
compact support in Ω,∫

Ω
vφdµ = (−1)α1+α2+···+αn

∫
Ω

uDαφdµ,

we say that v is a weak α-derivative of u, or the α-derivative of u in the
sense of distributions. We write Dαu = v.

Let k be a positive integer. If for all α with |α| ≤ k, Dαu ∈ Lp(Ω), we
say u belongs to the Sobolev space Wk,p(Ω) with norm

||u||Wk,p = ( ∑
|α|≤k
||Dαu||pLp)1/p.

Note that || · ||w1,2 = || · ||1.

2.3 Fucik Spectrum

Let Ω be a measurable subset of Rn. Let u+ = max(0, u) and u− = max(0,−u).
Let L be a linear operator defined in a dense subset of L2(Ω). The Fucik

spectrum of L is defined as

{(a, b)|L(u) = au+ − bu− has nontrivial solutions on Ω}.

We will make use of the variational characterization of the Fucik spectrum
of � = ∂tt − ∂xx found in Castro and Chang (2010).

Let B be as in Equation 1.7, and define

ga,b(s) = as+ − bs−.

Just as J : E → R corresponds to Equation 1.1 subject to Equation 1.2,
we define

Ja,b(w) =
1
2

[
B(w, w)−

∫ 2π

0

∫ π

0
w(ga,b(w))dxdt

]
corresponding to �u = ga,b(u).
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Lemma 5. Let E be a separable real Hilbert space with closed subspaces X, Y such
that E = X ⊕ Y. Let J : E → R be a functional of class C1. If there exists m > 0
such that

< ∇J(x1 + y)−∇J(x2 + y), x1 − x2 >≤ −m||x1 − x2||2

for all x1, x2 ∈ X, y ∈ Y, then there exists a function r : Y → X such that
J(y + r(y)) = max{J(y + x)|x ∈ X}.

This result is taken from Castro and Chang (2010), Theorem 1.
Let U and V be as defined in Equations 1.5 and 1.6.

Corollary 6. For a ∈ (1, 3) and b ≥ a, there exists a function ra,b : V → U such
that Ja,b(v + ra,b(v)) = max{Ja,b(v + u)|u ∈ U}.

For convenience, write

J̃a,b(v) = Ja,b(v + ra,b(v)).

Proof. This proof follows Castro and Chang (2010).
For all u1, u2 ∈ U, v ∈ V,

< ∇Ja,b(v + u1)−∇Ja,b(v + u2), u1 − u2 >1

= B(u1 − u2, u1 − u2)−
∫ 2π

0

∫ π

0
(u1 − u2)(a(v + u1)+

− a(v + u2)+ − b(v + u1)− + b(v + u2)−)dxdt
= B(u1 − u2, u1 − u2)

−
∫ 2π

0

∫ π

0
(u1 − u2)(g(v + u1)− g(v + u2))dxdt

≤ B(u1 − u2, u1 − u2)− a||v + u1||20 − a||v + u2||20
≤ B(u1 − u2, u1 − u2)− a||u1 − u2||20
≤ −m||u1 − u2||21,

(2.1)

where m = inf{(a− λk,j)/(1 + |λk,j|) > 0|λk,j ≤ 1}. Either λk,j ∈ (0, a) and
(a − λk,j)/(1 + |λk,j|) is positive (and there exist only finitely many such
λk,j), or λk,j < 0 and (a− λk,j)/(1 + |λk,j|) approaches 1 as λk,j → −∞. In
either case, m > 0.

Then by Lemma 5, there exists a function ra,b : V → U as desired.

Note that if vn converges to v̄ in L2(Ω), then ra,b(vn) converges to some
z̄ in L2(Ω). Then

0 = B(z̄, u)−
∫

Ω
ga,b(z̄ + v̄)udxdt (2.2)

for any u ∈ U. See (16) of Castro and Chang (2010).
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Lemma 7. For a ∈ R+ \ σ, define

b1(a) = sup{b ≥ a|Ja,β(v + ra,β(v)) > 0 for all β ∈ (a, b), v ∈ V \ {0}.

Then

• (a, b1(a)) is in the Fucik spectrum whenever b1(a) < ∞,

• If b ∈ (a, b1(a)), (a, b) is not in the Fucik spectrum, and

• For b > a, (a, b) is in the Fucik spectrum if and only if the restriction of
J̃a,b(v) to {v ∈ V|||v||1 = 1} has a critical point on {v ∈ V|||v||1 =
1, J̃a,b = 0}.

This is Theorem 2, Castro and Chang (2010).

2.4 Schauder Fixed Point Theorem

The Saddle Point Principle, as formulated in Rabinowitz (1984), applies
on a Hilbert space E = U ⊕ V, where U and V are closed subspaces and
V has finite dimension. A vital step in this result is to show that all the
deformations of a neighborhood D ⊂ V which fix ∂D intersect the subspace
U. Provided V has finite dimension, this may be established through the
Brouwer fixed-point theorem:

Theorem 8 (Brower Fixed-Point Theorem). Let B be a compact, convex, and
nonempty subset of Rn. For any continuous function f : B → B, there exists
some x ∈ Rn such that f has a fixed point f (x) = x.

This is a well-known result, see, for example, Zeidler (1985).
In this work V need not be finite dimensional. Here we make use of an

extension of Theorem 8.

Theorem 9 (Schauder Fixed Point Theorem). Let B be a closed, bounded,
convex, and nonempty subset of a Hilbert space E. For any compact function
K : B→ B, there exists some x ∈ E such that K(x) = x.

This can likewise be found in Zeidler (1985).
The following corollary follows from Theorem 9.

Corollary 10 (Leray-Schauder principle). Let E be a Hilbert space. If K : E→
E is compact, and if there is some r > 0 such that for all x ∈ E with ||x|| = r,
K(x) 6= λx for all λ > 1, then K has a fixed point x = K(x), with ||x|| ≤ r.
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2.5 Palais-Smale Condition

Let E be a real Hilbert space. A functional I ∈ C1(E, R) is said to satisfy a
Palais-Smale condition at c if, for every {un} ⊂ E for which I(un)→ c and
∇I(un)→ 0, {un} has a convergent subsequence.

This condition acts as a substitute for compactness, by allowing us to
find convergent subsequences in certain cases.





Chapter 3

Proof of the Deformation
Lemma

Let E, I,∇I be as defined in Chapter 2.

Lemma 11. Let Ẽ = {x ∈ E|∇I(x) 6= 0}. There exists a locally Lipschitz
continuous pseudogradient vector field V : Ẽ→ E satisfying for all u ∈ Ẽ

(V1) ||V(u)|| ≤ 2||∇I(u)|| , and

(V2) < ∇I(u), V(u) >≥ 1
2 ||∇I(x)||2 .

A proof can be found in, for example, Rabinowitz (1984: Lemma A.2).
Before we prove Theorem 1, we prove a variation of the Deformation

lemma, as in Rabinowitz (1984).

Lemma 12 (Deformation Lemma). Let E be a real Hilbert space and let I ∈
C1(E, R) satisfy the Palais-Smale Condition at c ∈ R.

Then for all ε̄ > 0, there exists an ε ∈ (0, ε̄) and η ∈ C([0, 1]× E, E) such
that

(I1) η(0, u) = u for all u ∈ E.

(I2) η(t, u) = u for all t ∈ [0, 1] if I(u) 6∈ [c− ε̄, c + ε̄].

(I3) ||η(t, u)− u|| ≤ 1
4 for all t ∈ [0, 1], u ∈ E.

(I4) I(η(t, u)) ≤ I(u) for all t ∈ [0, 1] and u ∈ E.

(I5) If Kc := {u ∈ E|I(u) = c and ∇I(u) = 0} = ∅, η(1, Ac+ε) ⊂ Ac−ε

where Aζ := {x ∈ E|I(x) < ζ}.
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Proof: This proof is adapted from Rabinowitz (1984).
We claim there exist constants b, ε̂ > 0 such that

||V(u)|| ≥ b for all u ∈ Ac+ε̂ \ Ac−ε̂. (3.1)

If not, there are sequences bn → 0, ε̂n → 0, and un ∈ Ac+ε̂n \ Ac−ε̂n such
that ||V(un)|| < bn. Because I satisfies Palais-Smale at c, a subsequence of
un converges to some u ∈ Kc, which is empty. Thus, by contradiction, there
are constants b, ε̂ as in Equation 3.1.

Then as Equation 3.1 still holds with ε̂ reduced, assume

0 < ε̂ ≤ min(ε̄,
b2

8
,

1
16

). (3.2)

Take ε ∈ (0, ε̂).
Define

A = {u ∈ E; I(u) ≤ c− ε̂} ∪ {u ∈ E; I(u) ≥ c + ε̂}

and
B = {u ∈ E; c− ε ≤ I(u) ≤ c + ε}.

Therefore A ∩ B = ∅. Let

g(x) =
dist(x, A)

dist(x, A) + dist(x, B)
.

Then g = 0 on A, g = 1 on B, and 0 ≤ g ≤ 1. Define h(s) = 1 if s ∈ [0, 1]
and h(s) = 1

s otherwise.
Let V(x) : E → E be a locally Lipschitz continuous pseudogradient

vector field; one must exist by Lemma 11.
Set

W(x) = − g(x)h(||V(x)||)V(x)
4

. (3.3)

Note that W(x) is locally Lipschitz continuous, by construction.
Then define η : [0, 1]× E as

dη

dt
= W(η), and η(0, u) = u. (3.4)

The Picard-Lindelöf theorem implies that for each u ∈ E, Equation 3.4
has a unique solution defined for t in a maximal interval (t−(u), t+(u)). We
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claim t± = ±∞. Otherwise take tn → t+(u) with tn < t+(u). Integrating
Equation 3.4 shows

||η(tn+1, u)− η(tn, u)|| ≤ |tn+1 − tn|
4

, (3.5)

since W(·) ≤ 1
4 . Then η(tn, u) is a Cauchy sequence and hence converges

to some ū as tn → t+(u). Then the solution to Equation 3.4 with ū as initial
data furnishes a continuation of η(t, u) to values of t > t+, contradicting
the maximality of t+(u). Similarly, t− = −∞.

The continuous dependence of Equation 3.4 on u implies η ∈ C([0, 1]×
E, E) and the initial condition implies that (I1) holds. Also, as ε̂ < ε̄,

{u|I(u) < c− ε̄} ∪ {u|I(u) > c + ε̄} ⊂ A,

on which g(x) = 0. Thus (I2) holds.
Using W(·) ≤ 1

4 ,

||η(t, u)− u|| =||η(t, u)− η(0, u)||

=||
∫ t

0

dη

ds
ds||

≤ t
4
≤ 1

4

for all t ∈ [0, 1]. Thus (I3) holds.
To verify (I4), first note that if W(u) = 0, η(t, u) = u is the solution

of Equation 3.4 and by uniqueness (I4) is trivially satisfied. Otherwise, if
W(u) 6= 0, V(u) 6= 0 and because η(t, u) exists and is unique, V(η(t, u)) is
well defined. Then applying (V2),

dI(η(t, u))
dt

= −∇I(η(t, u)) · dη(t, u)
dt

= − < ∇I(η(t, u)),
g(η(t, u))h(||V(η(t, u))||)V(η(t, u))

4
>

≤ − g(η(t, u))h(||V(η(t, u))||)||∇I(η(t, u))||2
8

≤ 0,
(3.6)

which proves (I4).
Finally, to prove (I5), observe that if u ∈ Ac−ε then I(η(t, u)) < c − ε

by (I4). Thus we need only consider the case of u ∈ Y ≡ Ac+ε \ Ac−ε.
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Let u ∈ Y. Since g = 0 on Ac−ε̂, the orbit η(t, u) cannot enter Ac−ε̂; that
is, I(η(t, u)) ≥ c− ε̂ for all t ≥ 0. Then

I(η(0, u))− I(η(t, u)) ≤ ε + ε̂ ≤ 2ε̂ (3.7)

for all t ≥ 0.
Suppose by way of contradiction that η(t, u) does not enter Ac−ε for any

t ∈ [0, 1]. Then g(η(t, u)) = 1 for all t ∈ [0, 1].
If for t ∈ [0, 1], ||V(η(t, u))|| ≤ 1, then h(||V(η(t, u))||) = 1 and by

Equations 3.1 and 3.6,
dI(η(t, u))

dt
≤ −b2

4
. (3.8)

On the other hand, if for t ∈ [0, 1] ||V(η(t, u))|| > 1, then h(||V(η(t, u))||) =
||V(η(t, u))||−1, so Equation 3.6 implies

dI(η(t, u))
dt

= −||V(η(t, u))||
8

≤ −1
8

.

Thus for all t ∈ (0, 1), u ∈ Ac−ε \ Ac+ε,

dI(η(t, u))
dt

≤ −min(
b2

4
,

1
8
), (3.9)

and integrating this, together with Equation 3.7, gives

min(
b2

4
,

1
8
) ≤ I(η(0, u))− I(η(t, u)) ≤ 2ε̂, (3.10)

which contradicts Equation 3.2.
Thus η(1, u) ∈ Ac−ε. Thus 6. is proved and the proof is complete.

In preparation for our proof of the saddle point principle, we prove two
lemmas about compact functions.

Lemma 13. Let E be a real Hilbert space. Let K : [0, 1] × E → E be compact.
Then K1(v) =

∫ 1
0 K(t, v)dt is compact.

Proof. Consider a sequence {vn} that is bounded in E.
The compactness of K implies that for j = 1, 2, . . . , there exists a finite

dimensional subspace Zj with projection Pj : V → Zj such that for all t, vn,

K(t, vn) = Pj(K(t, vn)) + yn
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where ||yn|| < 1
2j and Zn ⊂ Zn+1.

Let {vn(1,k)} be a subsequence of {vn} such that
∫ 1

0 P1(K(t, vnk))dt con-
verges, and call this limit A1.

Inductively define {vn(j+1,k)} as a subsequence of {vn(j,k)} such that∫ 1
0 Pj+1(K(t, h(vn(j+1),k)))dt converges, and call this limit Aj+1.

For any Aj, projecting into Zj−1 shows

Aj = Aj−1 + Cj−1

for some ||Cj−1|| < 1
2j−1 .

Fix ε > 0. Then consider

||
∫ 1

0
Pk(K(t, vn(k,k)))− Pk+1(K(t, vn(k+1,k+1)))dt||

= ||
∫ 1

0
Pk(K(t, vn(k,k)))− Pk+1(K(t, vn(k+1,k+1)))dt

+
∫ 1

0
Pk(K(t, vn(k,k+1)))− Pk(K(t, vn(k,k+1)))dt||.

Choose N1 such that ||K(t, vn) − PN1(K(t, vn))|| ≤ 1
2N1
≤ ε

4 . Then for
k > N1,

||
∫ 1

0
Pk(K(t, vn(k,k)))− Pk(K(t, vn(k,k+1)))||

< ||
∫ 1

0
PN1(K(t, vn(N1,k)))− PN1(K(t, vn(N1,k+1)))||+

ε

4
.

(3.11)

And because vN1,k converges in ZN1 , there is N2 such that for k > N2,

||
∫ 1

0
PN1(K(t, vn(N1,k)))− PN1(K(t, vn(N1,k+1)))|| ≤

ε

4
. (3.12)

Then for k > max{N1, N2},

||
∫ 1

0
Pk(K(t, vn(k,k)))− Pk(K(t, vn(k,k+1)))|| ≤

ε

2
. (3.13)

Additionally, choose N2 sufficiently large such that for all k > N2,

||
∫ 1

0
Pk(K(t, vn(k,k+1)))− Pk+1(K(t, vn(k+1,k+1)))dt||

≤ ||
∫ 1

0
Ckdt|| < 1

2k <
ε

2
.

(3.14)
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Then taken together, Equation 3.13 and Equation 3.14 imply

||
∫ 1

0
Pk(K(t, vn(k,k)))− Pk+1(K(t, vn(k+1,k+1)))dt|| < ε,

and

{
∫ 1

0
Pk(K(t, vn(k,k))dt}

is thus a Cauchy sequence. Thus∫ 1

0
K(t, vn)dt

is compact.

Lemma 14. Let E be a real Hilbert space. Let M : E→ R be continuous and map
bounded sets onto bounded sets, and let K : E → E be compact. Then M(v)K(v)
is compact.

Proof. Consider a bounded sequence {vn} ⊂ E.
M(vn) and K(vn) are both bounded, thanks to the compactness of K, so

choose K > ||K(vn)|| andM > |M(vn)|.
There is some subsequence vnk such that M(vnk) converges to some M̄

and K(vnk) converges to some K̄.
Fix ε > 0 and take R such that for all k > R,

||∆(K)|| = ||K̄− K(vnk)|| <
ε

6 max{M,K}

and
||∆(M)|| = |M̄−M(vnk)| <

ε

6 max{M,K} .

Then for all k > R,

||M̄K̄−M(vnk)K(vnk)|| = ||(K(vnk) + ∆(K))(M(vnk) + ∆(M))−M(vnk)K(vnk)||
= ||M(vnk)∆(K) + ∆(M)K(vnk) + ∆(M)∆(K)||

<
ε

6
+

ε

6
+

ε

3
< ε.

Thus M(v)K(v) is compact.



Chapter 4

Proof of the Saddle Point
Principle

Proof. Assume I ∈ C1(E, R) satisfies the Palais-Smale Condition at c ∈ R.
Choose h ∈ Γ. Then for v ∈ D̄, Ph(v) = d(v)v + K(v), where d(v) >

δ > 0, K|∂D = 0, Ph|∂D = id, where K is compact. Note that K(v)
d(v) is likewise

compact, by Lemma 14.
Define

K̄ =

{
−K(v)

d(v) v ∈ D̄
0 otherwise.

(4.1)

K̄ is continuous and compact. Furthermore, taking r = max{||x|||x ∈
∂D}, K(x) = 0 when ||x|| = r. Then Corollary 10 implies that K̄ has a
fixed point z with ||z|| ≤ r. In fact, z ∈ D̄; if not, z = 0, which is in D̄. So
Ph(z) = 0 and h(z) = (id− P)(h(z)) ∈ U. Thus by hypothesis (S2),

sup
v∈D̄

I(h(v)) ≥ I(h(z)) ≥ β. (4.2)

By Equation 1.4, this implies that c ≥ β.
Let As = {u ∈ E|I(u) ≤ s} and Kc = {u ∈ E|I(u) = c and V(u) = 0}.
Suppose by way of contradiction that c is not a critical value of I, so that

Kc = ∅.
We invoke Lemma 12 with ε̂ = 1

2 (β− α) to obtain ε > 0 and η : [0, 1]×
E→ E satisfying properties (I1) through (I5).

Take h ∈ Γ such that

max
v∈D̄

I(h(v)) ≤ c + ε; (4.3)
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note that η(1, h(v)) ≤ c − ε, for all v ∈ D̄. But if η(1, h) ∈ Γ, then there
exists some v0 ∈ D̄ such that I(h(v0)) > c, by Equation 1.4.

Thus it suffices to show that η(1, h) ∈ Γ to establish a contradiction.
There are four conditions necessary and sufficient for η(1, h) ∈ Γ.
First, for v ∈ D̄, η(1, h(v)) ∈ C1(D̄, E), by Lemma 12.
Second, for {vn} ∈ D̄, {h(vn)} is bounded, and so too is {η(1, h(vn))}

by (I3).
Third, taking η(t, v) from Lemma 12,

η(t, h) = h−
∫ t

0
M(η(s, h))V(η(s, h))ds (4.4)

where

M(x) =
g(x)h(V(||x||))

4
. (4.5)

Recall that PV∇I = Pid + K0 for some compact K0.
Let us construct a pseudogradient V for∇I. Fix x ∈ Ẽ. Choose r ∈ (0, 1)

such that for all u satisfying ||u− x|| < r,

||Pu + K0(x)|| ≤ ||Pu + K0(u)||+ ||K0(u)− K0(x)||
< 2||Pu + K0(u)||+ ||K0(u)− K0(x)||
< 2||∇I(u)||,

(4.6)

and

< Pu + K0(u), Pu + K0(x) > = ||Pu + K0(u)||2+ < Pu + K0(u), K0(x)− K0(u) >

> ||Pu + K0(u)||2 −
1
2
||Pu + K0(u)||2

=
1
2
||∇I(u)||2.

(4.7)
Note that we make use of ||∇I(u)|| > 0.

Note also that any convex combination of vectors satisfying (V1) and (V2)
also satisfies both conditions.

We can choose neighborhoods in E on which (V1) and (V2) are satisfied.
Call this covering {Nu}.

Consider a locally finite refinement {Mj}. Let ρj(x) be the distance from
x to the complement of Mj. As x is in only finitely many of Mj, ∑k ρk(x) is
finite.

Let β j =
ρj(x)

∑k ρk(x) , and define

V = ∑
j
(β j(u))(Pu + K0(xj)). (4.8)
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This still satisfies (V1) and (V2). Furthermore,

∑
j
(β j(u))(Pu) = Pu.

As for the remaining, it is the finite sum of a bounded, continuous,
scalar-valued function with a compact function, and by Lemma 14, is itself
compact. Thus V(u) is locally Lipschitz continuous, satisfies (V1) and (V2),
and

V(u) = Pu + K1(u) (4.9)

for some compact function K1.
Then applying the definition of η(s, w) from Equation 3.4 with this choice

of pseudogradient,

P(η(1, h(v))) = P[h(v)−
∫ 1

0
M(η(s1, h(v)))V(η(s1, h(v)))ds1]

= P(h(v))−
∫ 1

0
M(η(s1, h(v)))PV(η(s1, h(v)))ds1.

This can be expanded inductively.
Applying Equation 4.9 to expand P(V(·)),

n−1

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))[P(h(v))

+ K1(η(sk, h(v)))]dsk . . . ds1

+(−1)n
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sn−1

0
M(η(sn, h(v)))PV(η(sn, h(v)))dsn . . . ds1

=
n−1

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))(P(h(v))

+ K1(η(sk, h(v)))dsk . . . ds1

+(−1)n
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sn−1

0
M(η(sn, h(v)))(P(η(sn, h(v)))

+ K1(η(sn, h(v))))dsn . . . ds1.
(4.10)
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Applying Equation 3.4 to expand η(s, h(v)), this becomes

n−1

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))(P(h(v))

+ K1(η(sk, h(v)))dsk . . . ds1

+(−1)n
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sn−1

0
M(η(sn, h(v)))(P(h(v))

+ K1(η(sn, h(v))))dsn . . . ds1

−(−1)n
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sn−1

0
M(η(sn, h(v)))∫ sn

0
M(η(sn+1, h(v)))P(V(η(sn+1, h(v))dsn+1 . . . ds1

=
n

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))(P(h(v))

+ K1(η(sk, h(v)))dsk . . . ds1

+(−1)n+1
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sn

0
M(η(sn+1, h(v)))

PV(η(sn+1, h(v)))dsn+1 . . . ds1.
(4.11)

Since

P(η(1, h(v))) = P(h(v)) +
0

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−2

0
M(η(sk−1, h(v)))(P(h(v)) + K1(η(sk−1, h(v)))dsk−1 . . . ds1

+ (−1)1
∫ 1

0
M(η(s1, h(v)))PV(η(s1, h(v)))ds1,

we have

P(η(1, h(v))) =P(h(v)) +
N

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(sk, h(v)))(P(h(v)) + K1(η(sk, h(v))))dsk . . . ds1

+ (−1)N+1
∫ 1

0
M(η(s1, h(v))) · · ·∫ sN

0
M(η(sN+1, h(v)))V(η(sN+1, h(v)))dsN+1 . . . ds1,
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for all N ∈ Z+. This last term decays to 0 at least exponentially as N → ∞,
so

P(η(1, h(v))) = P(h(v)) +
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(sk, h(v)))(P(h(v)) + K1(η(sk, h(v))))dsk . . . ds1,

which may be rewritten as

P(η(1, h(v))) = P(h(v))(1 +
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(sk, h(v)))dsk . . . ds1)

+
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(sk, h(v)))K1(η(sk, h(v)))dsk . . . ds1.

(4.12)

Let

B(v) = P(h(v))(1 +
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(sk, h(v)))dsk . . . ds1)

(4.13)

and

C(v) =
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v))) · · ·∫ sk−1

0
M(η(s1, h(v)))K1(η(sk, h(v)))dsk . . . ds1.

(4.14)

Now define d̂ ∈ C(D̄, R) as

d̂(h(v)) = 1 +
∞

∑
k=1

(−1)k
∫ 1

0
M(η(s1, h(v)))

· · ·
∫ sk−1

0
M(η(sk, h(v)))dsk . . . ds1)

≥ 1−
∞

∑
k=1

(
1
4
)k

=
2
3

,

(4.15)
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and note that

B(v) = P(h(v))d̂(h(v)) = d(v)d̂(v)v + d̂(v)K(v). (4.16)

Now consider C(v). Note that D̄ is bounded. Let vn be a subset of
D̄. Then also h(vn) is bounded, by the definition of Γ. Then η(t, h(vn)) is
bounded, by Property (I3). By repeated application of Lemmas 14 and 13,∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))K1(η(sk, h(v)))dsk . . . ds1

is compact.
Fix ε > 0, and consider ||C(vn)− C(vm)||. Choose N3 such that

||
∞

∑
k=N3

(∫ 1

0
M(η(s1, h(vn)))

· · ·
∫ sk−1

0
M(η(sk, h(vn)))K1(η(sk, h(vn)))dsk . . . ds1

−
∫ 1

0
M(η(s1, h(vm))) · · ·∫ sk−1

0
M(η(sk, h(vm)))K1(η(sk, h(vm)))dsk . . . ds1

)
|| < ε

2
.

regardless of vn, vm. Then choose a subsequence of {vn} such that for all
k ≤ N3,

||
∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))K1(η(sk, h(v)))dsk . . . ds1−∫ 1

0
M(η(s1, h(v))) · · ·

∫ sk−1

0
M(η(sk, h(v)))K1(η(sk, h(v)))dsk . . . ds1|| <

ε

2N3
.

Then ||C(vn)− C(vm)|| ≤ ε, and thus C(v) is compact.
Then

P(η(1, h)(v)) = d(v)d̂(v)v + d̂(v)K1(v) + C(v), (4.17)

where d(v)d̂(v) ≥ 2δ
3 ≥ 0 and d̂(v)K1(v) + C(v), is compact.

Finally, for v ∈ ∂D, I(h(v + φ(v))) ≤ α < α + ε̂ ≤ β − ε̂ ≤ c − ε̂,
and so by Lemma 12, η(1, h(v + φ(v))) = h(v + φ(v)). Thus P(η(1, h(v +
φ(v)))) = P(h(v + φ(v))) = v + K(v + φ(v)) = v on ∂D.

Thus η(1, h) ∈ Γ.
Recall that h was chosen with supv∈D̄ h(v) ≤ c + ε, so the contradiction

is established. Provided I satisfies (ps) at c, then c is a critical value of I.
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Suppose I does not satisfy (PS) at c. Then there exists some {wn} ∈ E
such that I(wn)→ c and I′(wn)→ 0.

This completes the proof.





Chapter 5

Application

We now apply the preceding theorem to show that the semilinear wave
equation given in Equation 1.1 subject to Equation 1.2 has weak solution
for p in a dense subset of L2(Ω), Ω = (0, 2π)× (0, π).

Lemma 15. Let H, U, and V be defined as in 2. The operator K : H → V defined
by

< K(u), v >=
∫

Ω
(g(u) + p)vdxdt

is compact.

Proof. Consider a bounded sequence {wn} ⊂ L2 with

g(wn) = ∑
k,j

nak,jφk,j + nbk,jψk,j.

Let
v = ∑

k,j
αk,jφk,j + βk,jψk,j

be in V, and thus αk,j = βk,j = 0 for all k2 − j2 ≤ 1.
Let {wk} ⊂ H. Then for all n, m ∈ Z+,

||
∫ 2π

0

∫ π

0
(g(wn) + p)vdxdt−

∫ 2π

0

∫ π

0
(g(wm) + p)vdxdt||

= ||
∫ 2π

0

∫ π

0
(g(wn)− g(wm))vdxdt||

= ||( ∑
k2−j2>0

(nak,j − mak,j)αk,j + (nbk,j − mbk,j)βk,j||

= ||( ∑
k2−j2>0

(nak,j − mak,j)αk,j + ∑
k2−j2>0

(nbk,j − mbk,j)βk,j||
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≤ ||( ∑
k2−j2>0

nak,j − mak,j√
k2 − j2

αk,j

√
k2 − j2

+ ∑
k2−j2>0

nbk,j − mbk,j√
k2 − j2

βk,j

√
k2 − j2||

≤ (||( ∑
k2−j2>0

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

α2
k,j(k

2 − j2))
1
2

+ ( ∑
k2−j2>0

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

β2
k,j(k

2 − j2))
1
2 )||.

As H is a Hilbert space and {g(wn)} bounded, g(wn) + p has a weakly
convergent subsequence. Thus individually, the components nak,j, nbk,j con-
verge strongly. Thus for any finite N, there exist n, m ∈ Z+ such that

||( ∑
N>k2−j2>0

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

α2
k,j(k

2 − j2))
1
2

+ ( ∑
N>k2−j2>0

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

β2
k,j(k

2 − j2))
1
2 )||

≤ ε

2

Choose N such that ||v|| ||g(wn)−g(wm)||√
N

< ε
2 , for all n, m ∈ Z+. Then

||( ∑
k2−j2≥N

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2≥N
α2

k,j(k
2 − j2))

1
2

+ ( ∑
k2−j2≥N

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2≥N
β2

k,j(k
2 − j2))

1
2 )||

≤ (||( ∑
k2−j2≥N

(nak,j − mak,j)
2

N
)

1
2 ( ∑

k2−j2≥N
α2

k,j(k
2 − j2))

1
2

+ ( ∑
k2−j2≥N

(nbk,j − mbk,j)
2

N
)

1
2 ( ∑

k2−j2≥N
β2

k,j(k
2 − j2))

1
2 )||

≤ ||v|| ||g(wn)− g(wm)||√
N

<
ε

2
.
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So in total,∫ 2π

0

∫ π

0
(g(wn) + p− g(wm)− p)vdxdt

≤ (( ∑
k2−j2>0

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

α2
k,j(k

2 − j2))
1
2

+ ( ∑
k2−j2>0

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

β2
k,j(k

2 − j2))
1
2 )

≤ (( ∑
N>k2−j2>0

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

α2
k,j(k

2 − j2))
1
2

+ ∑
N>k2−j2>0

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

β2
k,j(k

2 − j2))
1
2 )

+ ( ∑
k2−j2≥N

(nak,j − mak,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

α2
k,j(k

2 − j2))
1
2

+ ( ∑
k2−j2≥N

(nbk,j − mbk,j)
2

k2 − j2
)

1
2 ( ∑

k2−j2>0

β2
k,j(k

2 − j2))
1
2 )

≤ ε.

Thus
∫ 2π

0

∫ π
0 (g(wn) + p)vdxdt is a Cauchy sequence, and the operator

K is compact.

Thus ∇I(w) = Pid + K, where K is compact.

Lemma 16. For u ∈ U, J(u) has an upper bound.

Proof. Let φk,j and θk,j be as in Equation 1. Consider u = ∑k,j ak,jφk,j +
bk,jθk,j ∈ U.

Introduce
||u||2∗ := ∑

k,j
(a2

k,j + b2
k,j)(|λk,j|).
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Then

J(u) =
B(u, u)

2
−
∫ 2π

0

∫ π

0
(G(u)pu)dxdt

= ∑
k,j

λk,j(a2
k,j + b2

k,j)

2
−
∫ 2π

0

∫ π

0
(G(u) + pu)dxdt

≤∑
k,j

λk,j(a2
k,j + b2

k,j)

2
−
∫ 2π

0

∫ π

0
(

a0u2

2
− C + pu)dxdt

≤∑
k,j

(λk,j − a0)(a2
k,j + b2

k,j)

2
+ 2Cπ2 + ||p||L2 || − u||L2 .

Let u = u1 + u2 where u1 is in the closure of the span of eigenfunctions
with λk,j ≤ 0, and u2 is in the closure of the span of eigenfunctions with
0 < λk,j ≤ 1. Then

J(u) ≤ 1
2
(−||u1||2∗ + ||u2||2∗ − a0||u||2L2) + 2Cπ2 + ||p||L2 ||u||1,2

≤ 1
2
(−||u1||2∗ − (a0 − 1)||u||2L2) + 2Cπ2 + ||p||L2 ||u||1,2

≤ 1
2
(−min(a− 1, 1)||u||21,2) + 2Cπ2 + ||p||L2 ||u||1,2,

and thus J(u) is bounded above on U.

Lemma 17. For all a ∈ (1, 3) and b ∈ (a, b1(a)), there exists ra,b : V → U
which maximizes the functional Ja,b(v + ra,b(v)) on V.

J(v + ra,b(v))→ ∞ as ||v||1,2 → ∞.

Proof. The existence of ra,b is established in Corollary 6.
For all v ∈ V,

J(v + ra,b(v)) =
1
2

B(ra,b(v) + v, ra,b(v) + v)

−
∫ 2π

0

∫ π

0

a(ra,b(v) + v)2
+ + b(ra,b(v) + v)2

−
2

+ G(v + ra,b(v)) + (v + ra,b(v))p

− a(ra,b(v) + v)2
+ + b(ra,b(v) + v)2

−
2

dxdt

≥ Ja,b(v + ra,b(v))− 2π2C− ||v + ra,b(v)||2||p||2.
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Note that ra,b(λv) = λra,b(v), and Ja,b(λv+ ra,b(λv)) = λ2 Ja,b(v+ ra,b(v)).
Thus

J(v + ra,b(v)) ≥ ||v||2 Ja,b(
v
||v|| + ra,b(

v
||v|| ))− 2π2C

− ||v||||p|| − ||v||||ra,b(
v
||v|| )||||p||.

Because Ja,b(
v
||v|| + ra,b(

v
||v|| )) ≥ 0, J(v + ra,b(v))→ ∞ as ||v|| → ∞.

Proof of Theorem 4

By Lemma 17, there is some constant β such that −J(u) > β on U. Choose
α < β. We can choose a neighborhood D of 0 in U such that −J(v +
ra,b(v)) ≤ α on ∂D.

Theorem 1 applied to−J(u+ v) shows that either−J has a critical value
c, or there exists some sequence {wn} ∈ E with −J(wn)→ c, ∇− J(wn)→
0.

Consider p ∈ L2.
If −J has a critical value c, Equation 1.1 subject to Equation 1.2 has a

weak solution, and we are done.
Otherwise, choose wn such that Jp(wn)→ −c and ∇J(wn)→ 0.

< ∇J(wn), v > = B(wn, v)−
∫ 2π

0

∫ π

0
v(g(wn) + p)

=< yn, v >1 + < zn, v >L2

(5.1)

for some yn, zn which converge to 0 in H and L2, respectively, zn being an
element of the null space of � subject to Equation 1.2, and therefore only
converging in L2(Ω). Note that zn ∈ U.

Let yn = ∑k,j ak,jφk,j + bk,jψk,j, let âk,j = sign(λk, j)ak,j, and b̂k,j = sign(λk, j)bk,j,
and define

ŷn = ∑
k,j

âk,jφk,j + b̂k,jψk,j

so that B(ŷ, v) =< yn, v >1.
Then rearranging Equation 5.1,

0 = B(wn − ŷn, v)−
∫ 2π

0

∫ π

0
v(g(wn) + p + zn)

= B(wn − ŷn, v)−
∫ 2π

0

∫ π

0
v(g(wn)− g(wn − ŷn) + g(wn − ŷn) + p + zn)
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Since g(wn) is Lipschitz continuous, there exists K such that |g(wn) −
g(wn + ŷn)| ≤ K||ŷn|| → 0 in L2. So a solution (namely, wn − ŷn) exists for

∂ttu− ∂xxu = g(u) + p + zn + (g(wn − ŷn)− g(wn)), (5.2)

and
p + zn + (g(wn + ŷn)− g(wn))

converges to p in L2.
Thus the set of p for which Equation 1.1 subject to Equation 1.2 has a

weak solution is dense in L2.



Bibliography

Castro, Alfonso. 1994. Non Linear Functional Analysis. Universidad Na-
cional de Colombia Sede Medellín.

Castro, Alfonso, and Chen Chang. 2010. A variational characterization of
the Fucik spectrum and applications. Revista Colombiana de Matemáticas 44.

Evans, Lawrence. 2010. Partial Differential Equations. American Mathemat-
ical Society.

Hoffer, Helmut. 1982. On the range of a wave operator with nonmonotone
nonlinearity. Mathematische Nachrichten 106.

Rabinowitz, Paul. 1984. Minmax Methods in Critical Point Theory with Ap-
plications to Differential Equations. Conference Board of the Mathematical
Sciences.

Willem, Michel. 1981. Density of the range of potential operators. Proceed-
ings of the American Mathematical Society 83.

Zeidler, Eberhard. 1985. Nonlinear Functional Analysis and its Applications,
I : Fixed Point Theorems. Springer-Verlag.


	Abstract
	Introduction
	Preliminaries
	Lp spaces
	Sobolev Space
	Fucik Spectrum
	Schauder Fixed Point Theorem
	Palais-Smale Condition

	Proof of the Deformation Lemma
	Proof of the Saddle Point Principle
	Application
	Bibliography

