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Abstract

The Aldous order is an ordering of representations of the symmetric group
motivated by the Aldous conjecture, a conjecture about random processes
proved in 2009. In general, the Aldous order is very difficult to compute,
and the proper relations have yet to be determined even for small cases.
However, by restricting the problem down to Young–Jucys–Murphy ele-
ments, the problem becomes explicitly combinatorial. This approach has
led to many novel insights, whose proofs are simple and elegant. How-
ever, there remain many open questions related to the Aldous order, both
in general and for the Young–Jucys–Murphy elements.
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Part I

Background Material





Chapter 1

Representation Theory of
Finite Groups

The Aldous order is almost entirely dependent on the machinery of repre-
sentation theory in general, and in particular that of the symmetric groups.
While we assume an acquaintance with the basic properties of groups and
rings as may be found in an introductory abstract algebra course, this part
seeks to provide an introduction to the more complicated machinery nec-
essary to understand and manipulate the Aldous order. This chapter pro-
vides an introduction to general representation theory, giving basic defini-
tions of the group algebra, representations, and irreducibility. This chapter
seeks to give a brief introduction to the relevant aspects of the topic. A
more comprehensive treatment can be found in James and Liebeck (2001).

1.1 The Group Algebra

Before proceeding to representations, it is important to be familiar with the
group algebra of a finite group G over some field F. The group algebra is
defined as follows.

Definition 1.1 (Group Algebra). For a finite group G and a field F, the
group algebra FG is constructed by defining addition and multiplication
on finite formal linear combinations ∑k

i=1 cigi, with ci ∈ F, gi ∈ G. Addition
is given componentwise, with the elements of G serving as a basis, while
multiplication is extended from the multiplications of F and G.

Throughout, we will restrict our field to the complex numbers C, de-
noting the group algebra of a group G over the complex numbers as CG.
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Then, note that, as a vector space, CG is isomorphic to Cn, where n = |G|.
Representation theory is fundamentally concerned with using linear alge-
bra to investigate CG in order to discover new insights into the structure of
G.

1.2 Modules

In order to define a representation, we must first recall the definition of an
R-module.

Definition 1.2 (R-Module). For a ring R, an R-Module M is an abelian
group (M,+) along with an operation R×M→ M such that for all r, s ∈ R,
x, y ∈ M,

(i) r(x + y) = rx + ry

(ii) (r + s)x = rx + sx

(iii) (rs)x = r(sx)

(iv) 1Rx = x if R has multiplicative identity 1R.

Modules are a generalization of vector spaces, and as such any vector
space V over a field F is also an F-module. Additionally, any abelian ring
R will be an R-module over itself, with the module action given by the
original ring multiplication. Thus, CG will always be a CG-module.

As with any algebraic structure, there is the natural definition of sub-
module, as a subgroup of M which is closed under multiplication of R. This
leads to a natural definition of an irreducible module.

Definition 1.3 (Irreducible Module). An R-module M is said to be irre-
ducible if it contains no proper nontrivial submodules. That is, the module
is irreducible if the only submodules are {0} and M.

Depending on the ring, it is often possible to decompose an R-module
into the direct sum of several irreducible modules. This turns out to be the
case for CG-modules, and is fundamental to much of representation theory.

Additionally, CG-modules arise naturally from group actions on vector
spaces.

Lemma 1.1. If G is a finite group, M is a vector space over C and there exists some
group action G×M→ M such that G acts linearly on M, then there is a natural
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construction of M as a CG-module. This construction is given by extending the
action of G in the following manner:

(
k

∑
i=1

cigi)(m) = ∑
i=1

ci(gim).

In performing this construction, we are able to translate a map (the
group action), into an algebraic structure (the CG-module).

1.3 Representations of a Finite Group

Recall that for the complex numbers C, GL(n, C) is the group of invertible
linear transformations on Cn (equivalently, the group of invertible n × n
matrices). Then, we can finally define a representation as follows:

Definition 1.4 (Representation). A complex representation of a finite group G
is a group homomorphism ρ : G → GL(n, C) for some n.

General representations can be constructed over any field, but we will
restrict our focus to complex representations, which will hereafter be ref-
ered to merely as representations.

While this is a straightforward definition, representations are seldom
analyzed solely at the level of groups. Instead, representations will fre-
quently refer jointly to the following four algebraic structures:

(i) The group homomorphism ρg : G → GL(C, F) given in Definition 1.4.

(ii) The ring homomorphism ρr : CG → Cn×n given by extending the
map ρg to an algebra homomorphism.

(iii) The group action ρa : G×Cn → Cn given by ρa(g, v) = ρg(g)v under
usual vector-matrix multiplication.

(iv) the CG-module Cn constructed by extending the group action ρa as in
Lemma 1.1.

Throughout representation theory, it is common practice to conflate these
four objects. Note that any one can be derived readily and uniquely from
the others, mainly by appropriate restriction or extension of the proper
maps. As such, we will do without the subscripts on ρg, ρr, and ρa and
instead use ρ throughout. In general, which is actually being used does not
matter, and when it does, context should make it apparent.

As with most algebraic structures, there is a notion of equivalence be-
tween representions.
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Definition 1.5 (Equivalent Representations). For a finite group G and rep-
resentations ρ : G → GL(n, C), σ : G → GL(m, C), ρ and σ are equivalent if
n = m and there exists some T ∈ GL(n, C) such that for all g ∈ G

σg = T(ρg)T−1.

In other words, two representations are equivalent if σg and ρg are sim-
ilar under the same matrix T for all g ∈ G. As expected, such a T induces a
CG-module isomorphism between the two CG-modules given by ρ and σ.
Thus, two representations are equivalent if their modules are isomorphic.
Additionally, as implied by the name, equivalence between representations
is an equivalence relation.

Analogous to how vector spaces or groups may be summed together,
we can define the direct sum of a representation.

Definition 1.6 (Direct Sum of a Representation). If ρ and σ are representa-
tions of G of degree n and m, then ρ⊕ σ is a representation of G of degree
n + m given by

(ρ⊕ σ)(g) = ρ(g)⊕ σ(g) =
(

ρ(g) 0
0 σ(g)

)
.

Next, in analogy to irreducible modules, an irreducible representation
is defined as follows.

Definition 1.7 (Irreducible Representation). A representation ρ of σ is irre-
ducible if the corresponding CG module is irreducible.

This then gives us the machinery to state the main results from general
representation theory which will later be useful:

Theorem 1.1 (Irreducible Representations). For any finite group G, any (com-
plex) representation of G over is the direct sum of irreducible representations.
Moreover, this decomposition is unique up to isomorphism. Additionally, up to
isomorphism, the number of distinct irreducible representations of G is equal to
the number of conjugacy classes of G.

Because of this theorem, in order to gain an understanding of the rep-
resentation theory of a specific group, it is usually sufficient to describe the
finite number of distinct irreducible representations. Because of the special
symmetries inherent in the symmetric group, the irreducible representa-
tions of Sn possess remarkable structure, which is detailed in Chapter 2.



Chapter 2

Representation Theory of the
Symmetric Groups

The symmetric groups Sn are one of the most important groups in math-
ematics, appearing in a wide variety of contexts and with a large array of
applications. Understanding the representations of Sn can lead to new in-
sights in the structure of the group. Additionally, the representation theory
of the symmetric groups yields much beautiful mathematics and is fasci-
nating in its own respect. In this chapter we seek to give an overview of
those aspects of the representation theory of the symmetric groups which
will be used in Parts II and III. For those interested in a more in depth treat-
ment, Chapters 1–3 of Ceccherini-Silberstein et al. (2010) cover these topics
extensively.

2.1 Partitions

Much of the representation theory of symmetric groups is combinatorial in
nature, with algebraic structures frequently corresponding to combinato-
rial objects. The most basic of these objects are partitions and set partitions.

Definition 2.1 (Partition). A partition σ of an integer n, frequently writ-
ten σ a n, is a multiset of positive integers σ = [σ1, σ2, . . . , σk] such that
∑k

i=1 σi = n. Alternately, one may view a partition as a sequence of integers
which is either nonincreasing or nondecreasing. We will assume through-
out that the sequence is nonincreasing.

Definition 2.2 (Set Partition). A set partition of size n is a disjoint collection
{Si} of nonempty subsets of [n] = {1, 2, . . . , n} such that ∪Si = [n]. Each
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set partition corresponds to an equivalence relation on [n], and the number
of set partitions [n] is given by the nth Bell number, Bn. The partition of
a set partition is given by the sequence [|S1|, |S2|, . . . , |Sk|], in decreasing
order.

Definition 2.3 (Ordered Set Partition). An ordered set partition consists of
a set partition with an order on the sets {Si}, subject to the constraint that
|Si| ≥ |Si+1|. Two ordered set partitions are distinct if the sets are of in a
different order, even if the collection of sets is the same

Example 2.1. The set partitions of [3] are given by

{(123)}
{(12), (3)}
{(13), (2)}
{(23), (1)}
{(1), (2), (3)}

while the partitions are [3], [2, 1], and [1, 1, 1]. The ordered set partitions of
[3] are the same as the unordered set partitions. However, for n > 3, this is
not the case. For example {(12), (34)} and {(34), (12)} are distinct ordered
set partitions, but have the same unorderd set partition.

Now, recall that each conjugacy class of Sn consists of all elements with
the same cycle structure. Then, there is a natural correspondence between
the conjugacy classes of Sn and partitions of n.

Lemma 2.1. There exists a bijection between the conjugacy classes of Sn and the
partitions of n given as follows: Each element of π ∈ Sn has a corresponding set
partition, given by the cycles of π. Then, each conjugacy class of Sn consists of all
elements of Sn whose set partitions have a given partition.

Therefore, because of Theorem 1.1, this implies that the number of irre-
ducible representations of Sn is equal to the number of partitions. In fact,
there is a natural identification of the irreducible representations of Sn with
the partitions of n. A full explanation of this approach to the symmetric
groups’ representation theory can be found in Ceccherini-Silberstein et al.
(2010). For our purposes, it will suffice to describe several of the combina-
torial and algebraic objects related to the irreducible representations which
will be useful in analyzing the Aldous Order. Depending on the context,
the irreducible representation will be denoted by either ρ or, in some cases,
Sρ.
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2.2 Young Diagrams and Standard Young Tableaux

There is a standard diagramatic way of displaying a partition, known as a
Young diagram.

Definition 2.4 (Young Diagram). For a partition σ a n where σ = [σ1, σ2, . . . , σk]
and σi ≥ σi+1, the corresponding Young Diagram is formed using squares
by placing σi squares in the ith column, with each row left justified.

For example the partitions of 5 are given by

[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1],

and the corresponding Young diagrams are

, , , , , , .

Initially, the Young diagrams may seem to offer no advantages over
merely listing the elements of the partition. However, the geometric prop-
erties of the Young diagram prove to be crucial to cleanly stating many
of the most powerful statements about the symmetric groups’ represen-
tations. Without the diagrams, the statements would be complicated and
opaque. For instance, the transpose of a partition, an involution on the set
of partitions, is most easily defined as follows, using the Young diagrams.

Definition 2.5 (Transpose of a Partition or Young Diagram). The transpose
of a Young diagram is attained by reflecting the diagram over the standard
diagonal; that is, the y = −x line.

The transpose of a partition is the partition corresponding to the trans-
pose of its Young diagram. Alternately, the kth largest element of the trans-
pose is the number of elements of the original partition of size k or greater.

The transpose of a partition ρ a n is denoted by ρ′.

The transpose could also be defined arithmetically, where (ρ′)k is the
number of elements of ρ of length at least k.

2.3 Standard Young Tableaux

The standard Young tableaux of a Young diagram are defined as follows
and are fundamental to the representation corresponding to that diagram.
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Definition 2.6 (Standard Young Tableaux (SYT)). Given a partition σ a n
and its associated Young diagram, a standard Young Tableau (SYT) is con-
structed by placing each numbers 1 through n inclusive in one of the boxes
of the diagram such that the numbers are increasing from left to right and
top to bottom.

For example, the valid SYT of the partition ρ = [3, 2] are given by

1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

.

The definition of SYT may initially appear arbitrary. To motivate the
definition, note that each tableau can be associated with a unique way to
build the associated Young diagram from smaller diagrams. For instance,
the tableau 1 2 4

3 5
gives the path

→ → → → .

Alternately, this can be viewed as a path of SYT:

1 → 1 2 → 1 2
3
→ 1 2 4

3
→ 1 2 4

3 5
.

As such, it is common to construct the SYT recursively.
As we will see, the position of the particular numbers have a particular

importance with the algebraic meaning of the SYT. Of particular impor-
tance is the content of a SYT.

Definition 2.7 (Content of a SYT). Consider a partition σ a n. Then, for
some SYT T of σ, the content of T, written C(T), is the vector C(T) =
(a1, a2, . . . , an), where ak = ck − rk. Here, ck, rk denote the row and column
of the box in T containing k. Rows are counted top to bottom, columns left
to right.

Often, when the SYT is understood, we will refer to ak as the “content
of k”. Alternately, for Young diagrams, the content of a box will refer to the
column minus the row for the box in question.

Example 2.2. the SYT 1 2 4
3 5

has content C(T) = (0, 1,−1, 2, 0), and the

content of 3 is −1. In a similar vein the upper-rightmost box of [3, 2] will
have content 2.



The Irreducible Representations of Sn 11

2.4 The Irreducible Representations of Sn

As has been mentioned in Section 2.1, the irreducible representations of Sn
can be placed into a correspondence with the partitions of Sn. The follow-
ing theorem further explicates this correspondence.

Theorem 2.1 (Partitions and Irreducible Representations of Sn). For every
partition σ a n, there exists an irreducible representation of Sn, which has dimen-
sion equal to the number of unique SYTs of σ. Moreover, the representations can
be realized by viewing Sn as acting on linear combinations of the SYTs of σ, with
the action defined based on properties of the SYT. More details can be found in
Section 3.4 of Ceccherini-Silberstein et al. (2010).

(Note: Throughout, σ will be used to indicate the partition, the Young
diagram, and the representation. Which meaning is intended should be
clear by context.)

The particulars of realizing the representation ρ prove unimportant for
this thesis, but for explicit computation it is useful to note that it is pos-
sible to realize the representation within the rationals. The action is more
complicated than simply permuting the elements of the SYT. For those
interested, consult Ceccherini-Silberstein et al. (2010).

Instead of explicitly computing the representations, much of our focus
has been on interactions with the following elements of the group algebra
CSn:

Definition 2.8 (Young–Jucys–Murphy Elements (YJM)). The Young–Jucys–
Murphy (YJM) elements are given by

χk = ∑
i<k

(i k).

Thus,
χ2 = (12), χ3 = (13) + (23).

That is, χk is the sum of the transpositions of k with every positive integer
less than k.

Our interest in the YJM stems primarily from the following theorem:

Theorem 2.2 (Young–Jucys–Murphy Elements Acting on Standard Young
Tableaux). Consider a partition σ a n and its corresponding irreducible represen-
tation of Sn. Then, this representation may be realized with Tσ = {T1, T2, . . . , Tm},
the SYT of σ, as a basis. Moreover, if the content of Tk is given by C(Tk) =
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(a1, a2, . . . , an), then Tk is an eigenvector of σ(χj) for any j, with eigenvalue aj.
That is,

σ(χj)Tk = ajTk.

Thus, Tσ forms an eigenbasis for all of the YJM elements.

This theorem lies at the heart of the Okounkov-Vershik approach, which
is detailed in Chapter 3 of Ceccherini-Silberstein et al. (2010).

2.5 The Trivial and Alternating Representations

In general, we will ignore the specific details of the various representa-
tions. However, it will prove useful to be acquainted with the two one-
dimensional representations of Sn, the trivial and alternating representa-
tions.

Definition 2.9 (The Trivial and Alternating Representations). There exist
two 1-dimensional representations of Sn, the trivial and alternating repre-
sentations. The trivial representation is given by the map g 7→ 1 for all Sn
(every group has a trivial representation). The trivial representation corre-
sponds to the partition [n], and thus has a Young diagram consisting of a
single row.

The alternating representation is given by the map g→ sgn(g), the sign
of g. The sign of g is 1 if g is an even permutation, and −1 if g is odd. The
alternating representation corresponds to the partition [1n], and thus has a
Young diagram consisting of a single column.

2.6 Lexicographic and Dominance Orders

As we will see in Part II, the Aldous order defines a novel order on the
irreducible representations of Sn, and thus on the partitions on n. How-
ever, there are already several well-established partial orders on partitions
of which we should be aware, namely the lexicographic and dominance or-
ders. The lexicographic order is straightforward and should be familiar to
anyone who has experience with partial orders.

Definition 2.10 (Lexicographic Order). Let σ, ρ a be two partitions, with
σ = [σ1, σ2, . . . , σs], ρ = [ρ1, ρ2, . . . , ρr]. Then, assuming that σ 6= ρ, then
there is some first i such that σi 6= ρi. If σi < ρi, then σ < ρ in the dominance
order, while if σi > ρi, then σ > ρ. This lexicographic is the same as the one



Lexicographic and Dominance Orders 13

constructed constructed on general sequences of integer sequences, then
restricted to partitions of n.

As can be seen by the definition, the lexicographic order is a total order.
The next order, the dominance order, is a suborder of the lexicographic and
is fundamental to the representations of Sn.

Definition 2.11 (Dominance Order). Let ρ = [ρ1, . . . , ρr] and σ = [σ1, . . . , σs]
be two partitions of n, written in nonincreasing order. Then, ρ precedes σ
in the dominance order (written ρ E σ) if s ≤ r and

m

∑
i=1

ρi ≤
m

∑
i=1

σi,

for all m = 1, 2, . . . , s.

The dominance order plays a crucial role in many of the theorems of
the representation theory of symmetric groups, such as characterizing the
Young Modules (see Ceccherini-Silberstein et al. (2010)). For our purposes,
it will prove useful to have several equivalent definitions for the dominance
order. First, we need the idea of a box-up move.

Definition 2.12 (Box-up Move). Given a Young diagram for some partition
σ a n, a box-up move on the diagram consists of moving a box from the
end of one row and placing it on the end of another, higher row.

For example, for the partition [3, 2, 1] there are three possible box-up
moves, producing the three Young diagrams shown.

→ , , .

Then, the next diagram gives the different definitions of the dominance
order which will be useful.

Theorem 2.3 (Dominance Order Characterizations). Let σ = [σ1, . . . , σs] and
σ = [ρ1, . . . , ρr] be partitions of n. Then, the following are equivalent:

(i) σ E ρ.

(ii) For all k ≤ s,
s

∑
i=k

σi ≥
r

∑
i=k

ρi.
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(iii) The Young diagram of ρ can be attained from σ by some sequence of box-up
moves.

(iv) σ′ D ρ′.

The proofs of this are rather straightforward, and can be found in Sec-
tion 3.6 of Ceccherini-Silberstein et al. (2010).

2.7 Young Modules

In addition to its corresponding irreducible representation, each partition
corresponds naturally to a Young module.

Definition 2.13 (Young Module of a Partition). For a partition ρ a n, there
exists a CSn module Mρ known as the Young Module. The underlying
abelian structure is a vector space, with each basis vector corresponding to
an ordered set partition with partition ρ. Then, the action of π ∈ Sn on
these basis elements is given by simply permuting the elements of the set
partition according to π.

Example 2.3. Some straightforward examples include

(i) If ρ = [n− k, k], Mρ corresponds to the k-subsets of {1, . . . , n}.

(ii) If ρ = [1n], then Mρ has dimension n!, with each basis element corre-
sponding to an element of Sn. This is thus isomorphic to the regular
representation, corresponding to the action of Sn on CSn.

(iii) If ρ = [2n], then each basis element of Mρ corresponds to pairings of
2n people.

In discussing Young modules, it becomes apparent how readily we con-
flate the various ways of thinking about representations. It would be ac-
ceptable to discuss the “Young representations”, but because the basis vec-
tors have such a concrete combinatorial interpretation as ordered set parti-
tions, it is customary to focus on the module aspect.

2.8 Decomposition of Young Modules

Like any representation, the Young Modules can be decomposed into the
irreducible modules of Sn. Here we will denote the module correspond-
ing to ρ as Sρ, to help limit confusion. Then, the decomposition of Young
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Modules follows the corresponding theorem, Theorem 3.6.11 in Ceccherini-
Silberstein et al. (2010).

Theorem 2.4. Denote by K(µ, λ) the multiplicity of Sµ in Mλ, where Sµ is the
irreducible Sn representation corresponding to µ. Then,

K(µ, λ)


= 0 if λ 6E µ
= 1 if λ = µ
≥ 1 if λ / µ

so that
Mλ ' ⊕λEσK(µ, λ)Sµ.

Thus, the module Mλ consists of the direct sums of the representations
of every shape which dominates λ, possibly with multiplicity. This result
will prove important to motivating the definition of the Aldous order.

This concludes the necessary background for understanding the work
that has been done on the Aldous order, which occupies Parts II and III.





Part II

General Aldous Order





Chapter 3

Random σ-Interchange
Processes

The general Aldous order was first defined in Alon and Kozma (2011) as a
novel partial order defined on the partitions of Sn, and thus the associated
Sn irreducible representations. The Aldous order was based on the Aldous
conjecture, and this chapter describes a class of continuous-time Markov
processes from which the Aldous conjecture naturally arises.

3.1 The Interchange Process

If n distinct, colored balls are placed on the n vertices of a possibly weighted
graph G, then swapped along the vertices according to some fixed rule,
then the result will be some deterministic process, moving the balls through
a variety of positions. If, however, the swapping occurs according to some
stochastic rule, then the result is a random process. In particular, if the next
swap along edge {i, j} occurs with exponential rate aij, the weight of the
edge, then the result is called the interchange process.

By using different weighting schemes, a variety of processes can be re-
alized. However, the interchange process can also be viewed as a special
case of a generalized interchange process a class that also includes exclusion
processes and simple random walks.

Definition 3.1 (σ-Interchange Process). For a partition σ a n, the σ-inter-
change process follows the same setup as the standard interchange process,
except that instead of the n balls having n distinct colors, there are σ1 balls
of the first color, σ2 balls of the second, and so forth. Balls of the same color
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are regarded as being indistinguishable. Thus, any particular arrangement
of balls corresponds to an ordered set partition, with Si = { vertices of color
i}. The σ-Interchange processes are all continuous-time Markov processes,
with the state space given the ordered set partitions of shape σ.

In addition to the usual interchange process, there are several natural
examples of σ-interchange processes.

Example 3.1 (Trivial Process). This corresponds to σ = [n] and is a trivial
example, as the state of the system never changes.

Example 3.2 (Simple Random Walk). The (continuous) simple random walk
on a graph corresponds to just following one ball along the interchange
process. As such, it corresponds to the σ-interchange process where σ =
[n− 1, 1].

Example 3.3 (Paired Random Walk). Suppose that n men and n women are
seated across a table from each other and paired off based on who is sitting
across from whom. Then, if the men and women each undergo interchange
processes with graphs G1 and G2, the pairings also undergo some random
process. This process can be modeled as a σ-interchange process with σ =
[2n] and G = G1 ∪ G2.

All of the σ-interchange processes can be investigated using the ma-
chinery developed in Chapter 2. In particular, any σ-interchange process
is closely related to the Young Module Mσ. In general, when discussing a
σ-interchange process on n elements, we will think of the corresponding
graph G as being a complete weighted graph on n elements, but with some
of the weights possibly being zero. This ties the σ-interchange processes
directly to Sn.

3.2 Intensity Matrices and Young Modules

Recall from Section 2.7 that the Young module Mσ corresponds to a vector
space with basis given by the ordered set partitions with partition structure
σ. Thus the σ-interchange process can be viewed as taking values on the
basis of Mσ. Then, the probabilities of the process taking on some future
value can be viewed as a function p(t), where pi(t) is the probability of
being in the ith state at time t. Then, p is a function p : R+ → Mσ.

Within this framework, there exists a very important matrix Q, the in-
tensity matrix. Q is a linear transformation of Mσ, and thus has dimen-
sions equal to the number of ordered set partitions with shape σ. For or-
dered set partitions A and B, the coordinates {QAB} are given as follows:
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when A 6= B, if there is some transposition (ij) such that (ij)A = B, then
QAB = −aij. Otherwise, if no such (ij) exists QAB = 0. Finally,

QAA = − ∑
B 6=A

QAB.

If all the aij are either 0 or 1, then Q will correspond to the Laplacian matrix
of the induced graph on the basis elements. The intensity matrix relates to
the random walk according to the following theorem.

Theorem 3.1. Let Q be the intensity matrix of a continuous-time Markov pro-
cess such as the σ-interchange processes. Next, let p(t) ∈ Mσ be the probability
distribution at time t. Then, p is a solution to the first-order differential equation

∂p
∂t

= −Qp.

Moreover, if Q is symmetric, then it has real eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn,
with corresponding eigenvectors v0, v1, . . . , vn. Then, λ0 = 0, and p(t) is of the
form

p(t) = c0v0 + c1e−λ1tv1 + · · ·+ cne−λnt.

The basic decomposition results follow from introductory differential
equations and the fact that Q is Hermitian. That λ0 = 0 is a consequence of
Q being positive semidefinite.

As defined, Q is clearly some square matrix acting on Mσ. In fact it can
be constructed using the following theorem.

Theorem 3.2. If Q is the intensity matrix of a σ-interchange process with weights
{Aij}, then let

εA = ∑
i<j

aij(Id− (ij)).

Then, Q is given by
Q = fσ(εA),

where fσ is the representation of Sn corresponding to Mσ. (Recall that for any g ∈
Sn, fσ(g) is a permutation matrix corresponding to the way in which g permutes
the basis vectors of Mσ).

Thus, representations lie at the heart of understanding these σ-inter-
change processes.
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3.3 Decomposition of Mσ

Recall from Theorem 2.4 that the Young module representations can be de-
composed into direct sums of irreducible representations. In particular,
there exists a single copy of the trivial representation. Let the correspond-
ing submodule be denoted Mn, as for the trivial partion [n], the irreducible
representation is the same as that of the Young module. Then, Let Mσ

0 be
the submodule such that

Mσ ' Mn ⊕Mσ
0 .

The trivial representation is one dimensional, and thus it must be spanned
by a constant vector in order to be invariant under every permutation.
Then, it is easy to show that

Mσ
0 = {v = (v1, v2, . . . , vm) ∈ Mσ|∑ vi = 0}.

In fact, we know that
Mσ

0 =
⊕

σEρ 6=[n]

K(ρ, σ)ρ,

where the ρ in the sum is the irreducible representation. As we shall see,
this decomposition is of crucial importance in the analysis of the σ-inter-
change processes.

3.4 The Uniform Distribution

For any continuous-time Markov process such as the σ-interchange pro-
cesses, the uniform distribution is given by π = (1/n, 1/n, . . . , 1/n), where
n is the number of possible states. This corresponds to each state being
equally likely. If there is a path from each state to each other with nonzero
probability (the process is transitive), the process will converge to the uni-
form distribution. In general, a symmetric Markov process will converge
to a constant probability on each connected component.

Since the long-term behavior is well known, it is customary to exam-
ine the manner in which the Markov process converges. For connected
graphs, this is done by looking at the vector p(t)− π. Note that since the
components of both π and p(t) sum to 1, p(t)− π ∈ Mσ

0 . Now, recall from
Theorem 3.1, that

p(t) = c0v0 + c1e−λ1tv1 + · · ·+ cne−λnt.
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We now know that c0v0 = π. Thus,

p(t)− π = c1e−λ1tv1 + · · ·+ cne−λnt.

Thus, in general, the convergence will be determined by λ1. This value, the
second smallest eigenvalue, is known as the spectral gap.

Next, recall the decomposition Mσ ' Mn ⊕Mσ
0 . Let gσ : CG 7→ Mn ⊕

Mσ
0 be the decomposition’s representation, which is equivalent to fσ, the

permutation representation on the ordered set partitions of {1, 2, . . . , n}.
Now, let gn and g0 be the restrictions of gσ to Mn and Mσ

0 respectively.
Then, gn is the trivial map, g 7→ 1. Thus,

gn(εA) = ∑ aijgn(Id− (ij)) = 0.

Now, since gσ(εA) and fσ(εA) have the same eigenvalues, it follows that
g0(εA) has eigenvalues {λ1, λ2, . . . , λn}. Thus, the spectral gap of a σ-
interchange process is given by the minimal eigenvalue of εA under the
representation Mσ

0 ' Mσ/Mn.





Chapter 4

Definitions and Superorders of
the Aldous Order

This chapter gives the original definition of the Aldous order, as motivated
by the Aldous conjecture. It also includes an overview of previous work,
several new, equivalent definitions of the order, and a discussion of super-
orders of the Aldous order.

4.1 The Aldous Conjecture

In 1992, David Aldous made the following conjecture:

Conjecture 4.1 (Aldous Conjecture (1992)). For any graph G, the spectral gap
of the ([1]n])-interchange process on G is the same as that of the simple random
walk.

Using the machinery developed in Chapter 3, this can be restated in a
number of ways.

Theorem 4.1 (Aldous Conjecture Equivalent Statements). For any graph G,
the following are equivalent:

(i) The spectral gap of the ([1]n)-interchange process on G is the same as that of
the simple random walk.

(ii) The spectral gap of every nontrivial σ-interchange process equals that of the
simple random walk (σ = [n− 1, 1]).

(iii) If εA = ∑ aij(Id− (ij)), and σ = [n− 1, 1], ρ nontrivial, then the minimal
eigenvalue of σ(εA) is less than or equal to that of ρ(εA).
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Proof. Recall that the spectral gap of a σ-interchange process is given by the
smallest eigenvalue of εA in the module⊕

σEρ 6=[n]

K(ρ, σ)ρ;

that is, the module is a direct sum containing every nontrivial representa-
tion (with possible multiplicity) which dominates σ. When σ = [n− 1, 1],
then the desired module is simply σ. Moreover, for any nontrivial σ, the
desired module contains a copy of the [n− 1, 1] representation. Thus, the
spectral gap is always equal to that of the simple random walk if and only
if the minimal eigenvalue lies in the [n − 1, 1] representation. This estab-
lishes the equivalence between (ii) and (iii). For (i) and (ii), clearly (ii) im-
plies (i). For the other direction, the interchange process corresponds to
σ = [1n]. Since [1n] is the minimal element of the dominance order, the
corresponding module contains every nontrivial module. Thus, any pos-
sible counterexample would provide a counterexample in the interchange
process case.

4.2 The Aldous Order Definition

Thus, the Aldous Conjecture boils down to a relation between minimal
eigenvalues of εA over different representations. While the Aldous Con-
jecture was proved in Caputo et al. (2010), the final formulation suggests a
natural extension. Alon and Kozma followed through on this in defining
the Aldous Order in Alon and Kozma (2011).

Definition 4.1 (Aldous Order, Initial Definition). Let ρ, σ ` n be partitions
of n, A = {ai,j}1≤i<j≤n, be a set of weights and define εA as before. Finally,
have λ1(εA; ρ) denote the smallest eigenvalue of ρ(εA). Then, ρ precedes σ
in the Aldous order, written ρ � σ if

λ1(εA; ρ) ≥ λ1(εA; σ).

For any weights A.

Therefore, the entirety of the Aldous Conjecture is captured in the fol-
lowing theorem,

Theorem 4.2 (Aldous Conjecture, Final Form). The partition [n− 1, 1] is the
second greatest element of the Aldous order on partitions of n, after the trivial
partition [n].
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4.3 Previous Work

Alon and Kozma’s paper is, at the only moment, the only published re-
search on the Aldous order, and thus their findings represent the sum total
of knowledge on the subject. The following consists of the main results that
they have reported on the Aldous order.

Theorem 4.3 (Previous Theorems). The following are known results about the
Aldous order.

(i) The greatest and second greatest elements are [n] and [n− 1, 1].

(ii) The least element is the alternating partition, [1n].

(iii) The Aldous order is a suborder of the lexicographic order on partitions.

(iv) The “hook shapes”, [n− k, 1k], are totally ordered. That is,

[1n] ≺ [1n−1, 1] ≺ · · · [12, n− 2] ≺ [1, n− 1].

(v) If n ≥ 4k2 + 4k, ρ has ≤ k squares outside of the left column, σ has ≤ k
squares outside the first row, then ρ ≺ σ, the main result of Alon and Kozma
(2011).

With the exception of (v) (and the Aldous Conjecture), the rest are very
straightforward to prove. That the trivial and alternating representations
are the greatest and least partitions has a simple algebraic proof. The eigen-
values for the hook shapes are well known and thus the computation of (iv)
is straightforward. We provide a simpler proof of (iii) in Chapter 5.

In general, then, the Aldous order is not well known or easy to compute.
Even for n = 6, much is not currently known.

In addition to the positive results listed, Alon and Kozma provided sev-
eral negative results which proved inspirational, such as the incomparabil-
ity of [2, 1n−2] and [2, 2, 1n−4].

4.4 Alternate Formulations

Given the motivation by interchange processes, the formulation of Alon
and Kozma is understandable. However, it will prove useful to analyze
relationships between a wide variety of eigenvalues. Our first theorem is
about relations between λ1 and λmax for various matrices. It is given by
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Theorem 4.4 (Eigenvalue Equalities). For any nonnegative weights A = {ai,j},
let εA be as before, and define

Wt(A) = ∑
i<j

ai,j.

Additionally, let
βA = ∑

i<j
ai,j(ij) = Wt(A)Id− εA.

Then, for any representation ρ a n we have the following equalities.

(i) λmax(βA; ρ) + λ1(εA; ρ) = λ1(βA; ρ) + λmax(εA; ρ) = Wt(A),

(ii) λmax(βA; ρ) + λ1(βA; ρ′) = 0,

(iii) λmax(εA; ρ) + λ1(εA; ρ′) = λmax(εA; ρ′) + λ1(εA; ρ) = 2Wt(A),

(iv) λmax(εA; ρ) = Wt(A) + λmax(βA; ρ′).

Proof. The first equality follows from the fact that βA and εA have the same
eigenvectors, as they differ by a negative sign and Wt(A)id. Addition-
ally, any eigenvector v of εA with eigenvalue λk will have an eigenvalue
of Wt(A) − λk as an eigenvector of βA. Thus, if (λ1, λ2, . . . , λmax) are the
eigenvalues of εAin increasing order, then those of βA are

(Wt(A)− λmax, . . . , Wt(A)− λ1),

giving the desired equality.
The second equality is a consequence of the fact that ρ′ is the result of

tensoring ρ with the alternating representation. Thus, since βA is the sum
of transpositions (which are all odd), ρ(βA) = −ρ′(βA), and the equality
follows.

The third equality is a direct consequence of the first two, while the
third follows from the first and third, as

λmax(εA; ρ) = 2Wt(A)− λ1(ε; ρ′),
= Wt(A) + (Wt(A)− λ1(ε; ρ′)),
= Wt(A) + λmax(βA; ρ′).

These equalities allow us to define a norm on the set of weights A cor-
responding to a given representation ρ.
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Theorem 4.5 (ρ-norm on Weights). For any set of nonnegative weights A =
{ai,j}, and representation ρ ` n, let

||A||ρ = Wt(A) + λmax(βA; ρ).

Then, ||A||ρ is a norm over the set of weights; that is,

||kA||ρ = k||A||ρ, ||A + B|| ≤ ||A||+ ||B||.

Proof. Recall that we have that ||A||ρ = λmax(εA; ρ′) from the fourth of the
eigenvalue equalities. Then the map

A 7→ ρ′(εA)

is linear and since ρ′(εA) is semidefinite, the map

ρ′(εA) 7→ λmax(ρ
′(εA)) = λmax(εA; ρ′)

is the usual operator norm on the matrix ρ′(εA) given by

||M|| = max
||v||=1

||Mv|| = max
λk
|λk|.

By linearity, the norm properties will be satisfied.

The previous theorems allow us to give several equivalent formulations
of the Aldous order.

Theorem 4.6 (Alternate Formulations). For the same nonnegative weights A =
{ai,j} as before, the following are equivalent:

(i) ρ � σ,

(ii) λ1(εA; ρ) ≥ λ1(εA; σ)∀A,

(iii) λmax(βA; ρ) ≤ λmax(βA; σ)∀A,

(iv) ||A||ρ ≤ ||A||σ∀A.

The equivalence follows from the definition of the ρ-norm and ρ � σ,
as well as the aforementioned equalities. While equivalent, these formula-
tions, particularly (iii), will prove useful in simplifying some proofs.
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4.5 Properties of the ρ-Norm

Recall the ρ-norm defined by

||A||ρ = Wt(A) + λmax(βA; ρ).

This defines a total order on weights for each ρ. Additionally, there is a
natural partial order on weights, given by the product order. That is, A ≤ B
if aij ≤ bij for all i, j. We can then relate the two through the following
theorem.

Theorem 4.7. For nonnegative weights A, B and partition ρ ` n, if A ≤ B then
we have that

||A||ρ ≤ ||B||ρ.

Equivalently, for any nonnegative weights C, then

||A||ρ, ||C||ρ ≤ ||A + C||ρ.

Proof. The equivalence of the two should be obvious, by taking B = A + C.
We will prove the A, C case. Then, suppressing the ρ, we wish to show that

λmax(βA) + Wt(A) ≤ λmax(βA + βC) + Wt(A + C),

or alternately that

−Wt(C) ≤ λmax(βA + βC)− λmax(βA).

Note that this is a weaker inequality than

||λmax(βA + βC)| − |λmax(βA)|| ≤Wt(C);

that is, the addition of βA to βC can’t change λmax by more than Wt(C) in
either direction, instead of it just not being able to decrease it by more than
Wt(C). Now, note that for symmetric matrices, |λmax| is the usual operator
norm. Thus, we have that the left-hand side is less than

|λmax(βC)|,

by the norm inequality p(u− v) ≥ |p(u)− p(v)| for any norm p. However,
recall that for any transposition (ij), the eigenvalues of ρ((ij)) will be either
1 or−1, as ρ((ij))2 = ρ((ij)2) = ρ(id) = I. Thus, if ||M|| is the usual matrix
norm, then ||ρ((ij))|| = 1. Then, we have that

|λmax(βC)| ≤ ||βC|| ≤∑ ||cij(ij)|| = ∑ cij = Wt(C).

Thus, we have the desired result, so if A ≤ B in the product order, then
||A||ρ ≤ ||B||ρ.
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As a consequence, for representations, ρ, σ, if X < Y and ||Y||ρ ≤ ||X||σ,
then for any A ∈ [X, Y], we have ||A||ρ ≤ ||A||σ, which may help in prov-
ing comparability results if X and Y have easily computed maximum eigen-
values.

4.6 Superorders of the Aldous Order

Recall that a partial order R is a suborder of another partial order Q if R has
the same relations as Q, except that some pairs which are comparable in Q
may be incomparable in R. We can also say that Q is a superorder of R. For
the Aldous order there is a natural construction of new orders, all of which
will be superorders of the Aldous order.

Definition 4.2 (The S-Aldous Order). Let X be the set of all possible weights
for our graphs. Then, the Aldous order is given by

ρ � σ⇔ λmax(βA; ρ) ≤ λmax(βA; σ)∀A ∈ X.

Now, if S ⊂ X, then a new order, written �S can be defined by replacing
the X in the for all with S, so that

ρ �S σ⇔ λmax(βA; ρ) ≤ λmax(βA; σ)∀A ∈ S.

Note that the suborder/superorder relation on partial orders is in it-
self a partial order. In this section, let << denote that relation. Then, the
following theorem should be obvious.

Theorem 4.8. The map from subsets of X to superorders of the Aldous order,
given by S 7→�S, inverts orderings. Thus, if A ⊆ B, then �B<<�A.

Thus, every S-Aldous order is a superorder of the Aldous order, as S ⊂ X, and
� is �X.

Examining the S-Aldous orders can be fruitful for a number of reasons.
First of all, it may make sense to want to examine the relative eigenvalues
of only certain types of graphs, such as multipartite graphs or trees. These
classes may have additional structure and their orders could be interesting
in their own right.

Secondly, since they are superorders, any incomparability result in an
S-Aldous order must hold for the general Aldous order. Thus, an inves-
tigation of S-orders may yield information about the general order while
focusing an investigation.
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Finally, results on S-Aldous orders can aid in computing the general or-
der. For some strict subsets S ⊂ X, the S-Aldous order and general Aldous
order are the same. While it is an open question how small S can be made,
the following restrictions are straightforward.

Theorem 4.9 (Restrictions on Weights). The following restrictions can be made
on what weights are considered, while still maintaining the full order:

(i) The weights can be restricted to any set which is dense in R(n
2). In particular,

the weights can be restricted to having rational coefficients.

(ii) The order given by a set S and that given by all real scalings of S are the
same. In particular, the constraints aij ≤ 1 or ∑ aij = 1 can be made.

(iii) The coefficients can be constrained to the nonnegative integers.

The first follows from continuity in the definition of the Aldous order.
The second comes from the fact that if a weight set A provides a strict in-
equality in one direction or the other, then so will cA for any positive c. The
final condition comes from restricting to rationals, then scaling each weight
set so that the resulting weights are integers.

As will be seen in Part III, much can be done with the S-Aldous order
given by linear combinations of Young–Jucys–Murphy elements.



Part III

The YJM Aldous Order





Chapter 5

Basic Properties of the YJM
Aldous Order

Recall that the standard Young tableaux of an irreducible representation
form an eigenbasis for each Young–Jucys–Murphy (YJM) element χk. As
such, if βA = ∑k ckχk, then the eigenvectors of ρ(βA) will be given by the
SYT of ρ. More specifically, the eigenvalue of any SYT T with contents
C(T) = (a1, a2, . . . , an) will be a linear function of the ck, given by ∑n

k=1 akck.
Thus, when the weights correspond to a YJM sum, the problem can be
readily solved. This chapter describes the machinery used with the YJM
sums, proving some results along the way.

5.1 Computing the YJM Order

Throughout, let Y = {A|βA = ∑k ckχk, ck ≥ 0}. In other words, Y is the
set of YJM sums. Alon and Kozma touch on this family briefly, referring
to them as quasicomplete graphs. Then, this class of graphs correspond to a
superorder �Y, as described in Section 4.6.

Then, it is feasible to compute �Y explicitly, formulating it as a linear
program. To easily describe the computations, it helps to define a dominant
pair.

Definition 5.1 (Dominant Pair). Given two partitions σ, ρ a n, let (A, v) be
a pair consisting of a weight A and a vector v such that v is an eigenvector
of σ(βA) with eigenvalue λv. Then, (A, v) is a dominant pair of σ over ρ if

λv > λmax(βA; ρ).
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Note that σ � ρ if and only if σ has no dominant pairs over ρ. Thus,
this transforms the definition of � from a for all statement, to a statement
about the existence or nonexistence of a counterexample. Additionally, by
restricting the weights to be in some desired set S, we get an equivalent
formulation for the S-Aldous order.

The YJM sums Y are unique because under any representation their
eigenvectors are the same, the SYT. Thus, we can restrict the search for
dominant pairs to each of the SYT. This can be done in the linear program
which follows. The general idea is to search for weights in Y which form a
dominant pair. This can be done by considering each SYT separately and
searching for a workable set of weights. This is opposed to simultaneously
searching through the weights for the SYT which both has maximal eigen-
value and is greater than the maximal eigenvalue of the other partition.

Definition 5.2 (Dominant Pair Linear Program). Consider partitions σ, ρ a
n. Let σT be a SYT of σ, with content C(σT) = (a1, a2, . . . , an). Now, sup-
pose that ρ has r distinct SYT. Denote each of these ρ1, ρ2, . . . , ρr. Then,
an optimization problem can be constructed in nonnegative variables v =
(c1, c2, . . . , cn) and d, subject to the constraints

C(T) · v ≥ C(ρk) + d,

for k = 1, . . . , r. Additionally, there is the constraint

∑
i

ci ≤ 1.

Then, the objective function which is to be maximized is d.
This is a linear program and σ will have a dominant pair over ρ which

uses σT only if the maximal value of d is nonzero.

Thus, this LP (linear program) can be solved using standard simplex
methods. Moreover, the problem is bounded and feasible, as ci, d = 0 pro-
vides a feasible solution. This then gives an algorithmic method for deter-
mining the order �Y according to the following theorem:

Theorem 5.1 (LP Definition of�Y). For partitions σ, ρ a n, σ �Y ρ if and only
if the dominant pair LP for every SYT of σ has maximum solution d = 0.

This follows from the realization that feasible solutions of the LP when
d > 0 correspond exactly to dominant pairs, and that for the YJM case, the
eigenvector of a dominant pair will be a SYT.
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This computational method gives exact results for as high as can be
computed. Even naive implementations in Mathematica can yield solu-
tions for n ≤ 13. This proved a valuable source of conjectures and coun-
terexamples.

5.2 Front and Back Sums

Within the set of weights Y, there proved to be two particularly useful
classes of weights.

Definition 5.3 (Front and Back Sums). The front sums {Fk} are the sum of
the first k YJM elements; that is,

Fk =
k

∑
i=1

χi.

Similarly, the back sums {Bk} are the sum of the final k YJM elements; that
is,

Bk =
n

∑
i=n−k+1

χi.

The front and back sums have several delightful properties, which we
shall explore in depth. Most trivially, note that Fn = Bn corresponds to
the complete graph Kn. In the group algebra this corresponds to the class
sum of all the transpositions, and thus in each representation corresponds
to some multiple of the identity matrix. In general, λmax(Kn; ρ) is the sum
of the contents of ρ. This naturally gives the following theorem:

Theorem 5.2. Let σ, ρ a n be two partitions. Then, if σ / ρ,

λmax(Kn; σ) < λmax(Kn; ρ).

This theorem is a simple consequence of realizing that any box-up move
increases the content of that box while keeping the rest fixed. Thus, a se-
quence of box-up moves increases the sum of the contents, giving the result.

This allows us to easily describe SYTs which will have maximal eigen-
values for the front and back sums.

Theorem 5.3. For any partition σ a n, the maximal eigenvalues of Fk and Bk are
attained by the following SYT.
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• A SYT with maximal eigenvalue for the front sums Fk is given by the front
maximal SYT, which is formed by filling in the numbers 1, . . . , n from left
to right, beginning in the first row and working down.

• Similarly, the maximal SYT for the back sums Bk (the back maximal SYT)
is formed by filling in 1 through n from top to bottom, beginning in the first
column and working towards the right.

Example 5.1. If ρ = [3, 3, 2], then the front maximal SYT is

1 2 3
4 5 6
7 8

.

while the back maximal SYT is

1 4 7
2 5 8
3 6

.

As a proof of Theorem 5.3, consider the following argument. First, for
the front sums, the eigenvalue under Fk for any SYT is determined by the
placement of the first k numbers within the tableau. This will give corre-
spond to some partition of k. The eigenvalue will then be the content sum of
this k-partition. Moreover, the possible k-partitions are exactly those which
fit inside the original partition σ.

Thus, it remains to determine which of those k-partitions will have the
maximal content sum. Note that the k-partitions can still be ordered by the
dominance ordering. This gives an ordering of the k-partitions contained
in σ. As noted before, this implies that the maximal k-partition is also max-
imal in the dominance ordering (under the restriction that all partitions
considered lie in σ). Thus, it is the shape with no admissible box-up moves
inside σ. This shape is given by some number of full rows of σ and exactly
one partial row. The front maximal SYT is such that the first k numbers
inhabit exactly this partition. Thus, the front maximal SYT will take on the
maximal eigenvalue for any front sum Fk.

For the back sums Bk, note that Bk = Kn − Fn−k. Thus, it is equiva-
lent to minimizing Fn−k. This is done by finding the shape within σ which
is minimal in the dominance order. This corresponds to some number of
full columns, plus one partial column, which is what the described tableau
gives.

The front sums give a simple proof of the following theorem:

Theorem 5.4 (Lexicographic Suborder Theorem). The Aldous order is a sub-
order of the lexicographic.
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Proof. Since the lexicographic order is a total order, it suffices to show for
partitions ρ, σ a n that if ρ < σ in the lexicographic, then σ ≺ ρ; that is,
the Aldous order never contradicts the lexicographic. This is analogous to
showing that there is some A such that

λmax(βA; ρ) < λmax(βA; σ).

To find such an a, suppose that the first r − 1 rows of ρ and σ are equal,
with ρr < σr. Then, let k = ∑r

i=1 ρr, the number of boxes in the first r rows
of σ. Then, it will be the case that

λmax(Fk; ρ) < λmax(Fk; σ).

To see this, note that the maximal eigenvalues are achieved by the respec-
tive partition’s front maximal tableaux. Then, the k-shape of σ will strictly
dominate that of ρ by construction, giving the desired strict inequality.

Since the dominance order is also a suborder of the lexicographic or-
der, this also has as a corollary Theorem 5.2. In the next chapter we will
see the crucial role played by the back sums, in proving some of our most
important results.





Chapter 6

Two Theorems in the YJM
Aldous Order

This chapter centers on proving two theorems, which together describe
much of the YJM Aldous order. The first can be attacked with little ma-
chinery apart from that covered in Chapter 5. The second will require the
additional definition of strict dominance.

6.1 First Row Incomparability

Computations such as those described in Section 5.1 led to the observation
that, even within the YJM Aldous order, partitions whose first row was
the same length were incomparable. In fact, the incomparability could be
shown only using the back sums {Bk}. Thus, we have the following theo-
rem, and the accompanying proof.

Theorem 6.1 (First Row Incomparability Theorem). For partitions ρ, σ a n,
if ρ1 = σ1 = k and ρ 6= σ, then there exists m1, m2 ≤ n such that

λmax(Bm1 ; ρ) < λmax(Bm1 ; σ) and λmax(Bm2 ; ρ) > λmax(Bm2 ; σ).

Thus, ρ and σ are incomparable under the Aldous order.

Proof. First, if ρ′k = σ′k (the last columns are of equal length), then we can
proceed by induction by removing the last column of each partition, and
taking the mi = ρ′k + m̄i from the reduced shapes. The content sums for the
new back sums will just be increased by the constant factor of the contents
of the last column. These will be the same for both, so the inequalities will
carry over.
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Otherwise, assume without loss of generality that ρ′k > σ′k. Then, setting
m1 = 1 gives us the desired inequality immediately, as

λmax(B1; ρ) = k− ρ′k < k− σ′k = λmax(B1; σ).

Now, it remains to show that a valid m2 must exist. To do so, consider the
inequality

k

∑
i=r

ρ′i ≤
k

∑
i=r

σ′i .

Clearly this inequality is satisfied if r = 1, so set r to be equal to the greatest
such r. Now, set

m2 =
k

∑
i=r

ρ′i.

To see that this gives the desired result, consider the subpartitions ρ̄ and σ̄
which consist of the columns from r to k. If we can establish our inequality
on the last ∑k

i=r ρ′i of these, then we will be done. Now, it is possible that σ̄
has more elements than ρ̄, so remove boxes off of the first column until we
have equality. Then, they are both partitions of m2, and we have

∞

∑
i=m

(ρ̄)′i ≥
∞

∑
i=m

(σ̄)′i,

for all m > 0. This follows from the maximality of r, and we have equality
when m = 1 now. Thus, this implies that ρ̄′ / σ̄′ by an earlier description
of the dominance order. Thus, σ̄ / ρ̄ because the transpose inverts the op-
erator. Thus, the sum of the last ∑k

i=r ρ′i YJM will have a greater value on
ρ̄ then σ̄ by the dominance order theorem. Recall that we had to remove
some elements from the first column of σ̄. Adding these back on, however,
will only decrease the content sum, because it is replacing boxes with those
farther down the column. Finally, going back to σ, ρ involves shifting all
the counted boxes by the same number of boxes to the right, so the change
in content sum will be the same in both. Thus, we get

λmax(Bm2 ; ρ) > λmax(Bm2 ; σ),

as desired.

This can be seen in the following example:
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Example 6.1. Consider the partitions ρ = [4, 4, 1, 1, 1] and σ = [4, 3, 2, 2].
Then, the Young diagrams are

ρ = σ = .

Now, we take r = 2, as
4

∑
i=2

ρ′i = 2 + 2 + 2 = 6,

4

∑
i=2

σ′i = 1 + 2 + 4 = 7.

Then, m2 = 6. Thus, the subshapes will be

ρ̄ = [3, 3] =

and

σ̄ = [3, 2, 1] = .

Thus, ρ̄ / σ̄ by one up move. Then, the boxes that will be included in calcu-
lating the back sum B6 will be

X X X
X X X

and
X X

X X
X
X

,

with ρ having the larger content sum.

This may lead to a natural supposition that the length of the first row
provides a rank function, and that the Aldous order is thus a graded partial
order. While this could be true for the general order, counterexamples arise
in the case of the YJM Aldous order. In this order, we have

≺Y ,
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but every partition with first row 3 is incomparable to one or the other. The
general order could still be graded, if cases like this proved to be incompa-
rable in the general order.

6.2 Strict Dominance

While the previous result deals with incomparability, and thus carries over
directly into the full order, this section deals with conditions under which
we can easily say that two elements are comparable in the YJM order. To
do this, we will need to explicate the notion of strong dominance, which
produces a suborder of the dominance order.

To this end, define a strong up-move be defined as follows.

Definition 6.1 (Strong Up-Moves). Let a strong up-move on a Young di-
agram correspond to removing the last boxes from some intermediary k
rows, and placing them on the end of the first k rows.

Example 6.2. For instance, if σ = [3, 2, 1], then there are two shapes result-
ing from strong up-moves:

→ or .

Note that every strong up-move increases the length of the first row.

Then, in the same way that the usual up-moves correspond to the dom-
inance order, the strong up-moves define an order on partitions as well.

Definition 6.2 (Strong Dominance). For two partitions ρ, σ a n, σ strongly
dominates ρ, written σ >> ρ, if σ can be produced from ρ via a series of
strong up-moves.

Strong dominance is a graded order, graded by the length of the first
row. This is a consequence of the property noted earlier, that every strong
up-move increases the length of the first row by one.

Then, we have the following theorem, with accompanying proof, and
its immediate corollary.

Theorem 6.2 (Strong Dominance Theorem). For partitions ρ, σ a n, if σ
strongly dominates ρ, then, for any tableau T of ρ, there exists a tableau T′ of
ρ with content greater than that of T for any value.
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Proof. In this proof, we provide an algorithm such that given a SYT of some
partition ρ and a strong up-move performed on row, you can find a SYT of
the new partition where each number has content equal to or greater than
that of the old.

The first assumption that we make is that there is no overlap between
the rows which are losing a box and those gaining a box. If there is, then
the same transformation can be effected by a strong up-move which moves
fewer boxes. Then, for a strong up-move which moves k boxes, the process
is as follows: let {n1, n2, . . . , nk} be the numbers inside the k boxes being
moved. Next, order those numbers from least to greatest, so that n1 < n2 <
. . . < nk. Then, place n1 in column 1, n2 in column 2, and so forth, placing
them so that the each column is increasing left to right. This may result in
shifting some boxes of the other boxes over to the right by one.

This will give the new shape with the numbers 1 through n placed in
the boxes. It remains to show two things. First, that the content of no box
decreases. Secondly, that the resulting distribution is in fact a SYT.

For the first part, we first consider the content of the {n1, . . . , nk}. If
ni was in column r, then its new position will be in a column greater than
r. This is because the number in row i column r had to be less than ni, so
when row i is sorted by order, ni will be to the right of that number. Addi-
tionally, since there is no overlap, every ni is moved to a lower row. Both of
these moves increase the content of the box, so overall it will increase that
content. For the boxes which don’t change row, they either stay in the exact
same spot, or move to the right one square. Either way, their contents don’t
decrease.

Now, it remains to show that the produced object is in fact a SYT. That
is, we must show that the numbers increase along the rows and down the
columns. The rows condition is satisfied by construction. For the columns,
it is a little trickier. First, consider nk. We wish to show that nk will be less
than the number below it. If nk is on the end of the row, there will be no
number below it and we are done. Otherwise, the k and k + 1th rows will
look like

· · · ai−1 ai nk ai+1 · · ·
· · · bi−1 bi bi+1 bi+2 · · ·

.

Now, since aj < bj for any j since the original shape was a SYT, we have
that nk < ai+1 < bi+1, as desired. In fact, the whole row works, because
the inequalities elsewhere are either aj < bj, or aj < bj+1, both of which are
true.

Next we turn to the intermediate columns. Again, use the same a, b
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column designation, and this time let the inserted terms be na and nb. Then,
there are three possibilities based on the relative positionings of na and nb.
Most straightforward is when they are in the same column, so that it looks
like

· · · ai−1 ai na ai+1 · · ·
· · · bi−1 bi nb bi+1 · · ·

.

Then, the necessary inequalities are the same as before. In general, we’ll
only be worried about the terms between the columns of na and nb, as every
other row a-row b pair will have existed in the original shape, either in their
original position (boxes to the left of na and nb) or shifted to the right (boxes
to the right of na and nb). Now, if na is to the left of nb, then it looks like

· · · na ai · · · aj−1 aj · · ·
· · · bi bi+1 · · · bj nb · · ·

.

In this case, na < ai < bi and aj < bj < nb, so na and nb. The only other
worry is about the terms in the middle, but al < bl+1 in general, so each
element in row b is less than the one above it.

The final case is

· · · ai ai+1 · · · aj na · · ·
· · · nb bi · · · bj−1 bj · · ·

.

For this, recall that na < nb. Thus, al < na < bl−1 for all the intermediary
l, satisfying the necssary inequalities. Now, the increasing down columns
condition is really a pairwise condition, so this suffices to show that the
produced tableau is in fact a SYT, proving the theorem.

As an immediate corollary, we have

Corallary 6.1. The �Y is a suborder of the strong dominance order.

Unfortunately, strong dominance doesn’t provide a full description of
�Y. As alluded to earlier, strong dominance is a graded poset, while �Y
is not graded. More generally, however, there exist σ �Y ρ where for each
SYT of σ T there is no SYT of ρ whose contents are all greater than or equal
to T. The simplest example is σ = [3, 3], ρ = [4, 1, 1], but σ �Y ρ. This
also shows that �Y is not a suborder of the dominance order, although it is
possible that � is.
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6.3 Conjectures and Future Work

The main conjecture about the YJM order that went unproven was about
the relationship between the backsums and the YJM order.

Conjecture 6.1 (Back Sum Sufficiency). If B = {Bk|k = 1, . . . , n}, then �Y is
the same as �B.

This is a surprising conjecture, as it narrows the family Y, which is an
n-dimensional cone, down to a finite set of n elements. Intermediate to
proving this would be showing that the binary sums sufficed, that is the
linear combinations of YJM elements with coefficients 0 or 1. The LP for-
mulation of �Y might provide a promising avenue as exploration, as the
binary coefficients can be seen as corner points of the region defined by
0 ≤ ck ≤ 1 (A constraint which we know doesn’t affect the order).

Other open questions include some sort of combinatorial description of
the YJM order. As of now, the only (conjectured) description is to compare
the maximal content sums of all the back sums. These numbers seem to
arise arbitrarily, and we were unable to attach any other combinatorial sig-
nificance. Instead, it would be interesting to find some rule similar to the
up-moves or strong up-moves which, through repeated application, pro-
duces all shapes greater than a given Young diagram.

A related question that went unsolved was how to, given a YJM el-
ement sum ∑ ckχk, algorithmically construct a SYT with maximal eigen-
value. While we were able to do it for the back and front sums, we weren’t
able to find any general form, even when restricting to binary sums.

Altogether, there is much exploration left to be done, both in the YJM
order and the general order. The YJM order is interesting because it plays
very well with the combinatorics of standard Young tableaux and their con-
tent, while the general is a deep statement relating the representations of Sn
in a new way.
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