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ABSTRACT

Phylogenetic reconstruction for Carex and relatives in tribe Cariceae is complicated by species
richness and nearly cosmopolitan distribution. In this investigation, our main objective was to estimate
evolutionary relationships in tribe Cariceae using DNA sequence data from two spacer regions in
nuclear ribosomal genes (ITS and ETS-1f) combined with noncoding chloroplast DNA (trnL intron,
trnL–trnF intergenic spacer, and trnE–trnD intergenic spacers). Parsimony analyses of separate and
combined data and Bayesian analysis of the combined data matrix revealed strong support for mono-
phyly of tribe Cariceae and for monophyly of two major lineages, one comprising principally Carex
subgen. Carex and Vigneastra, and the other representing subgen. Vignea. A third clade with repre-
sentatives from Kobresia and Uncinia, along with Cymophyllus fraserianus, Carex curvula, and several
unispicate Carex received weak-to-moderate support. A small clade comprising Schoenoxiphium and
two unispicate carices was placed as sister to the clades comprising multispicate Carex species in the
parsimony analysis, but sister to the clade of Kobresia, Uncinia, and unispicate Carex in the Bayesian
analysis. Two large widespread groups within subgen. Carex, sect. Hymenochlaenae and sect. Phy-
socarpae s.l. (‘‘bladder sedges’’), were highly polyphyletic, while ten clades that grouped species from
two or more sections were each strongly supported as monophyletic. Within subgen. Vignea, three
sections were strongly supported as monophyletic while sects. Phaestoglochin and Vulpinae were
polyphyletic. Adding the variable ETS-1f region improved resolution and bootstrap support values
over previous studies, but many of the characters supporting major branches came from the trnL
region.

Key words: Carex, Cariceae, Cyperaceae, external transcribed spacer, internal transcribed spacer, Ko-
bresia, phylogeny, Schoenoxiphium, trnL intron, Uncinia.

INTRODUCTION

Species-rich genera like Carex (Cyperaceae), which oc-
cupy a wide variety of habitats across a broad geographical
distribution (Ball 1990; Catling et al. 1990), provide unpar-
alleled opportunities to test ecological and evolutionary hy-
potheses related to adaptive radiation, diversification rates,
niche differentiation, and the relative roles of stochastic vs.
adaptive processes in community assembly (cf. Losos 1996;
Sanderson and Wojciechowski 1996; Warheit et al. 1999;
Losos and Miles 2002; Webb et al. 2002; Ackerly 2003). A
prerequisite to such studies is a robust hypothesis of phy-
logenetic relationships that leads to a stable and predictable
classification system (Silvertown et al. 2001).

The same features that make Carex so appealing for eco-
logical studies within a phylogenetic framework also make
it difficult to produce the necessary robust phylogeny. With
the exception of Kükenthal’s (1909) global monograph, flo-
ristic treatments of the genus are generally regional in scope
(e.g., Mackenzie 1931–35; Ohwi 1936; Nelmes 1951; Koy-
ama 1962; Chater 1980; Egorova 1999; Kukkonen 2001;
Ball and Reznicek 2002) and recent published systematic
studies are usually restricted to regional treatments within
single sections or species complexes (e.g., Reznicek and Ball

4 Present address: Department of Biology, University of Ottawa,
Gendron Hall, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada

1980; Standley 1985; Reznicek 1986; Crins and Ball 1989;
Dunlop and Crow 1999) even though many sections are cir-
cumscribed to include species from more than one continent.
Although Kükenthal presented the 793 species he recognized
within a phylogenetic framework, the basis for this frame-
work has been frequently called into question (Kreczetovich
1936; Nelmes 1952; Egorova 1999), resulting in inconsistent
infrageneric classification and nomenclature.

It has been clear from the earliest attempts at phylogenetic
analysis of Carex using DNA sequence comparisons (Starr
et al. 1999; Yen and Olmstead 2000a, b) that the genus Car-
ex could not be considered in isolation. While the mono-
phyly of tribe Cariceae has long been recognized and has
been supported by recent molecular analyses of Cyperaceae
(Muasya et al. 1998, 2000), the monophyly of all currently
recognized genera within the tribe (except monotypic Cy-
mophyllus) has been questioned (Kreczetovicz 1936; Nelmes
1952; Hamlin 1959; Reznicek 1990). The variety of geo-
graphic patterns in genera of tribe Cariceae, from narrow
endemics to species that can be found on four continents,
increases the difficulty of appropriate sampling but adds in-
teresting biogeographic questions to those that require a ro-
bust phylogeny to be answered.

Previous attempts to reconstruct the phylogeny of Cari-
ceae using molecular data have concentrated on either single
sections of Carex and their potential relatives (Limosae, Wa-
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terway et al. 1997; Phyllostachyae, Starr et al. 1999; Acro-
cystis, Roalson et al. 2001; Roalson and Friar 2004) or gen-
era (Uncinia, Starr et al. 2003, in press) or have focused on
the relationship of Carex to other genera of Cariceae. There
has been a particular emphasis on subgen. Psyllophora, the
small and controversial group of unispicate Carex species
that Kükenthal (1909) treated as subgen. Primocarex, reflect-
ing his view that they were primitive within the genus (Starr
et al. 2003, 2004, in press).

None of these studies have used more than two different
gene regions and, with the exception of recent work by Starr
et al. (2003, 2004, in press), resolution has been poor and
few clades have had significant statistical support. Different
researchers have used different genes or combinations of
genes for different sets of species. Yen and Olmstead
(2000a, b) used one coding and one noncoding chloroplast
DNA region (ndhF and trnL–trnF region including the trnL
intron) but found that variability in ndhF was too low within
Cariceae to allow much resolution. Starr et al. (1999) ini-
tially used only ITS data in a small study of sect. Phyllos-
tachyae and potential relatives, but Starr et al. (2003) re-
cently developed primers for part of the external transcribed
spacer (ETS-1f) of the ribosomal gene repeat and found lev-
els of variability high enough to give good resolution when
combined with ITS data in their studies of Uncinia and Car-
ex subgen. Psyllophora (Starr et al. 2004, in press). Roalson
et al. (2001) combined ITS data with the noncoding chlo-
roplast trnT–trnL–trnF region in their study of Carex sect.
Acrocystis and a diverse array of other species of Cariceae
(100 in total), but had low resolution and poor support for
most clades. Using ITS data only, Heindrichs et al. (2004a,
b) used Bayesian and distance methods to estimate phylo-
genetic trees for several species of European Carex, noting
that parsimony analysis gave poor resolution and statistical
support. Combining data from ITS, ETS-1f, and one or more
of the noncoding chloroplast DNA regions has the potential
to provide better resolution and increase statistical support
for both interior branches and terminal clades. However,
with previous studies using different sets of species and dif-
ferent DNA regions, sequences from more than two different
DNA regions are currently available in GenBank for only a
few species of Cariceae.

The objective of this investigation is to propose a phylo-
genetic hypothesis for Cariceae that is based on both ITS
and ETS-1f sequences along with at least one chloroplast
DNA region using a sampling that is approximately propor-
tional to the relative number of species of each genus or
subgenus within Cariceae. The analyses presented here are
the first to be based on more than two different DNA data
sets and incorporate the broadest sampling to date from
among Carex subgen. Carex and Vignea, which together
comprise almost 90% of Cariceae. Our sampling is also de-
signed to test the monophyly of some commonly recognized
sections or groups of sections within subgen. Carex and to
evaluate the relative molecular divergence for each gene re-
gion among species thought to be closely related based on
morphology. We also compare the results of model-based
Bayesian analysis to parsimony analysis of these data.

MATERIALS AND METHODS

Source of Material and Choice of Taxa

The sequence data were assembled to represent a diverse
range of taxa within tribe Cariceae, while including at least
three species of each genus (except monotypic Cymophyl-
lus), at least five from each subgenus of Carex, and at least
two from each of several sections within subgen. Carex and
Vignea (Table 1). Within these constraints, sampling of each
major group was roughly proportional to its frequency with-
in tribe Cariceae, with three species of Schoenoxiphium (ca.
20 spp.), three of Uncinia (ca. 65 spp.), six of Kobresia (ca.
79 spp.), ten of Carex subgen. Primocarex sensu Kükenthal
(ca. 70 spp.), five of Carex subgen. Vigneastra (! subgen.
Indocarex sensu Kükenthal, ca. 100 spp.), 29 of Carex sub-
gen. Vignea (ca. 450 spp.), 60 of Carex subgen. Carex (ca.
1400 spp.), and Cymophyllus fraserianus (Table 1). We also
sampled ten pairs of taxa assumed to be quite closely related
based on morphology to allow comparison of relative se-
quence divergence at this level. Within subgen. Carex, we
sampled several species from sect. Hymenochlaenae (sensu
Reznicek 1986) and from a group of apparently closely re-
lated sections, collectively known as the ‘‘bladder sedges,’’
to test the monophyly of these groups. The sample for sub-
gen. Carex and Vignea is over-weighted in North American
species for logistic reasons but still represents a wide range
of structural diversity within these subgenera.

Extraction, Amplification, and Sequencing

For new sequences reported in this paper, a modified 2%
CTAB protocol (Doyle and Doyle 1987) was used to extract
DNA from fresh (95% of samples) or silica-dried leaf ma-
terial. Fresh samples were ground directly in CTAB buffer,
while dried leaf tissue was ground in liquid nitrogen to
which hot CTAB buffer was added immediately after grind-
ing. Amplifications for ITS and ETS-1f followed the proto-
cols given in Starr et al. (1999, 2003) except that 10%
DMSO (replacing betaine) was used in the reaction to avoid
amplification of divergent paralogues (Buckler et al. 1997).
Amplification primers for ETS-1f were those of Starr et al.
(2003) and for ITS were ITS N18L18 (Yokota et al. 1989)
and ITS-4 (White et al. 1990). The trnL–trnF region was
amplified using primers ‘‘c’’ and ‘‘f’’ of Taberlet et al.
(1991) under reaction conditions given by Yen and Olmstead
(2000a). Primers designed by Alan Yen (University of Wash-
ington, Seattle, USA) were used to amplify the trnE–trnD
region of chloroplast DNA, which includes the trnE–trnY
intergenic spacer, the tRNA-tyrosine (trnY) gene (84 base
pairs [bp]), and the trnY–trnD intergenic spacer. The for-
ward primer was NE: 5"-CACCTCTCTTTTCAAGGA-
GGCA-3" while the reverse primer was ND: 5"-
CGCAGCTTCCGCCTTGACAG-3". Reaction conditions for
amplifying the trnE–trnD region were identical to those for
the trnL–trnF region. Three to five microliters of each re-
action product were electrophoresed on 1.2% agarose gels
to verify amplification of single fragments. The amplification
reaction products were then purified using QiaQuick! PCR
purification columns (QIAGEN, Inc., Valencia, California,
USA) and quantified by spectrophotometry prior to use in
the sequencing reactions. DyenamicET! (Amersham Bio-
sciences, Inc., Piscataway, New Jersey, USA) was used for
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Table 1. Classification and accession data for voucher specimens for DNA sequences used in this study. Species classified in tribe
Cariceae are arranged alphabetically within generic, subgeneric, and sectional groups, followed by the three outgroup species in alphabetical
order. Generic delimitation follows Kükenthal (1909) and Ball et al. (2002), while subgenera follow the circumscriptions of Kükenthal
(1909) and Zhang (2001), except where modified by Egorova (1999). Sectional placement follows Ball et al. (2002) for North American
species, Wheeler (1989a, b) for South American species, Egorova (1999) for Eurasian species, Dai and Liang (2000) for East Asian species,
and Zhang (2001) for Kobresia. GenBank numbers representing sequences from Starr et al. (1999, 2003, 2004, in press) or from Yen and
Olmstead (2000a, b) or Roalson et al. (2001) are given in parentheses. Locality, collector with number, and herbarium acronym (Holmgren
et al. 1990) are reported for all new DNA sequences. For new sequences, the GenBank accession numbers are ordered as ITS, ETS-1f,
trnL–trnF, and trnE–trnD (where applicable). Individuals of the same species, sampled from different localities are numbered (1) and (2).

Taxon Source/voucher GenBank numbers

Carex L.

subgen. Carex

sect. Abditispicae G. A. Wheeler
C. collumanthus (Steyerm.) Mora COLOMBIA: Arauca, Sierra Nevada del Cocuy,

Cleef 8875 (NY)
(AY241987, AY241988) AY757548

sect. Acrocystis Dumort.
C. pensylvanica Lam. CANADA: Quebec, Mont St. Hilaire, Waterway

99.013 (MTMG)
AY757622, AY57682, AY57550

sect. Anomalae J. Carey
C. amplifolia Boott USA: California, Plumas Co., Waterway 99.076

(MTMG)
AY757584, AY75645, AY757511

C. scabrata Schwein. CANADA: Quebec, Mont St. Hilaire, Waterway
99.001 (MTMG)

AY757585, AY757646, AY757512

sect. Aulocystis Dumort.
C. fissuricola Mack. USA: California, Mono Co., Waterway 2000.156

(MTMG)
AY757617, AY757678, AY757544

C. luzulifolia W. Boott USA: California, Lassen Co., Waterway
2000.164 (MTMG)

AY757618, AY757679, AY757545

sect. Carex
C. trichocarpa Willd. USA: Virginia, Montgomery Co., Waterway

2000.092 (MTMG)
AY757570, AY757632, AY757497

sect. Careyanae Kük.
C. plantaginea Lam. CANADA: Quebec, Hudson, Waterway 2000.002

(MTMG)
AY757613, AY757674, AY757540

sect. Ceratocystis Dumort.
C. flava L. CANADA: Quebec, Mont Rigaud, Waterway

2001.086 (MTMG)
AY757596, AY757657, AY757523

C. viridula Michx. CANADA: Quebec, Bristol, Waterway 99.082
(MTMG)

AY757597, AY757658, AY757524

sect. Clandestinae G. Don
C. digitata L. UK: Lancashire, Silverdale, Eaves Wood, Black-

stock s. n. (MTMG)
AY757624, AY757684, AY757552

C. pedunculata Willd. CANADA: Quebec, Hudson, Waterway 2000.001
(MTMG)

AY757623, AY757683, AY757551

sect. Collinsiae (Mack.) Mack.
C. collinsii Nutt. USA: New Jersey: Bass River State Forest, Wa-

terway 98.086 (MTMG)
AY757616, AY757677, AY757543

sect. Depauperatae Meinsh.
C. depauperata Curtis ex With. (1) UK: ex hort Godalming, Surrey, UK garden,

ex hort Edge Hill, Phillips s. n. (MTMG)
AY757621, AY757549

(2) UK: Rich 01 (OXF) (AY241985)
sect. Griseae (L. H. Bailey) Kük.

C. hitchcockiana Dewey CANADA: Quebec, Ile Perrot, Waterway
2001.082 (MTMG)

AY757614, AY757675, AY757541

C. oligocarpa Willd. USA: Illinois, Union Co., Waterway 98.030
(MTMG)

AY757615, AY757676, AY757542

sect. Hallerianae (Asch. & Graebn.)
Rouy
C. tenax Dewey USA: Louisiana, Natchitoches Co., Hyatt 10401

(MTMG)
AY757610, AY757671, AY757537

sect. Hirtifoliae Reznicek
C. hirtifolia Mack. USA: Illinois, Union Co., Waterway 98.029

(MTMG)
AY757611, AY757672, AY757538
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Table 1. Continued.

Taxon Source/voucher GenBank numbers

sect. Hymenochlaenae (Drejer) L. H.
Bailey
C. cherokeensis Schwein. USA: Florida, Holmes Co., Waterway 2000.004

(MTMG)
AY757619, AY757680, AY757546

C. debilis Michx. USA: Florida, Holmes Co., Waterway 2002.043
(MTMG)

AY757608, AY757669, AY757535

C. mendocinensis W. Boott USA: California, Mendocino Co., Waterway
99.036 (MTMG)

AY757609, AY757670, AY757536

C. misera Buckley USA: North Carolina, Jackson Co., Waterway
2002.021 (MTMG)

AY757607, AY757668, AY757534

C. obispoensis Stacey USA: California, San Luis Obispo Co., Roalson
1413 (RSA)

AY757620, AY757681, AY757547

C. prasina Wahlenb. USA: Virginia, Rockbridge Co., Waterway
2000.080 (MTMG)

AY757593, AY757654, AY757520

C. sylvatica Huds. SWITZERLAND: forest near Basal, Lechowicz
s. n. (MTMG)

AY757599, AY757660, AY757526

sect. Lamprochlaenae (Drejer) L. H.
Bailey
C. glacialis Mack. CANADA: Quebec, 25 km N of Schefferville,

Waterway 2001.114 (MTMG)
AY757625, AY757685, AY757553

sect. Laxiflorae (Kunth) Mack.
C. albursina E. Sheld. USA: Illinois, Jackson Co., Waterway 98.050

(MTMG)
AY757626, AY757686, AY757554

C. blanda Dewey USA: Illinois, Jackson Co., Waterway 98.044
(MTMG)

AY757627, AY757687, AY757555

sect. Limosae (Heuff.) Meinsh.
C. limosa L. CANADA: Quebec, Chisasibi, Novo 1.15

(MTMG)
AY757595, AY757656, AY757522

C. magellanica Lam. subsp. irrigua
(Wahlenb.) Hiitonen

CANADA: Quebec, Schefferville region, Water-
way 97.090 (MTMG)

AY757594, AY757655, AY757521

sect. Longicaules Mack. ex Reznicek
C. whitneyi Olney USA: California, Shasta Co., Waterway 99.065

(MTMG)
AY757605, AY757666, AY757532

sect. Lupulinae J. Carey
C. grayi J. Carey USA: Illinois, Jackson Co., Waterway 98.036

(MTMG)
AY757580, AY757642, AY757507

C. intumescens Rudge USA: South Carolina, Monticello, Waterway
2000.014 (MTMG)

AY757579,AY757641, AY757506

C. lupulina Willd. CANADA: Quebec, Hull, Lac Leamy, Waterway
97.127 (MTMG)

AY757576, AY757638, AY757503

sect. Paludosae G. Don
C. acutiformis Ehrh. UK: ex hort Edge Hill, source: Lancashire, Sil-

verdale, Blackstock s. n. (MTMG)
AY757583, AY757644, AY757510

C. riparia Curtis UK: Warwickshire, Kenilworth Castle, Black-
stock s. n. (MTMG)

AY757571, AY757633, AY757498

C. vestita Willd. USA: New Hampshire, Rockingham Co., Water-
way 2001.088 (MTMG)

AY757581, AY757643, AY757508

sect. Paniceae G. Don
C. livida (Wahlenb.) Willd. USA: New Jersey, Burlington Co., Waterway

98.078 (MTMG)
AY757628, AY757688, AY757556

C. vaginata Tausch CANADA: Labrador, ca. 12 km E of Scheffer-
ville, Waterway 97.085 (MTMG)

AY757629, AY757689, AY757557

sect. Phacocystis Dumort.
C. aquatilis Lam. CANADA: Quebec, Lac St. François, Bérubé

99.009 (MTMG)
AY757590, AY757651, AY757517

C. crinita Wahlenb. CANADA: Quebec, Vaudreuil, Waterway 99.002
(MTMG)

AY757589, AY757650, AY757516

sect. Phyllostachyae Tuck. ex Kük.
C. backii Boot CANADA: Quebec, Mont St. Hilaire, Waterway

98.003 (MTMG)
AY757402, AY757398, AY757494,

AY757462
sect. Porocystis Dumort.

C. complanata Torr. & Hook. USA: South Carolina, Lancaster Co., Waterway
2000.010 (MTMG)

AY757604, AY757665, AY757531



VOLUME 23 169Phylogeny of Tribe Cariceae

Table 1. Continued.

Taxon Source/voucher GenBank numbers

C. pallescens L. CANADA: Quebec, Lac Memphremagog, Béru-
bé 99.019 (MTMG)

AY757612, AY757673, AY757539

C. swanii (Fernald) Mack. (1) USA: Illinois, Pope Co., Waterway 98.024
(MTMG)

AY757603, AY757530

(2) USA: Virginia, Floyd Co., Waterway
2000.134 (MTMG)

AY757664

C. virescens Willd. USA: Illinois, Saline Co., Waterway 98.012
(MTMG)

AY757606, AY757667, AY757533

sect. Racemosae G. Don
C. mertensii J. D. Prescott USA: Washington, Chelan Co., Waterway 97.054

(MTMG)
AY757592, AY757653, AY757519

C. stylosa C. A. Mey. CANADA: Quebec, Schefferville region, Water-
way 97.095 (MTMG)

AY757591, AY757652, AY757518

sect. Rhynchocystis Dumort.
C. pendula Huds. UK: Devon, Slapton Ley Field Centre, Watson-

Jones s. n. (MTMG)
AY757600, AY757661, AY757527

sect. Rostrales Meinsh.
C. folliculata L. USA: New Jersey, Burlington Co., Waterway

98.094 (MTMG)
AY757601, AY757662, AY757528

C. michauxiana Boeck. CANADA: Quebec, Mont Tremblant, Gold &
Pushkar 22 (MTMG)

AY757602, AY757663, AY757529

sect. Scirpinae (Tuck.) Kük.
C. scirpoidea Michx. (1) CANADA: Alberta, Jasper National Park,

Bayer AB-96010 et al. (WIN)
(AY241991)

(2) CANADA: Quebec, 25 km N of Scheffer-
ville, Waterway 2001.113 (MTMG)

AY757582, AY757509

sect. Shortianae (L. H. Bailey)
Mack.
C. shortiana Dewey USA: Illinois, Pope, Co., Waterway 98.023

(MTMG)
AY757586, AY757647, AY757513

sect. Spirostachyae (Drejer) L. H.
Bailey
C. punctata Gaudin UK: ex hort Sandy Hills Bay, Dumfries & Gallo-

way, ex hort Edge Hill, Smith s. n. (MTMG)
AY757598, AY757659, AY757525

sect. Squarrosae J. Carey
C. squarrosa L. USA: Illinois, Pope Co., Waterway 98.020

(MTMG)
AY757587, AY757648, AY757514

C. typhina Michx. USA: South Carolina, Manchester State Forest,
Waterway 2000.016 (MTMG)

AY757588, AY757649, AY757515

sect. Vesicariae (Heuff.) J. Carey
C. comosa Boott CANADA: Quebec, Iberville, St. Armand, Béru-

bé 99.035 (MTMG)
AY757575, AY757637, AY757502

C. hystericina Willd. USA: Virginia: Montgomery Co., Waterway
2000.096 (MTMG)

AY757574, AY757636, AY757501

C. oligosperma Michx. CANADA: Quebec, Schefferville region, Water-
way 2002.091 (MTMG)

AY757578, AY757640, AY757505

C. retrorsa Schwein. CANADA: Quebec, Hull, Lac Leamy, Waterway
97.125 (MTMG)

AY757577, AY757639, AY757504

C. schweinitzii Dewey USA: Virginia, Montgomery Co., Waterway
2000.101 (MTMG)

AY757572, AY757634, AY757499

C. tuckermanii Dewey CANADA: Quebec, Hull, Lac Leamy, Waterway
97.128 (MTMG)

AY757573, AY757635, AY757500

subgen. Psyllophora (Degl.) Peterm.
(! subgen. Primocarex Kük.)

sect. Aciculares (Kük.) G. A. Wheeler
C. acicularis Boott NEW ZEALAND: Fiordland, Southland Land

District, Ford 113/98 (FHO)
(AY242012, AY242013) AY757562

sect. Dornera Heuff.
C. nigricans C. A. Mey. (1) CANADA: British Columbia, Mount Revel-

stoke National Park, Ford 9720 (WIN)
(AY242042, AY242043)

(2) USA: Washington, Yen 0126 (WTU) (AF164929)
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Table 1. Continued.

Taxon Source/voucher GenBank numbers

sect. Leptocephalae L. H. Bailey
C. leptalea Wahlenb. USA: Maine, Oxford Co., Waterway 20001.099

(MTMG)
AY757630, AY757690, AY757559

sect. Leucoglochin Dumort.
C. parva Nees (1) CHINA: Yunnan, Diqing Prefecture, Aldén et

al. s. n., K.E.G. No. 1252 (E)
(AY244523, AY244524)

(2) CHINA: K.E.G. 174 (E) AF164935
C. pauciflora Lightf. CANADA: Quebec, 20 km N of Schefferville,

Waterway 2002.098 (MTMG)
AY757631, AY757691, AY757569

sect. Obtusatae (Tuck.) Mack.
C. obtusata Lilj. (1) CANADA: Manitoba, Portage Sand Hills,

Ford 9601 et al. (WIN)
(AY241981, AY241982)

(2) USA: Washington, Glew 96-0715PL (WTU) (AF164298)
sect. Psyllophora (Degl.) Koch

C. pulicaris L. UK: Yorkshire Dales National Park, Starr 98001
& Scott (FHO)

(AY242018, AY242019) AY757563

sect. Rupestres (Tuck.) Meinsch.
C. rupestris All. (1) FRANC: Col de Galibier, Playford 9801

(FHO)
(AY244521, AY244522)

(2) USA: Colorado, Yen 0133 (WTU) (AF164934)

subgen. Vignea (P. Bauv. ex Lestib. f.)
Peterm.

sect. Chordorrhizae (Heuff.) Meinsh.
C. chordorrhiza Ehrh. ex L. f. CANADA: Quebec, Schefferville region, Water-

way 2001.107 (MTMG)
AY757409, AY757389, AY757485,

AY757453
sect. Curvulae Tuck. ex Kük.

C. curvula All. FRANCE: Col du Galibier, Playford 9803 et al.
(FHO)

(AY242030, AY242031) AY757564

sect. Deweyanae (Tuck. ex Mack.) Mack.
C. bromoides Schkuhr ex Willd. CANADA: Quebec, Mont St. Hilaire, Waterway

98.004 (MTMG)
AY757404, AY757378, AY757474,

AY757442
C. deweyana Schwein. CANADA: Quebec, Mont St. Hilaire, Waterway

98.005 (MTMG)
AY757412, AY757379, AY757475,

AY757443
sect. Dispermae Ohwi

C. disperma Dewey CANADA: Quebec, Mont Tremblant, Bond s. n.
(MTMG)

AY757414, AY757393, AY757489,
AY757457

sect. Foetidae (Tuck. ex L. H. Bailey)
Kük.
C. maritima Gunnerus CANADA: Yukon, Kluane Lake, Waterway

96.098 (MTMG)
AY757421, AY757397, AY757493,

AY757461
sect. Glareosae G. Don

C. brunnescens (Pers.) Poir. USA: Maine, Oxford Co., Waterway 2001.100
(MTMG)

AY757405, AY757385, AY757481,
AY757449

C. canescens L. CANADA: Quebec, Mont Tremblant, Bond s. n.
(MTMG)

AY757406, AY757384, AY757480,
AY757448

C. heleonastes L. f. CANADA: Quebec, Schefferville region, Water-
way 97.078 (MTMG)

AY757418, AY757388, AY757484,
AY757452

C. tenuiflora Wahlenb. CANADA: Quebec, Schefferville region, Water-
way 97.079 (MTMG)

AY757427, AY757386, AY757482,
AY757450

C. trisperma Dewey CANADA: Quebec, Duhamel near Lac Doré,
Bérubé 99.032 (MTMG)

AY757429, AY757387, AY757483,
AY757451

sect. Heleoglochin Dumort.
C. decomposita Muhl. USA: South Carolina, Manchester State Forest,

Waterway 2000.011 (MTMG)
AY757411, AY757376, AY757472,

AY757440
C. diandra Schrank JAPAN: Hokkaido, Kushiro Mire, Waterway

4009 (MTMG)
AY757413, AY757377, AY757473,

AY757441
sect. Multiflorae (J. Carey) Kük.

C. vulpinoidea Michx. USA: California, Mendocino Co., Waterway
99.033 (MTMG)

AY757430, AY757372, AY757468,
AY757436

sect. Ovales Kunth
C. bicknellii Britton CANADA: Quebec, cultivated in greenhouse,

Waterway s. n. (MTMG)
AY757403, AY757392, AY757488,

AY757456
C. projecta Mack. USA: Maine, Oxford Co., Waterway 2001.097

(MTMG)
AY757423, AY757391, AY757487,

AY757455
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Table 1. Continued.

Taxon Source/voucher GenBank numbers

C. tribuloides Wahlenb. CANADA: Quebec, St. Lazare, Waterway
2001.143 (MTMG)

AY757428, AY757390, AY757486,
AY757454

sect. Phaestoglochin Dumort.
C. appalachica J. M. Webber &

P. W. Ball
CANADA: Quebec, Mont St. Hilaire, Bérubé

99.008 (MTMG)
AY757401, AY757394, AY757490,

AY757458
C. cephaloidea (Dewey) Dewey USA: Maine, Essex Co., Waterway 2001.087

(MTMG)
AY757407, AY757369, AY757465,

AY757433
C. cephalophora Muhl. ex Willd. USA: Maine, Essex Co., Waterway 2001.092

(MTMG)
AY757408, AY757370, AY757466,

AY757434
C. muehlenbergii Schkuhr ex Willd. USA: Arkansas, Izard Co., Waterway 2001.023

(MTMG)
AY757422, AY757371, AY757467,

AY757435
C. radiata (Wahlenb.) Small CANADA: Quebec, Baie d’Urfé, Montreal, Wa-

terway 99.006 (MTMG)
AY757424, AY757396, AY757492,

AY757460
C. rosea Schkuhr ex Willd. CANADA: Quebec, Mont St. Hilaire, Lechowicz

s. n. (MTMG)
AY757425, AY757395, AY757491,

AY757459
sect. Physoglochin Dumort.

C. gynocrates Wormsk. ex Drejer CANADA: Quebec, Schefferville region, Dabros
s. n. (MTMG)

AY757417, AY757383, AY757479,
AY757447

sect. Stellulatae Kunth
C. echinata Murray USA: Maine, Oxford Co., Waterway 2001.101

(MTMG)
AY757415, AY757381, AY757477,

AY757445
C. exilis Dewey CANADA: Quebec, Schefferville region, Water-

way 2001.103 (MTMG)
AY757416, AY757382, AY757478,

AY757446
C. interior L. H. Bailey CANADA: Quebec, Schefferville region, Water-

way 97.087 (MTMG)
AY757419, AY757380, AY757476,

AY757444
sect. Vulpinae (Heuff.) H. Christ

C. crus-corvi Shuttlew. USA: Illinois, Jackson Co., Waterway 98.037
(MTMG)

AY757410, AY757373, AY757469,
AY757437

C. laevivaginata (Kük.) Mack. USA: Virginia, Waterway 2000.082 (MTMG) AY757420, AY757374, AY757470,
AY757438

C. stipata Muhl. ex Willd. USA: California, Plumas Co., Waterway 99.072
(MTMG)

AY757426, AY757375, AY757471,
AY757439

subgen. Vigneastra (Tuck.) Kük.
(! subgen. Indocarex (Baill.) Kük.)

sect. Baccantes (T. Koyama) P. C. Li
C. baccans Nees TAIWAN: Wu Lai, Taipei, Yen 078 (WTU) (AF027449, AF027488, AY241994,

AF191814)
sect. Indicae Tuck.

C. cruciata Wahlenb. MALAYSIA: Mulu National Park, Sarawak, Yen
075 (WTU)

(AF027450, AF027489, AY241995)
AY757558

C. filicina Nees (1) TAIWAN: Yang Ming Shan National Park,
Da Tun Shan, Yen 076 (WTU)

(AY241996, AY241997)

(2) CHINA: Sichuan, Boufford & Bartholomew
24364 (RSA)

(AF284879)

C. echinochloe Kunze KENYA: Muasya 1051 (K) (AY241992, AY241993, AF191818)
sect. Polystachyae Tuck.

C. polystachya Sw. (1) BELIZE: Cayo District, Jones 11275 & Wipff
(MICH)

(AF027448, AF027487, AY241998)

(2) BRAZIL: Federal District, Irwin et al. 26503
(RSA)

(AF284912)

Cymophyllus Mack.

C. fraserianus (Ker Gawl.) Kartesz
& Gandhi

(1) USA: Tennessee, Blount Co., along road to
Cades Cove, Sharp s. n. (cultivated at K),
Starr 98024 ex RBG Kew (FHO)

(AY241969, AY241970)

(2) USA: Tennessee, Carter Co., Waterway
2000.113 (MTMG)

AY757431, AY757399, AY757495,
AY757463

Kobresia Willd.

subgen. Compositae (C. B. Clarke)
Kukkonen

K. laxa Nees (1) INDIA: Sikkim, North District, Long & Nol-
tie s. n., E.E.N.S. No. 211 (E)

(AY241975, AY241976)

(2) INDIA: McBeach 2325 (E) (AF164943)
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Table 1. Continued.

Taxon Source/voucher GenBank numbers

subgen. Kobresia

sect. Hemicarex (Benth.) C. B. Clarke
K. esenbeckii (Kunth) Noltie INDIA: Sikkim, West District, Bikbari, Long et

al. s. n., E.S.I.K. No. 335 (E)
(AY242032, AY242033) AY757565

K. nepalensis (Nees) Kük. INDIA: Sikkim, North District, Long & Noltie,
E.E.N.S. No. 291 (E)

(AY242034, AY242035) AY757567

sect. Kobresia
K. myosuroides (Vill.) Fiori (1) FRANCE: Col du Galibier, Playford 9804 et

al. (FHO)
(AY242036, AY242037) AY757566

(2) USSR: Siberia, Elias et al. 7337 (RSA) (AF284985)
K. schoenoides (C. A. Mey.) Steud. INDIA: Sikkim, West District, Chhoptha,

E.S.I.K. No. 647 (E)
(AY242038, AY242039) AY757568

K. simpliciuscula (Wahlenb.) Mack. (1) CANADA: British Columbia, Yoho National
Park, Ford 9710 (FHO)

(AY241971, AY241972)

(2) USA: Colorado, Weber & Cooper 1803
(COLO)

(AF164948)

Schoenoxiphium Nees

S. filiforme Kük. (1) SOUTH AFRICA: Eastern Cape, Drakens-
bergs, Phillipson 666 (PRE)

(AY242020, AY242021)

(2) SOUTH AFRICA: Browning 699 (NU) (AF164951)
S. lehmannii (Nees) Steud. SOUTH AFRICA: Natal Province, Ngoye Forest

Reserve, Williams 1007 (PRE)
(AY242026, AY242027) AY757560

S. sparteum (Wahlenb.) C. B. Clarke SOUTH AFRICA: Orange Free State, Lady-
brand, de Lange FA 57 (PRE)

(AY242022, AY242023), AY757561

Uncinia Pers.

subgen. Eu-Uncinia Kük.

sect. Platyandrae C. B. Clarke
U. phleoides (Cav.) Pers. (1) CHILE: Isla Grande de Chiloé, P. N. de Chi-

loé, Vann 9801 (FHO)
(AY012670, AY012671)

(2) CHILE: Hortus Botanicus Valdivensis (WTU) (AF164931)
U. uncinata Kük. (1) NEW ZEALAND: North Island, Auckland

Ecological Region, de Lange s. n., AK226837
(AK)

(AY242054, AY244543)

(2) USA: Hawaii, Millam s. n. (WTU) (AF164932)
U. brevicaulis Thouars (1) ST. HELENA: Tristan da Cunha, Inaccessible

Island, Christophersen 2473 (BM)
(AY244533)

(2) ST. HELENA: Tristan da Cunha, above
Burntwood, Dickson 25 (AAS)

(AY244534)

(3) CHILE: San Fernandez Island, Solbrig 3647
(RSA)

(AF284885)

Outgroups

Eriophorum vaginatum L. (1) UK: Starr 98007 & Scott (FHO) (AY242008, AY242009)
(2) CANADA: Quebec, Schefferville

region, Waterway 2002.094 (MTMG)
AY757692

Scirpus polystachyus F. Muell. AUSTRALIA: New South Wales, Wilson s. n.
(MWC 5927) (K)

(AY242010, AY242011)

AUSTRALIA: Pullen 4091 (K) (AJ295813)

Trichophorum alpinum (L.) Pers. CANADA: Quebec, Schefferville region, Water-
way 2001.110 (MTMG)

AY757432, AY757400, AY757496,
AY757464

most ITS and all ETS-1f sequencing reactions. Either the
ABI PRISM Dye Terminator Cycle Sequencing Ready Re-
action Kit with AmpliTaq DNA polymerase FS (Perkin-El-
mer Applied Biosystems, Wellesley, Massachusetts, USA) or
the ABI PRISM Big Dye! Cycle Sequencing Kits, vers. 1.0,
1.1, 2.0, or 3.1 (Applied Biosystems, Foster City, California,
USA) were used for the chloroplast DNA (cpDNA) sequenc-

ing reactions and some ITS sequencing. The double-stranded
amplification products were sequenced in both directions us-
ing the amplification primers and internal primers ‘‘d’’ and
‘‘e’’ (Taberlet et al. 1991) for the trnL–trnF region, using
the ITS amplification primers and internal primers ITS-2 and
ITS-3 (White et al. 1990) for ITS, and using amplification
primers only for ETS-1f. Dye terminators were removed us-
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ing the ethanol precipitation methods recommended by the
manufacturers. Sequencing reactions were run on ABI 373,
ABI 377, or ABI 310 automated DNA sequencers (Applied
Biosystems). Sequenced fragments were edited and assem-
bled using Sequencher! vers. 3.0 (Gene Codes Corporation,
Ann Arbor, Michigan, USA). All sequences reported for the
first time in this paper (ITS, ETS-1f, trnL–trnF region, and
trnE–trnD region for 93, 91, 104, and 31 species of Cari-
ceae, respectively, plus all four gene regions for Trichopho-
rum alpinum and only trnL–trnF region for Eriophorum va-
ginatum) are deposited in GenBank (Table 1). Sequence data
from GenBank was used for 15 species for the trnL–trnF
region and for the previously published ETS-1f and ITS se-
quences of Starr et al. (1999, 2003, 2004, in press) (Table
1).

Data Analysis

Alignment and indel coding.—Sequences were assembled
into two data matrices for analysis: one incorporating ITS,
ETS-1f, and trnL–trnF data for 97 taxa of Cariceae, along
with Eriophorum vaginatum and Scirpus polystachyus as
outgroups; and the second with sequences of the trnE–trnD
intergenic spacer added to the other gene regions for 29 taxa
of subgen. Vignea, plus Carex backii, Cymophyllus fraseri-
anus, and Trichophorum alpinum as outgroups. Sequences
were aligned using CLUSTAL"X (Thompson et al. 1997),
with subsequent minor adjustments. Small areas where
alignments could not be unambiguously chosen were re-
moved from the data set before analysis (45 total aligned
bases from the three gene regions for the 99-taxon data ma-
trix and 13 total aligned bases from the four gene regions
for the Vignea data matrix). Gaps in the alignment repre-
senting putative insertion or deletion events (indels) were
coded using the ‘‘simple gap coding’’ method of Simmons
and Ochoterena (2000) as implemented in the computer pro-
gram GapCoder (Young and Healy 2003). We included the
coded indels in all parsimony analyses.

Parsimony analysis.—For the 99-taxon data matrix, heuristic
searches under the criterion of maximum parsimony were
conducted in PAUP* vers. 4.0b10 (Swofford 2002) using
100 random addition-sequence replicates with tree-bisection-
reconnection (TBR) branch-swapping and multiple trees
saved from each replication (MULTREES ! yes). We used
two methods to estimate bootstrap support (BS) (Felsenstein
1985) for the tree topology: 100 bootstrap replicates with the
‘‘MULTREES ! yes’’ setting, TBR branch-swapping, and
30-min time restrictions on each replicate and 5000 boot-
strap replicates with the ‘‘MULTREES ! no’’ option, TBR
branch-swapping, and no time restrictions. The two methods
supported exactly the same clades at percentages that were
within 5% of each other, confirming the claim of DeBry and
Olmstead (2000) about the reliability of the second, much
faster method. For the Vignea data matrix, heuristic searches
were conducted in the same way but with 1000 random ad-
dition-sequence replicates. One hundred bootstrapping rep-
lications, each with 100 addition-sequence replicates, saving
multiple trees from each replicate, and without time restric-
tion were used to evaluate clade support. Based on simula-
tion studies of Hillis and Bull (1993) and Huelsenbeck et al.
(1996), we use the following terms to describe the strength

of clade support: strong (95–100% BS), very good or very
well (85–94% BS), good or well (75–84% BS), moderate
(65–74% BS), poor or weak (55–64% BS), and very poor
or very weak ("55% BS).

We also analyzed the 99-taxon data matrix independently
for each gene region, including the associated indels, using
the maximum parsimony criterion. In each case, the smaller
number of informative characters made it difficult to thor-
oughly analyze a matrix with 99 species. After preliminary
trials with searches constrained by limits on time spent
branch-swapping each replicate or on the maximum number
of trees saved, heuristic searches using ten time-limited, ran-
dom addition-sequence replicates were used to determine the
topology of the strict consensus tree when each gene region
was analyzed alone. Statistical support for branches on these
trees was assessed using 5000 bootstrap replicates with TBR
branch-swapping but with the ‘‘MULTREES ! no’’ option
in effect (cf. DeBry and Olmstead 2000).

Bayesian analysis.—We also used Bayesian analysis (Huel-
senbeck and Ronquist 2001) to estimate the topology of the
phylogenetic trees calculated from each data matrix using
the computer program MrBayes vers. 3.06 (Ronquist and
Huelsenbeck 2003). We used four incrementally heated Me-
tropolis-coupled Monte Carlo Markov chains with prior
probabilities set using a general time-reversible evolutionary
model (GTR # I # G) incorporating fixed values for the
proportion of invariant sites and the shape of the gamma
distribution to estimate variation in substitution rate across
sites as chosen by MODELTEST vers. 3.06 (Posada and
Crandall 1998). We ran the analysis twice for 600,000 gen-
erations each time, sampling one tree each 100 generations.
For each analysis, we used the last 5000 of these trees to
compute a consensus tree to estimate posterior probabilities
of the clades. For one of these consensus trees, PAUP* vers.
4.0b10 (Swofford 2002) was used to calculate a likelihood
ratio test of the null hypothesis that branch lengths were not
significantly different from zero (setting ZEROLENTEST !
full), using the model parameters from the Bayesian analysis
as the likelihood settings. We also ran the Bayesian analysis
twice using the general time reversible model with rates set
to the gamma distribution but without specific fixed param-
eters. The topologies of all four consensus trees were nearly
identical and clade posterior probabilities were no more than
7% different at any node.

Maximum likelihood analysis.—We used the same model pa-
rameters for the GTR # I # G model as chosen by MO-
DELTEST vers. 3.06 (Posada and Crandall 1998) for the
Vignea data matrix to calculate a maximum likelihood anal-
ysis with TBR branch-swapping using PAUP* vers. 4.0b10
(Swofford 2002). The 99-taxon data matrix was too large to
make such an analysis feasible within the constraints of time
and computer hardware available.

Partition homogeneity test.—For the Vignea data set, an in-
congruence-length difference (ILD) test (Farris et al. 1994,
as implemented in PAUP* vers. 4.0b10) using 100 random
partitions was conducted with the data partitioned into three
gene regions: ITS, ETS-1f, and cpDNA (including both
trnL–trnF and trnE–trnD regions). Attempts to conduct the
same test for the 99-taxon data matrix were unsuccessful due
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Table 2. Description of data matrix used for the phylogenetic analyses of 97 taxa of Cariceae plus Eriophorum vaginatum and Scirpus
polystachyus as outgroups. The ITS-1 ! ITS-2 region includes 5 bp at the 5"-end and 17 bp at the 3"-end of the 5.8S ribosomal gene. The
trnL–trnF region includes the trnL intron, part of the trnL exon (51 bp), and the trnL–trnF intergenic spacer.

Feature/gene region ITS-1 ! ITS-2 ETS-1f trnL–trnF region All

Aligned length (bp) 569 637 1292 2498

Length range (bp)

Including outgroups
Within Cariceae

447–534
447–480

528–602
584–601

957–1052
957–1052

Base frequencies (%)

A:C:G:T 16:35:33:16 14:27:30:28 39:13:13:35 27:22:22:29

Autapomorphies, # (%)

Including outgroups
Within Cariceae

67 (12.2)
63 (11.4)

124 (19.9)
120 (19.3)

150 (11.7)
137 (10.7)

341 (13.9)
320 (13.0)

Parsimony-informative
sites, # (%)

Including outgroups
Within Cariceae

188 (34.2)
183 (33.3)

294 (47.3)
281 (45.2)

163 (12.7)
148 (11.6)

645 (26.3)
612 (24.9)

Indels (#)

Including outgroups 69 70 96 235
Within Cariceae 58 63 85 206

Parsimony-informative
indels, # (%)

Including outgroups
Within Cariceae

32 (46.4)
25 (43.1)

45 (64.3)
36 (57.1)

39 (40.6)
35 (41.2)

116 (49.4)
96 (46.6)

Excluded (ambiguous
sites) 19 15 11 45

to the time required for branch-swapping, given the small
number of informative characters when the trnL–trnF data
set was used alone (cf. Table 2).

RESULTS

Descriptive Statistics

A summary of the characteristics of both individual and
combined sequence data from each gene region for the 99-
taxon data set is given in Table 2. Note that the base com-
position varies dramatically between noncoding regions of
cpDNA, with mean G:C content of 26% (percentage of gua-
nine : cytosine paired bases) and the spacer regions of the
nuclear ribosomal genes, with mean G:C content 68% in ITS
and 57% in ETS-1f). Although more nucleotides of cpDNA
are sampled, there are fewer parsimony-informative sites
than for either ITS or ETS-1f but a comparable number of
informative indels from each region. A large proportion of
the polymorphism is found within tribe Cariceae, making
this combined data matrix very suitable for estimating phy-
logenetic structure within the tribe. Mean pairwise differ-
ences between species are comparable for ITS and ETS-1f
and about five-fold greater than for the trnL–trnF region
(Table 3). Two pairs of closely related species (C. comosa/
C. hystericina and C. squarrosa/C. shortiana) had identical
sequences for both the trnL intron and the trnL–trnF inter-
genic spacer.

Characteristics of individual and combined sequence data
for the Vignea data matrix are summarized in Table 4. The
mean G:C content for the trnE–trnD intergenic spacer is

31%, somewhat higher than the 26% estimate for the trnL–
trnF region, while base frequencies for ITS and ETS-1f are
comparable but with slightly lower G:C content compared
to the larger data matrix. The relative proportions of parsi-
mony-informative sites across the three gene regions are
comparable to those in the 99-taxon data set, but the absolute
percentages of informative sites are substantially lower in
the smaller data matrix, reflecting the lower level of mor-
phological variability represented within subgen. Vignea
when compared with the entire tribe Cariceae. Note, how-
ever, that the proportions of informative indels are compa-
rable (trnL–trnF) or higher (ITS and ETS-1f) for the Vignea
data than for the Cariceae matrix.

Variability Between Closely Related Species

Levels of variability between closely related species dif-
fered among clades and among gene regions. The four pairs
of presumed close relatives in subgen. Vignea had very low
levels of variation within each species pair, but few differ-
ences among gene regions. Three of these pairs (C. brun-
nescens/C. canescens, C. interior/C. echinata, and C. lae-
vivaginata/C. stipata) had identical ITS sequences and only
one mutation each for ETS and the trnL–trnF region. The
fourth pair in subgen. Vignea (C. projecta/C. tribuloides)
had identical ETS sequences, one mutation for ITS and two
mutations in the trnL–trnF region. Only the C. brunnescens/
C. canescens pair had a mutation in the trnE–trnD gene re-
gion.

Variation between species within presumed closely related



VOLUME 23 175Phylogeny of Tribe Cariceae

Table 3. Comparison of variability among the three gene regions used for phylogenetic analyses of 97 taxa of tribe Cariceae using
Eriophorum vaginatum and Scirpus polystachyus as outgroups. The ITS-1 ! ITS-2 region includes 5 bp at the 5"-end and 17 bp at the 3"-
end of the 5.8S ribosomal gene. The trnL–trnF region includes the trnL intron, part of the trnL exon (51 bp), and the trnL–trnF intergenic
spacer. Clade names follow Fig. 2.

Feature/gene region ITS-1 ! ITS-2 ETS-1f trnL–trnF region All

Pairwise distances

Outgroups included

Mean (%)
Range (%)

9.0
0.4–17.1

10.4
0.5–21.6

2.3
0–8.5

6.1
0.4–3.8

Cariceae only

Mean (%)
Range (%)

8.8
0.4–16.3

10.1
0.5–21.3

2.1
0–6.1

5.9
0.4–11.6

Core Carex clade only

Mean (%)
Range (%)

6.6
0.4–12.3

6.6
0.5–13.2

1.4
0–4.0

4.0
0.5–7.3

Vignea clade only

Mean (%)
Range (%)

6.5
3.5–9.8

6.5
3.1–10.9

1.2
0.3–3.2

3.4
2.7–5.6

Caricoid clade only

Mean (%)
Range (%)

8.5
0.9–14.2

9.8
0.7–14.8

1.9
0–0.4

5.7
0.4–9.2

pairs was higher in subgen. Carex, with more variability
among gene regions. For the trnL–trnF region, all six of the
pairs had 1–4 mutations. Three of the pairs (C. flava/C. vir-
idula, C. fissuricola/C. luzulifolia, and C. swanii/C. vires-
cens) also had low levels of variation for ITS (2–7 muta-
tions) and for ETS (4–12 mutations). Other species pairs
within the clade that included C. swanii and C. virescens
also had very low levels of variation with pairwise distances
between species in this clade ranging from 0.5 to 1.7% with
a mean of only 1.04%. The other three pairs of close rela-
tives were more variable with 16–24 ITS mutations and 13–
28 ETS mutations each. The C. squarrosa/C. typhina pair
was most variable, followed by C. folliculata/C. michauxi-
ana, and C. albursina/C. blanda.

Phylogenetic Estimates Using the 99-Taxon Data Matrix

After removal of a few small areas where alignment was
ambiguous, the combined 99-taxon data matrix with ITS,
ETS-1f, trnL intron, and the trnL–trnF intergenic spacer se-
quences had 2453 nucleotide characters and 235 indels with
761 of the total being parsimony informative (Table 2). Par-
simony analysis of this combined data set using 100 random
addition-sequence replicates yielded 187 most-parsimonious
trees in 36 islands, 14 of which had only one tree. Each tree
had a length of 4105, with a consistency index (CI) of 0.410,
and a retention index (RI) of 0.652. One of the most-parsi-
monious trees, corresponding closely to the 50% majority-
rule consensus tree, is shown in Fig. 1. With the exception
of clade D3, lettered clades were supported by bootstrap val-
ues greater than 55% (Fig. 1) in both the time-restricted anal-
ysis where multiple trees were saved and the faster bootstrap
method where only one tree was saved from each replicate.
Variation among these trees was principally in two regions:
minor rearrangements in clade D4b where branch lengths
were generally very short and average p-distance between

taxa was only one percent, and several rearrangements in
clade A, particularly with respect to placement of Carex lep-
talea, Kobresia laxa, and K. simpliciuscula.

Bayesian analysis of the same combined data matrix using
a general time-reversible model (GTR ! I ! G) as chosen
by running MODELTEST vers. 3.06 (Posada and Crandall
1998) resulted in a fully resolved tree (Fig. 2: ln likelihood
# $24037.92562) quite similar to the 50% majority-rule
consensus tree resulting from parsimony analysis. Each of
the lettered clades had Bayesian posterior probabilities of
98% or greater. Additional clades with bootstrap support less
than 70% in the parsimony analysis also had high posterior
probabilities in the Bayesian analysis (%80%) (Fig. 2). Like-
lihood ratio tests could not reject the null hypothesis that a
branch was of length zero for nine branches of the tree
(shown as dotted lines in Fig. 2), including the branch sup-
porting the monophyly of clade C ! D, the deepest branch
within clade A, six interior branches of clade D, and one
interior branch of clade C.

Relationships Among Major Clades in the Combined
Analysis

Clade A (the Core Unispicate Clade), comprising repre-
sentatives of Kobresia, Uncinia, Cymophyllus fraserianus,
and several unispicate Carex as well as C. curvula is weakly
supported in the parsimony analysis (BS # 59%) but strong-
ly supported (100%) in the Bayesian analysis. Three sub-
clades within this clade received strong support in both ana-
lyses: Cymophyllus fraserianus/Carex backii, four Kobresia
species, and three Uncinia species.

Clade B (the Schoenoxiphium Clade), with three represen-
tatives of Schoenoxiphium and two unispicate carices, re-
ceives moderate support in parsimony analysis and strong
support in Bayesian analysis. The Bayesian analysis further
supports a sister-group relationship between clades A and B
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Table 4. Comparison of gene regions used for the phylogenetic analyses of 29 taxa of Carex subgen. Vignea using Carex backii,
Cymophyllus fraserianus, and Trichophorum alpinum as outgroups. Percentages of autapomorphies and parsimony-informative sites are
calculated based on the number of nucleotides included in the analysis from each gene region; percentages of parsimony-informative indels
are calculated based on the total number of indels for each gene region. The trnL–trnF region includes the trnL intron, part of the trnL
exon (51 bp), and the trnL–trnF intergenic spacer. The trnE–trnD region includes the tRNA-Tyrosine gene (84 bp), which has only a single
nucleotide substitution in the data set.

Feature/gene region ITS-1 ! ITS-2 5.8S ETS-1f
trnL–trnF

region
trnE–trnD

region All

Aligned length (bp) 476 166 613 1089 678 3022

Length range (bp)

Outgroups included
Within subgen. Vignea

441–461
441–446

166
166

551–598
592–598

1004–1039
1004–1034

626–637
626–637

Autapomorphies # (%)

Including outgroups
Within subgen. Vignea

74 (15.5)
64 (13.4)

3
2

96 (15.7)
65 (10.6)

82 (7.5)
37 (3.4)

55 (8.1)
28 (4.2)

310 (10.3)
196 (6.5)

Parsimony-informative
sites, # (%)

Including outgroups
Within subgen. Vignea

112 (23.5)
91 (19.1)

1
1

166 (27.1)
129 (21.0)

50 (4.6)
36 (3.3)

36 (5.3)
27 (4.1)

365 (12.1)
284 (9.4)

Indels #

Including outgroups
Within subgen. Vignea

22
17

0
0

32
14

31
20

15
11

100
62

Parsimony-informative
indels, # (%)

Including outgroups
Within subgen. Vignea

11 (50.0)
7 (41.2)

0
0

17 (53.1)
8 (57.1)

13 (41.9)
9 (45.0)

5 (33.3)
5 (45.5)

46 (46.0)
29 (46.8)

Excluded (ambiguous sites) 0 0 0 0 13 13

Base frequencies (%)

A:C:G:T 19:32:32:17 24:27:29:20 15:24:30:31 39:13:13:36 34:16:15:36 29:19:21:31

Pairwise distances

Outgroup included

Mean (%)
Range (%)

8.2
0–18.7

N/A
N/A

8.4
0–20.4

1.5
0–5.8

1.8
0–7.9

4.0
0.1–10.3

Within subgen. Vignea

Mean (%)
Range (%)

7.1
0–12.0

N/A
N/A

6.8
0–11.4

1.0
0–2.3

1.2
0–2.8

3.2
0.1–5.2

with strong support for their monophyly (to form the Cari-
coid Clade). In contrast, clade B is placed as sister to clades
C ! D in the 50% majority-rule consensus tree and in the
parsimony tree shown in Fig. 1, but this relationship has
very weak bootstrap support.

Clade C (the Vignea Clade) recovers all species of subgen.
Vignea included in the analysis except for C. curvula. It also
confirms the inclusion of sect. Physoglochin within subgen.
Vignea, with C. gynocrates well nested within this clade, as
C. dioica L. has been in other studies (Yen and Olmstead
2000a; Heindrichs et al. 2004b; Starr et al. 2004). Clade C
receives very strong support in both parsimony and Bayesian
analyses. Support for some of the relationships within the
Vignea Clade is also strong-to-moderate in both analyses,
suggesting the polyphyly of sect. Phaestoglochin and a clos-
er relationship of the gynecandrous sect. Glareosae to an-
drogynous species than to the other gynecandrous groups
represented (sects. Ovales and Stellulatae).

Clade D (the Core Carex Clade), including all represen-
tatives of subgen. Carex and Vigneastra, as well as the un-

ispicate C. scirpoidea, receives strong support in both par-
simony and Bayesian analyses. The five species of subgen.
Vigneastra are placed into four different subclades, illus-
trating the polyphyly of this subgenus. Carex cruciata is
very well to strongly supported as sister to the rest of clade
D, suggesting that at least one group of Vigneastra may be
basal to the remaining Carex/Vigneastra clade.

Although clades C and D appear as sister groups in both
analyses, this relationship has bootstrap support of only 50%
(Fig. 1) and Bayesian posterior probability of only 67% (Fig.
2). A likelihood ratio test could not reject the null hypothesis
(P " 0.083) that the branch supporting this grouping has a
length of zero. Similarly, no clear relationships among any
of the four major clades are supported by either analysis,
with the exception of support for the monophyly of clades
A and B in the Bayesian analysis.

Relationships Within the Core Carex Clade

Within clade D, four major clades are supported in the
Bayesian analyses (Fig. 2), two with very strong bootstrap
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Fig. 1.—One of 187 shortest trees based on parsimony analysis with 100 random addition-sequence replicates of a combined matrix of
ITS, ETS-1f, and trnL–trnF gene regions for 99 taxa including two outgroup species. Numbers above branches indicate bootstrap values
based on 100 replicates. Current sectional placement for Carex species in clades C and D is indicated on the right side of the diagram
with nomenclature following Ball and Reznicek (2002) for North American species and Jermy et al. (1982) or Egorova (1999) for Eurasian
species. Clades coded with letters and numbers in bold and having bootstrap support !55% (with the exception of D3) are discussed in
the text.
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Fig. 2.—Phylogram based on consensus of 5000 trees sampled in a Bayesian analysis of ITS, ETS-1f, and trnL–trnF sequence data for
99 taxa using a GTR ! I ! G model with parameters as chosen by MODELTEST vers. 3.06. Numbers above the branches represent clade
Bayesian posterior probabilities. Closed circles in crowded areas of the tree represent posterior probabilities greater than 95%; dotted lines
indicate branches with lengths not statistically different from zero. Clades are numbered and lettered to match Fig. 1 and names for the
major clades as used in the text are given on the right.
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support, one with weak bootstrap support, and one with very
weak support in parsimony analysis (Fig. 1). Clade D1 com-
prises members of sects. Laxiflorae and Paniceae with spe-
cies of Paniceae forming a grade basal to a monophyletic
Laxiflorae. This clade has 100% bootstrap support, as well
as a Bayesian posterior probability of 100%. Clade D2 re-
ceives equally strong support in both analyses. It includes a
rather surprising assemblage of species with members of
sects. Careyanae and Griseae supported as monophyletic
and sister to Carex collinsii in the monotypic sect. Collin-
siae. The sister-group relationship between this assemblage
and a strongly supported monophyletic sect. Aulocystis is
also strongly supported.

Clade D3 is strongly supported in the Bayesian analysis
(98%) and is frequently recovered in the parsimony analysis
but with very weak bootstrap support (BS ! 38%). Three
subclades within this clade are strongly supported by both
analyses: Carex cherokeensis plus C. obispoensis from sect.
Hymenochlaenae, C. polystachya plus C. filicina (sects. Po-
lystachyae and Indicae, both from subgen. Vigneastra), and
C. depauperata (sect. Depauperatae) plus C. collumanthus
(sect. Abditispicae). A fourth grouping within clade D3 has
moderate Bayesian support and weak bootstrap support, in-
dicating a possible relationship between C. pensylvanica
(sect. Acrocystis), C. baccans (sect. Baccantes subgen. Vig-
neastra), and C. glacialis (sect. Lamprochlaenae). Carex
digitata (sect. Clandestinae) is also part of clade D3.

Clade D4 includes the largest set of species in the sample
and has four well-supported subclades. Bootstrap support is
weak for this large clade, but it has a posterior probability
of 100% in the Bayesian analysis. Within this clade there is
very good to strong support for subclade D4a, with repre-
sentatives from five different sections. Four strongly sup-
ported monophyletic pairs form this group: Carex flava and
C. viridula (sect. Ceratocystis), C. sylvatica (sect. Hymen-
ochlaenae) with C. pendula (sect. Rhynchocystis), C. folli-
culata plus C. michauxiana (sect. Rostrales [! Folliculatae
Mack.]) and C. punctata (sect. Spirostachyae) plus C. echin-
ochloe (subgen. Vigneastra sect. Indicae). No clear relation-
ships among any of these pairs are apparent.

Clade D4b has 100% support in both analyses and in-
cludes North American species from sects. Hymenochlae-
nae, Porocystis, Longicaules, Hallerianae, and Hirtifoliae.
Carex pallescens (sect. Porocystis), with a broad temperate
distribution in eastern North America and Eurasia, is sister
to this group in the parsimony tree, but without bootstrap
support. In the Bayesian tree, C. pallescens groups instead
with C. acutiformis (sect. Paludosae) with strong support.

The larger clade that includes clade D4c is strongly sup-
ported in the Bayesian analysis and frequently recovered in
the parsimony analysis but with bootstrap support of less
than 50%. It includes one well-supported clade (D4d) de-
scribed below, which is sister to a clade with poor support
in both analyses. The latter group includes two well-sup-
ported subclades: a monophyletic species pair from sect. Li-
mosae, and clade D4c comprising C. squarrosa, C. typhina
(both sect. Squarrosae), and C. shortiana (sect. Shortianae).
Two species of the large sect. Phacocystis, C. aquatilis, and
C. crinita, are supported as a monophyletic group in the
Bayesian analysis but have very weak bootstrap support in
the parsimony analysis. In the latter analysis, C. aquatilis

forms a clade with C. mertensii (sect. Racemosae) more of-
ten than with C. crinita but with very weak bootstrap sup-
port. Clade D4d is strongly supported in both analyses and
includes species from sects. Carex, Lupulinae, Paludosae,
and Vesicariae. Relationships within this clade also receive
strong-to-moderate support in both analyses suggesting that
sects. Lupulinae and Vesicariae are not monophyletic.

Comparison of Analyses Based on Each Gene
Region Separately

Parsimony analysis of the 99-taxon data matrix using each
gene region individually resulted in much lower resolution,
but topologies were generally, although not completely, con-
sistent with the combined analysis. For ITS, a strict consen-
sus of the 15,436 trees found from ten time-limited, random
addition-sequence replicates, recovered the major clades C
(BS ! 96%) and D (BS ! 80%), representing the Vignea
and Core Carex groups, respectively, but species from clades
A and B in the combined analysis were grouped differently.
One group comprised the four unispicate Kobresia species
plus Cymophyllus, Carex backii, C. nigricans, and C. pau-
ciflora, while the other included the remaining unispicate
Carex and multispicate Kobresia species, plus the three Un-
cinia species and the three Schoenoxiphium species. Neither
of these two larger groups had significant bootstrap support,
but the subclade grouping the four unispicate Kobresia spe-
cies together had 94% bootstrap support, that grouping Cy-
mophyllus and Carex backii had 97% bootstrap support, and
the clade comprising the three Uncinia species was strongly
supported at 95%. Within clade C, none of the relationships
had bootstrap support greater than 65% except the grouping
of Carex tenuiflora with C. projecta and C. disperma, which
was supported at 85%. Ten of the same species pairs that
were strongly supported in the combined analysis were also
moderately to strongly supported in the ITS analysis, but
only three groupings of more than two species were sup-
ported: (1) clade D1, (2) a subclade grouping sects. Carey-
anae and Griseae within clade D2, and (3) a subclade of
D4b comprising C. swanii, C. virescens, and C. complanata
(all sect. Porocystis). The remaining species in clade D
formed a polytomy with these groups and the 13 species
pairs. Bootstrap support for the three species pairs not sup-
ported in the combined analysis was very weak to moderate
using ITS data alone. Overall, resolution within the ITS strict
consensus tree was very poor, especially within clade D.

Resolution within the tree representing the strict consen-
sus of the 12,847 trees produced from parsimony analysis
of the ETS data matrix, including indels, from ten time-
limited, random addition-sequence replicates was greater
than in the ITS consensus tree. Major clades C and D from
the combined analysis were also recovered in the ETS con-
sensus tree, with bootstrap support of 100% and 94%, re-
spectively. Carex cruciata was moderately supported as sis-
ter to the rest of clade D (BS ! 74%); clades D1 and D2
also received strong bootstrap support in the ETS analysis.
Within clade D, subclade D4b, as well as the Careyanae/
Griseae subclade and the grouping of sect. Laxiflorae with
C. livida, were all strongly supported. Moderately supported
subclades included the core group of ‘‘bladder sedges’’
(without C. grayi and C. intumescens) and a group compris-
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ing three of the four sampled species of sect. Porocystis, as
in the analysis using only ITS data. Fourteen species pairs
with bootstrap support above 50% in the combined analysis
also had moderate-to-high support in the analysis using only
ETS. Five of these pairs did not receive significant bootstrap
support in either the ITS analysis or the trnL analysis.

The strict consensus of 282,243 most-parsimonious trees,
found in the parsimony analysis using only trnL–trnF data,
had a surprising degree of resolution given that there were
only 204 parsimony-informative characters among the 99
taxa. Thirteen species pairs received significant bootstrap
support with the seven pairs that were also supported by at
least one other data set receiving moderate-to-high levels of
bootstrap support in the trnL analysis, while four of the six
pairs that did not receive significant support on the ITS or
the ETS tree had only weak-to-moderate support in the trnL
analysis, and the other two had support between 82 and 90%.
Among the major clades in the combined analysis, clades C
and D were both strongly supported, as were clade D1 and
the sister-group relationship of C. cruciata with the rest of
clade D. Within clade D, subclades D4b and D4c had mod-
erate bootstrap support while clade D4d was strongly sup-
ported. Several of the smaller subclades within D1, D2, and
D4 were also moderately supported in the trnL analysis.
Among the three analyses based on individual gene regions,
the trnL analysis recovered many more of the larger clades
found by the combined analysis than either of the other two
data sets, despite the fact that it contributed fewer informa-
tive characters to the combined data matrix. The position of
C. echinochloe was different in the trnL tree than in either
the ITS, ETS-1f, or the combined tree. In the trnL tree, it
formed a strongly supported clade (BS ! 100%) with C.
polystachya and C. filicina, whereas it was strongly sup-
ported as sister to C. punctata in the ETS-1f and ITS trees,
as well as in the combined analysis.

Analyses of Subgenus Vignea

Compilation of sequence data from four gene regions—
nuclear ITS, ETS-1f, chloroplast trnL–trnF, and trnE–trnD—
resulted in a matrix of 3009 nucleotides and 106 indels for
29 taxa of subgen. Vignea, plus the three outgroup taxa. Both
ITS and ETS-1f were more variable than the cpDNA se-
quences, with 112 and 166 parsimony-informative charac-
ters, respectively, compared to 86 parsimony-informative
characters for the two cpDNA regions combined (Table 4).
Pairwise sequence divergence values were also six- or seven-
fold greater for the ribosomal gene spacers than for the
cpDNA intron and spacers (Table 4).

Parsimony analyses of these data using 1000 random ad-
dition sequences and TBR branch swapping, saving multiple
trees, resulted in ten shortest trees of length 1334 (CI !
0.687, RI ! 0.715). The ten trees differed principally in the
positions of C. maritima, C. disperma, and C. chordorrhiza,
with C. maritima either basal to most of the other species
or placed within the clade that includes C. disperma and C.
chordorrhiza, and in various relationships with them. Boot-
strap support values based on 100 replications with 100 ran-
dom addition-sequence replicates each are shown in Fig. 3,
plotted onto one of the ten most-parsimonious trees. Poste-
rior clade probabilities are shown on the same tree, which

were nearly identical to the tree produced by both Bayesian
analysis (ln likelihood ! "11,102.97282) and by maximum-
likelihood analysis (ln likelihood ! "10,992.50718) imple-
mented in PAUP* vers. 4.0b10. The only differences in tree
topology were the positions of C. maritima and C. deweyana
and whether or not C. diandra and C. decomposita formed
a clade. Likelihood ratio tests could not reject the null hy-
pothesis that the branch supporting the monophyly of C. de-
composita and C. diandra had zero length (P ! 0.118). This
null hypothesis was rejected for all other branches (P #
0.01)

Five strongly supported clades are apparent in all analyses
(Fig. 3). A basal clade comprising the Carex rosea complex
(sect. Phaestoglochin) is strongly supported as sister to all
other Vignea taxa, with the possible exception of C. mari-
tima, which has a basal position in the maximum-likelihood
and Bayesian trees. Other representatives of sect. Phaesto-
glochin form a moderately to strongly supported clade with
C. vulpinoidea (sect. Multiflorae), C. diandra and C. decom-
posita (both sect. Heleoglochin), making sect. Phaestoglo-
chin polyphyletic in all analyses. Within this larger clade,
all analyses strongly support the monophyly of the three
Phaestoglochin representatives with C. vulpinoidea, with the
two species in sect. Heleoglochin well supported as a basal
grade within it. The three remaining well-supported major
clades each comprise representatives of a single currently
accepted section—one supporting a monophyletic sect. Ova-
les, another a monophyletic sect. Stellulatae, and the third
demonstrating the monophyly of sect. Glareosae—within
the limits of sampling for this study.

Two additional clades receive weak support. The two rep-
resentatives of sect. Deweyanae are moderately supported as
a monophyletic group in the parsimony analysis (BS ! 68%)
and the maximum-likelihood analysis but not in the Bayes-
ian analysis. Carex gynocrates (sect. Physoglochin) forms a
weakly supported clade with two closely related species of
sect. Vulpinae, while the remaining representative of sect.
Vulpinae, C. crus-corvi, is weakly supported in all analyses
as sister to the Phaestoglochin/C. vulpinoidea clade de-
scribed above, rather than having a close relationship with
C. stipata and C. laevivaginata.

Although an ILD test (Farris et al. 1994, as implemented
in PAUP*) rejected the hypothesis that the trees supported
by each individual gene region were congruent, there was
considerable similarity among the trees based on each of the
three gene regions independently. Nearly all clades that re-
ceived strong support in the combined analysis were also
supported in the independent parsimony analyses. The only
exception was the sister-group relationship between the C.
canescens plus C. brunnescens clade with the other three
species of Glareosae, which was not supported by the ITS
analysis but was strongly supported by all three other gene
regions and by the combined analysis. Two clades receiving
only moderate-to-weak support in the combined analysis
were each supported by only one of the three individual
analyses: C. deweyana plus C. bromoides only by ITS data,
and the clade formed by species of sect. Heleoglochin with
those from sects. Phaestoglochin and Multiflorae (see Fig.
3), supported only by ETS data. The major differences
among the three data sets concerned the relative placements
of C. maritima, C. disperma, and C. chordorrhiza, none of
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Fig. 3.—One of 10 shortest trees based on parsimony analysis with 1000 random addition-sequence replicates of a combined matrix of
ITS, ETS-1f, trnL–trnF, and trnE–trnD sequence data for 29 taxa of subgen. Vignea and three outgroup species. Numbers above the
branches indicate bootstrap support based on 100 replications each with 100 random addition-sequence replicates. Numbers below branches
are clade posterior probabilities estimated by Bayesian analysis using a GTR ! I ! G model with parameters as chosen by MODELTEST
vers. 3.06. Arrows indicate clades that collapse in the semi-strict consensus tree. Species having androgynous spikes are indicated with
solid rectangles to the right of the species names while those with gynecandrous spikes are denoted by diagonally slashed rectangles.

which were consistently placed in the combined analysis
either.

DISCUSSION

The analyses presented here are compatible with previous
molecular analyses of tribe Cariceae (Starr et al. 1999, 2004;
Yen and Olmstead 2000a, b; Roalson et al. 2001) but the
use of three gene regions in the 99-taxon analysis and four

in the analysis of subgen. Vignea has resulted in better res-
olution and better statistical support for the tree topology.
These analyses also provide new insights into relationships
among species and sections in Carex subgen. Carex and its
relationship to subgen. Vigneastra, as well as suggesting
monophyly or polyphyly of particular sections in subgen.
Vignea. Before elaborating on these relationships, we will
compare levels of variation among the gene regions and
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evaluate the relative potential of each for future studies. We
will also compare results from the Bayesian and parsimony
analyses.

Evaluation of the Four Gene Regions

The choice of gene regions to use in a phylogenetic study
is an important one, with the goal being to select regions
that are variable among taxa in the analysis, but not so var-
iable that mutations would have occurred multiple times at
the same site. When trying to infer phylogeny of a genus or
a group of closely related genera, as in this study, one is
faced with the challenge of finding DNA regions that vary
between species that may have diverged only a few hundred
or a few thousand years ago, yet also give reliable infor-
mation about relationships among lineages that may have
diverged several million years ago. Coding regions, like the
ndhF gene used by Yen and Olmstead (2000a, b), have low
variability among species (less than 4% of the ndhF sites
were parsimony informative), but should be more reliable to
reconstruct the deeper branching patterns within the tree than
much more variable, noncoding spacer regions. On the other
hand, noncoding regions, such as ITS or trnL–trnF, can pro-
vide many more characters for resolving relationships within
the major clades and among closely related species, and have
given results consistent with those of Yen and Olmstead
(2000a, b) when used alone with a small set of taxa (Starr
et al. 1999), or together with more extensive sampling (Roal-
son et al. 2001). From the data on relative variation levels
among the three gene regions used in this study (Table 2–
4), it is apparent that ETS-1f is most variable and adds the
most potentially informative characters to the data matrix.
However, the number of informative characters is only one
consideration. Levels of homoplasy are also important. Ex-
amination of the trees and bootstrap support levels that can
be achieved using single-gene regions in comparison to com-
bined analysis can provide additional information about the
utility of each gene region in reconstructing tree topology at
different branching levels within a tree.

As expected, trees based on analysis of a single-gene re-
gion were less highly resolved but rarely in conflict with
those from the combined analysis presented here (Fig. 1, 2).
Clades C (Vignea clade) and D (Core Carex clade) were
strongly supported by the combined analysis and received,
at worst, very good support in each single-gene analysis.
Similarly, clade D1 uniting species of sects. Laxiflorae and
Paniceae was strongly supported in all analyses, while the
position of C. cruciata as sister to all other members of the
Core Carex clade received moderate-to-strong support in all
but the ITS analysis. Other groups receiving at least good
bootstrap support in all analyses were the Careyanae/Gri-
seae clade and four small clades, each with a pair of closely
related species: C. flava/C. viridula representing sect. Cer-
atocystis, C. folliculata/C. michauxiana representing sect.
Rostrales, C. fissuricola/C. luzulifolia representing sect. Au-
locystis, and C. cherokeensis/C. obispoensis from sect. Hy-
menochlaenae.

More of the species pairs supported in the combined anal-
ysis were united by the ETS data alone or by the trnL data
alone than when using just the ITS data. Furthermore, many
of the relationships that appear to be least likely based on

morphology are recovered only in analyses using ETS data
alone and the combined analysis in which about half of the
informative characters come from ETS. For example, the
ETS data provide most of the support for the clade uniting
sect. Aulocystis with sect. Collinsiae and with sects. Car-
eyanae and Griseae. Similarly, most of the characters uniting
the highly reduced South American species, C. colluman-
thus, with the European species, C. depauperata, with which
it shares little morphological similarity, come from ETS
data. On the other hand, trnL data alone not only support
some of the most likely species pairs recovered in the com-
bined analysis, but they also support relationships that ap-
pear to be more likely than those supported by ETS and
combined data. For example, C. aquatilis and C. crinita,
sharing numerous morphological features that characterize
sect. Phacocystis, are well supported as monophyletic by
trnL data but not supported by ITS, ETS-1f, or the combined
parsimony analysis. The ETS-1f region has a much higher
level of variability among species than the trnL–trnF region
and would be more prone to cause long-branch attraction
problems for species whose closest relatives were not in-
cluded in the data set. This may explain some of the unusual
groupings in our analyses and indicates that while ITS and
ETS-1f are useful in resolving relationships among close rel-
atives, they can be misleading when used with a set of ex-
emplars representing a broader phylogenetic range.

The major clades are generally supported either by each
of the data sets independently or only by the combined data
set, suggesting the need to use multiple-gene regions to bet-
ter resolve relationships among major groups. Both ETS and
trnL data sets recover many of the subclades that unite
smaller sets of species, but trnL appears to do better despite
having fewer informative characters. ITS data provide the
least information about higher-level relationships. These re-
sults suggest that using single-gene regions for resolving re-
lationships within the Cariceae are not nearly as effective as
using multiple data sets and that combined data from the
ETS-1f and trnL–trnF region are most useful.

Comparison of Parsimony and Bayesian Analyses

Although the topologies of trees produced from parsimony
and Bayesian analysis of the combined data for both the 99-
taxa matrix and the Vignea matrix were quite similar, the
levels of support for particular clades were often quite dif-
ferent, especially for clades with Bayesian posterior proba-
bilities less than 95%. In particular, the Bayesian analysis
often showed high posterior probabilities for clades that had
very weak bootstrap support in the parsimony analysis. In
some cases, the posterior probabilities were 80–90% for
clades supported by branches that likelihood ratio tests re-
vealed were not significantly different from zero. In all such
cases, these clades had no significant bootstrap support in
parsimony analysis. These results suggest that it is important
to compare the two analyses, and to carefully assess the
characters supporting short branches before drawing strong
conclusions about clades with Bayesian posterior probabili-
ties less than 95%.

General Cariceae Relationships

The present analysis is highly compatible with previous
molecular analyses of the Cariceae (Starr et al. 1999, 2004;
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Yen and Olmstead 2000a, b; Roalson et al. 2001). Three
(Core Carex, Vignea, and Core Unispicate) of the four major
clades in our trees are also common to the analyses of Yen
and Olmstead (2000a, b) and Roalson et al. (2001), whereas
all four major clades are also present in the analyses of Starr
et al. (2004). As in previous studies (Yen and Olmstead
2000a, b; Roalson et al. 2001; Starr et al. 2004) there is
strong support for a monophyletic Core Carex clade (subgen.
Carex/Vigneastra/Psyllophora p. p. min. [in small part]), a
subgen. Vignea clade, and a clade consisting of Uncinia spe-
cies. Analyses also indicate that Carex subgen. Psyllophora,
Vigneastra, and Carex are unnatural groups (Yen and Olm-
stead 2000a, b; Starr et al. 2004); that Carex itself is artificial
(all major clades contain Carex species; Yen and Olmstead
2000a, b; Roalson et al. 2001; Starr et al. 2004); and that
the genera Kobresia and Schoenoxiphium may be unnatural
but should not be merged (Starr et al. 2004). As in the anal-
yses of Starr et al. (2004, in press), a fundamental split be-
tween unispicate Cariceae species is evident in our trees,
with androgynous taxa (the Core Unispicates ! Schoenoxi-
phium clades) related to multispicate species of either Ko-
bresia or Schoenoxiphium, while dioecious species are re-
lated to either multispicate species of Carex subgen. Vignea
or Carex. In addition, the positions of the monotypic genus
Cymophyllus within the Core Unispicate clade (Yen and
Olmstead 2000a, b; Roalson et al. 2001; Starr et al. 2004)
and of the diminutive Carex collumanthus (" Vesicarex col-
lumanthus Steyerm.) within the Core Carex clade (Starr et
al. 2004) are consistent with the general morphology of their
respective clades (i.e., Core Unispicate " predominately un-
ispicate, androgynous species; Core Carex " predominately
multispicate species with terminally staminate and laterally
pistillate inflorescence units). It is clear that on the basis of
molecular and morphological data the monotypic genera Cy-
mophyllus and Vesicarex Steyerm. do not warrant generic
status, as previously noted for Vesicarex (Mora Osejo 1982;
Wheeler 1989a). These taxa are typical examples of numer-
ous species in Cariceae whose relationships are obscured by
inflorescence reduction and specialization (Starr et al. 2004).

A major difference between this analysis and previous
studies lies in the arrangement of the major clades (Core
Unispicate, Schoenoxiphium, Vignea, Core Carex). Previous
analyses have placed either the genus Schoenoxiphium (Yen
and Olmstead 2000a, b; (((Core Carex, Vignea), Core Un-
ispicates), Schoenoxiphium), maximum-likelihood analysis),
the Vignea (Roalson at al. 2001; ((Core Carex, Caricoid),
Vignea)), or the Core Carex (Starr et al. 2004; (((Core Un-
ispicate, Schoenoxiphium), Vignea), Core Carex)) clade at
the base of Cariceae. In contrast, this study places either a
Core Unispicate (parsimony) clade as basal (i.e., (((Core
Carex ! Vignea), Schoenoxiphium), Core Unispicate)), or a
Caricoid (i.e., Core Unispicate ! Schoenoxiphium) clade as
sister to a monophyletic Core Carex ! Vignea group. Al-
though there is general congruence among molecular anal-
yses over the number of major clades in Cariceae and their
general composition, relationships among these clades re-
main obscure. No analysis has yet found strong statistical
support for any particular topology of these clades despite
considerable increases in characters and taxa over time. Re-
solving the relationships of these four principal clades
should be a major goal for future research since their posi-

tion in the phylogeny has a strong impact on conclusions
that may be drawn regarding inflorescence evolution and ho-
mology in the tribe (see Starr et al. 2004).

Phylogeny of the Core Unispicate and Schoenoxiphium
Clades

The Core Unispicate and Schoenoxiphium clades are high-
ly diverse groups comprising approximately 230 species dis-
tributed in the temperate and mountainous habitats of the
Northern and Southern hemispheres (Starr et al. 2004).
These two clades together contain all five genera currently
recognized in the tribe, and they exhibit a considerable
amount of structural variation in their inflorescence, ranging
from the unispicate androgynous condition of the genera Un-
cinia, Kobresia p. p., Cymophyllus and Carex subgen. Psyl-
lophora to the multispicate species of Kobresia and Schoe-
noxiphium. In common with the analyses of Starr et al.
(2004, in press), this analysis provides strong statistical sup-
port (i.e., #94% BS) for a monophyletic Uncinia, a close
relationship between Cymophyllus and Carex sect. Phyllos-
tachyae, and for a clade in Kobresia that comprises all un-
ispicate androgynous species. Moreover, Bayesian analyses
are consistent with Starr et al. (2004) in suggesting that the
Core Unispicates and Schoenoxiphium clades are sisters (i.e.,
a Caricoid clade), which is also consistent with the results
of Roalson et al. (2001), even though their sampling includ-
ed only one Schoenoxiphium clade member. However, the
position of the Schoenoxiphium clade as sister to a mono-
phyletic Vignea ! Core Carex clade in parsimony trees is
unique to this analysis. Even though the position of the ge-
nus Schoenoxiphium and its allies has differed among studies
(cf. Yen and Olmstead 2000a, b with Roalson et al. 2001
and Starr et al. 2004), the very poor ($50% BS) support for
this topology suggests that this relationship is unlikely. The
difficulty in resolving relationships among the major clades
of Cariceae might be due to rapid radiation in the early evo-
lution of the group (Stebbins 1981; Starr et al. 1999). Alter-
nately, the failure to resolve these relationships may result
from using gene regions that evolve too rapidly. Additional
data from more slowly evolving DNA regions for a carefully
chosen subset of species from all major clades may be need-
ed. (cf. Graham and Olmstead 2000 for a comparable ex-
ample at a different taxonomic level).

Phylogeny of the Vignea Clade

As in previous studies (Yen and Olmstead 2000a, b; Roal-
son et al. 2001; Starr et al. 2004), support for a monophyletic
subgen. Vignea, excluding C. curvula, but including sect.
Physoglochin, is very strong in all analyses (Fig. 1–3). Car-
ex curvula has also been removed from subgen. Vignea on
morphological grounds by Egorova (1999), but she placed it
as an ‘‘archaic’’ member of subgen. Carex, while the present
and previous (Starr et al. 2004) molecular analyses position
it within the Core Unispicate clade along with several un-
ispicate carices. On the other hand, several authors (e.g.,
Heilborn 1924; Savile and Calder 1953; Chater 1980; Ego-
rova 1999; Ball and Reznicek 2002) have treated the uni-
spicate sect. Physoglochin (represented by C. gynocrates in
the present analysis) within subgen. Vignea based on chro-
mosome data, patterns of infestation with smut fungi, overall
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similarity in morphology, and the formation of hybrids with
species of sects. Foetidae and Glareosae (Toivonen 1981).
The present analysis confirms this placement.

For the most part, subgen. Vignea has been considered a
distinctive and coherent group since its original circumscrip-
tion in 1819, but its relationship with the rest of the genus
or with other genera of Cariceae has never been clear (Smith
and Faulkner 1976; Nannfeldt 1977). The suggestion that
primitive species of Cariceae might have had compound in-
florescence structure similar to those in some extant groups
of subgen. Vignea (Reznicek 1990) is not supported by the
analyses presented here. In fact, two of the three species
mentioned as examples of such species (C. crus-corvi, sect.
Vulpinae; and C. decomposita, sect. Heleoglochin) appear in
one of the most advanced lineages in our analyses along with
species from two other sections (Phaestoglochin and Multi-
florae) that also have compound inflorescences (Fig. 3). Oth-
er species of Vulpinae with compound inflorescences have
an equally advanced position within a different major clade
of Vignea (Fig. 3). Since species with congested, compound
inflorescences did not form a monophyletic group in our
analyses or in a previous analysis (Roalson et al. 2001), it
is quite possible that other species with such inflorescences
may be basal within Vignea. One obvious candidate is sect.
Macrocephalae Kük., which has species with paniculate in-
florescences and three stigmas, a presumably plesiomorphic
state within the subgenus. Carex macrocephala Willd. ex
Kunth is moderately supported as sister to the rest of the
Vignea species in the combined analysis of Roalson et al.
(2001), but it is not the basal group in the Bayesian analysis
of subgen. Vignea using only ITS data (Heindrichs et al.
2004b). In both cases, other species with compound inflo-
rescences assume more advanced positions, as in the present
analysis.

Most identification keys for species of subgen. Vignea rely
on the distinction between androgynous (pistillate flowers
proximal in the inflorescence and staminate flowers distal)
and gynecandrous (staminate flowers proximal, pistillate dis-
tal) spikes. Egorova (1999) considered those with gynecan-
drous spikes to be more advanced. Species representing four
different sections with gynecandrous spikes were included
in the Vignea data matrix. Three of those sections (Glareo-
sae, Ovales, Stellulatae) are each strongly supported as
monophyletic with moderate support for the fourth (Dew-
eyanae), but there is no support for the hypothesis that they
form a single lineage. In fact, sect. Deweyanae is firmly
nested within a clade of androgynous species, rather than in
a sister-group relationship to sect. Ovales, as might be pre-
dicted from shared features such as gynecandrous spikes and
the presence of very narrow wings on the perigynia similar
to those found in sect. Ovales.

In contrast to the gynecandrous sections, there is little or
no support for the monophyly of any of the recognized sec-
tions of androgynous species, but one weakly (parsimony
analysis) to moderately (Bayesian analysis) supported clade
combines androgynous species with crowded, condensed
simple or compound inflorescences from four sections (He-
leoglochin, Multiflorae, Phaestoglochin, and Vulpinae) that
have implicitly (Mackenzie 1931–35) or explicitly (Koyama
1962; Standley 2002) been considered to be closely related.
Sections Phaestoglochin and Vulpinae are both clearly poly-

phyletic and support for the monophyly of the two Heleo-
glochin species is very weak in all analyses. While the spe-
cies of sect. Phaestoglochin with crowded, sometimes con-
densed, paniculate spikes are part of the androgynous clade
mentioned above, the C. rosea group, with simple, sessile,
few-flowered androgynous spikes that are separated from
one another on the culm, are strongly supported as the basal
clade in most of our analyses. While the basal position is
probably an artifact of the sampling scheme, as discussed
above, it is quite clear that this group, long recognized as a
distinctive species complex (Webber and Ball 1984), di-
verged much earlier than the other species of sect. Phaes-
toglochin and may warrant recognition as a distinct section.

Sampling within the large subgen. Vignea is too limited
in this study to allow more than a few comments on the
relationships of species in monotypic sections. Carex di-
sperma, allied with sect. Glareosae in some classification
schemes (Mackenzie 1931–35; Fernald 1950), but more of-
ten segregated as a monotypic section (Ohwi 1936; Chater
1980; Jermy et al. 1982; Egorova 1999), is strongly sup-
ported as part of the clade that includes sect. Glareosae in
the Bayesian analysis. However, the Bayesian analysis also
strongly supports a close relationship between C. chordor-
rhiza and C. disperma, which form a clade that is sister to
the Glareosae clade. It is interesting to note that the only
shared mutation in the highly conserved 5.8S ribosomal gene
was shared by C. chordorrhiza and C. disperma together
with all representatives of sects. Glareosae and Ovales.
While sometimes treated as the monotypic sect. Chordor-
rhizae (e.g., Ball and Reznicek 2002), C. chordorrhiza has
more often been considered part of sect. Divisae (Chater
1980; Egorova 1999), with which it shares many inflores-
cence and perigynia features but from which it differs in
growth form. Neither the sister-group relationship of C.
chordorrhiza and C. disperma, nor the sister-group relation-
ship of this clade to sect. Glareosae receives even weak
statistical support in the parsimony analysis. With broader
sampling among Vignea species, it is quite possible that oth-
er species will emerge as closer relatives to either or both
of these species.

Phylogeny of the Core Carex Clade

Overall relationships and the inclusion of subgenus Vig-
neastra.—Clade D, representing the Core Carex clade that
groups species classified in subgen. Carex, Indocarex (!
Vigneastra), and Primocarex (! Psyllophora) in Kükenthal’s
(1909) monograph, is well supported in all individual gene
analyses and strongly supported by the combined analysis.
Two species (C. scirpoidea, sect. Scirpinae; and C. pauci-
flora, sect. Leucoglochin) that were placed by Kükenthal in
subgen. Primocarex (! Psyllophora) but allied with subgen.
Carex by others (Bailey 1886; Mackenzie 1931–35; Ohwi
1936; Koyama 1962) were included in our analyses. The
placement of C. scirpoidea in subgen. Carex is confirmed
by this study and previous ones (Roalson et al. 2001; Starr
et al. 1999, 2004), but as in these previous analyses, C. pau-
ciflora is unambiguously nested within the Core Unispicate
clade along with other unispicate carices rather than in the
Core Carex clade.

In line with previous molecular analyses (Yen and Olm-
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stead 2000a, b; Roalson et al. 2001; Starr et al. 2004), the
five species of subgen. Vigneastra included in this study are
all well supported as part of the Core Carex clade. Only two
of the five species of Vigneastra are supported as a mono-
phyletic group, providing some support for the idea that this
is a heterogeneous assemblage better classified within sub-
gen. Carex (Ohwi 1936; Raymond 1959; Koyama 1962).
With the broader sampling among subgen. Carex in this
study, C. baccans (subgen. Vigneastra) is weakly supported
as sister to C. pensylvanica (sect. Acrocystis), rather than as
sister to C. cruciata, as in a previous analysis of Starr et al.
(1999), in which subgen. Carex was represented by only a
few species and only ITS data were used. Most intriguing is
the well-supported (92%) basal position of C. cruciata. Al-
though previous molecular analyses (Starr et al. 1999, 2004)
have also placed this species in a basal position (either alone
or in a clade with C. baccans), support for this hypothesis
has always been weak (i.e., !64% BS). The very good sup-
port for C. cruciata as separate from other Vigneastra lends
further support to previous molecular (Starr et al. 1999,
2004; Yen and Olmstead 2000a, b) and morphological stud-
ies (Ohwi 1936; Koyama 1962) suggesting that subgen. Vig-
neastra should be merged with subgen. Carex. Moreover,
this basal position is also compatible with many previous
arguments based on phytogeography (Kreczetovicz 1936;
Nelmes 1951; Ball 1990) and inflorescence structure (Kre-
czetovicz 1936; Koyama 1962; Smith and Faulkner 1976),
which suggested that subgen. Vigneastra has plesiomorphic
morphology and is a possible progenitor to the larger sub-
gen. Carex/Vigneastra/Psyllophorra p. p. min. lineage. Nev-
ertheless, because of the poor sampling of subgen. Vigneas-
tra in this and previous studies (less than six of ca. 100
species worldwide), any decision regarding its taxonomic
status or evolutionary significance can only be considered as
preliminary and tentative. Most puzzling in the current anal-
yses is the position of C. echinochloe, which is strongly
supported in both combined analyses as sister to C. punctata,
a species from which it differs markedly in overall mor-
phology, inflorescence structure, and geographic distribution.
The fact that this relationship is not supported by trnL–trnF
data, which places C. echinochloe in the same clade with
other Vigneastra species, C. filicina, and C. polystachya, is
intriguing and suggests that another sample of C. echinoch-
loe should be studied before any conclusions can be drawn.

Polyphyly of sect. Hymenochlaenae.—Thirteen species that
have been classified in sect. Hymenochlaenae (Drejer) L. H.
Bailey were included in these analyses. Section Hymenoch-
laenae, using any of the many different circumscriptions
(e.g., Bailey 1886; Kükenthal 1909; Koyama 1962 [as a sub-
section]; Reznicek 1986) is polyphyletic, with the 13 sam-
pled species found in five different lineages in our analyses.
The different lineages are not congruent with Kükenthal’s
(1909) subsections of Hymenochlaenae, nor with the sec-
tions that were segregated from it by Mackenzie (1931–35).

Based on Reznicek’s (1986) lectotypification of sect. Hy-
menochlaenae with C. cherokeensis, the only sampled spe-
cies that can be placed into a monophyletic sect. Hymen-
ochlaenae are C. cherokeensis and C. obispoensis. Carex
obispoensis is a tall, robust sedge endemic to chaparral and
open Cupressus sargentii Jeps. woodlands in southern Cal-

ifornia, and its affinities have never been clear. Although
placed in sect. Sylvaticae Rouy (the sectional name used by
Mackenzie [1931–35] for North American species in Kü-
kenthal’s subsect. Debiles (Carey) Kük. of sect. Hymenoch-
laenae) when originally described (Stacey 1936), it was
anomalous there due to its numerous staminate spikes, an-
drogynous lateral spikes, and the tendency to have fascicles
of spikes at one or more nodes of the inflorescence. Se-
quence data place it quite clearly as a close relative of the
much smaller C. cherokeensis from the southeastern USA,
which also tends to have more than one staminate spike and
frequently has two, sometimes androgynous, lateral spikes
at a node. Egorova (1999) considered fascicled, androgynous
lateral spikes to be primitive and suggested they might be
an early stage in evolution from the paniculate inflorescences
with androgynous secondary spikes of subgen. Vigneastra
to the racemiform inflorescences with pistillate lateral spikes
found in many species of subgen. Carex. It is interesting to
note that C. cherokeensis and C. obispoensis are part of
clade D3, which includes three of the five species of subgen.
Vigneastra sampled for these analyses.

Eight of the remaining sampled species that have been
classified, by one author or another, into sect. Hymenochlae-
nae form a strongly supported clade that also includes C.
tenax (sect. Hallerianae). The most recent floristic treatment
of North American Carex (Ball and Reznicek 2002) places
these nine species into four different sections: C. debilis, C.
mendocinensis, and C. misera into an admittedly unnatural
sect. Hymenochlaenae (Waterway 2002); C. complanata, C.
swanii, and C. virescens into sect. Porocystis (" Virescentes
(Kunth) Mackenzie); C. whitneyi into sect. Longicaules; C.
tenax into sect. Hallerianae; and C. hirtifolia into a newly
created monotypic sect. Hirtifoliae (Reznicek 2001). These
species were also dispersed among sects. Sylvaticae, Gra-
cillimae J. Carey, Virescentes, Triquetrae (L. H. Bailey)
Mack, and Longicaules in Mackenzie’s previous treatment
of North American species (Mackenzie 1931–35). In his
modified circumscription of sect. Hymenochlaenae, Rezni-
cek (1986) included the species that Mackenzie (1931–35)
had placed in sects. Sylvaticae, Gracillimae, Longirostres
(Kük.) Mack., and Viridiflorae Mack., but specifically ex-
cluded sect. Longicaules, citing its ‘‘short-cylindric, erect
spikes, and sheathless or nearly sheathless inflorescence
bracts’’ as differences from sect. Hymenochlaenae. Pubes-
cence on foliage or perigynia and the length of the sheath
on the proximal inflorescence bract determined whether spe-
cies were previously included in or excluded from sect. Hy-
menochlaenae. Bailey (1886) following Drejer (1844) in-
cluded the Virescentes group (" sect. Porocystis) but ex-
cluded C. hirtifolia, C. whitneyi, and C. dasycarpa Muhl.
(from which C. tenax was later segregated), while Kükenthal
(1909) included C. hirtifolia and C. whitneyi but excluded
C. dasycarpa and species now placed in sect. Porocystis.

The apparently natural group that forms clade D4b all
have membranous perigynia, maroon coloring on the basal
sheaths, and an inflorescence in which staminate flowers are
restricted to the terminal spike and lateral spikes are elongate
or cylindrical, peduncled, and usually pistillate. They have
been classified into different sections based on differences
in pubescence of foliage or perigynia, whether the perigyn-
ium is obviously beaked or not, whether the proximal inflo-
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rescence bract has an obvious sheath, and whether the ter-
minal spike is staminate or gynecandrous. The strong statis-
tical support for this group in both parsimony and Bayesian
analyses (Fig. 1, 2) and the short branch lengths within the
clade suggest that the species are closely related and possibly
recently evolved. Easily observed characters such as pubes-
cence, which also varies within species in this group (Wa-
terway 1996, 2002), and sheath length, which varies within
populations and sometimes even among culms within indi-
viduals (MJW pers. obs.) should not be used to arbitrarily
divide this natural group into several sections. Our analyses
support the inclusion of at least species from sects. Haller-
ianae, Hirtifoliae, and Longicaules into an expanded sect.
Porocystis along with some, but not all, of the species that
Kükenthal included in his broadly circumscribed sect. Hy-
menochlaenae. In the present analyses, this strongly sup-
ported clade includes only North American species. Whether
C. pallescens, a widespread Eurasian species that is also ap-
parently native to North America, is part of this group is not
clear. In the parsimony tree (Fig. 1), it is placed as a sister
group to the ‘‘expanded Porocystis’’ described above, but in
the Bayesian tree (Fig. 2), it is strongly supported as sister
to C. acutiformis (sect. Paludosae), another widespread spe-
cies with Eurasian and African distribution. Further inves-
tigation of this larger group is required before formal chang-
es in sectional circumscription can be made.

The two remaining species sampled from sect. Hymen-
ochlaenae are part of two different lineages: C. prasina is
sister to the small clade formed by two species of sect. Li-
mosae, but without statistical support, while C. sylvatica, a
common species of European forests, is strongly supported
as sister to C. pendula (sect. Rhynchocystis), another com-
mon European species. The relationships of these species
will be discussed below in the context of their sister groups.

Polyphyly of the ‘‘bladder sedges.’’—Species with relatively
large, inflated perigynia that are usually long beaked with
bidentate apices and contain nutlets with persistent styles,
have previously been classified together (Drejer 1844; Bailey
1886; Kükenthal 1909) as sect. Physocarpae Drejer. These
‘‘bladder sedges’’ are commonly considered to be a natural
group (Bailey 1886; Kukkonen 1963), although they are now
usually treated as several related sections: Carex, Lupulinae,
Paludosae, Pseudocypereae (Tuck.) H. Christ, Rostrales,
Squarrosae, and Vesicariae. Distribution of species among
sects. Carex, Paludosae, Pseudocypereae, and Vesiciariae
has varied among authors, with Mackenzie (1931–35) being
the most divergent. He placed his sect. Hirtae Tuck. ex Kük.
(! sect. Carex p. p.) close to sect. Virescentes (! Porocys-
tis) rather than with the other ‘‘bladder sedges,’’ presumably
due to the pubescent perigynia shared by the two groups.
Reznicek and Catling (2002) circumscribed sect. Carex to
include only a small group of species with true vegetative
culms and long-beaked perigynia, and noted that even with
the removal of these species, sect. Paludosae is ‘‘broadly
construed’’ and needs worldwide revision (Reznicek and Ca-
tling 2002). The monotypic sect. Collinsiae with multispi-
cate inflorescences and spreading subulate perigynia enclos-
ing nutlets with persistent styles has also frequently been
allied with sect. Lupulinae or Rostrales (Mackenzie 1931–
35; Standley 2002). Carex pauciflora (sect. Leucoglochin),

with unispicate inflorescences and treated as part of subgen.
Primocarex by Kükenthal, has also been allied with the
‘‘bladder sedges’’ by some authors (e.g., Bailey 1886; Mac-
kenzie 1931–35; Savile and Calder 1953; Koyama 1962).
Savile and Calder (1953), in a phylogenetic scheme that was
based in part on relationships with parasitic fungi, went so
far as to combine all of the groups mentioned above into the
new subgen. Kuekenthalia Savile & Calder. Their proposal
did not receive much support from other caricologists, but
the notion that these species are closely related has persisted
to the present, with the relevant sections generally treated
near one another in floras that are loosely arranged in a pu-
tative phylogenetic sequence (e.g., Chater 1980; Jermy et al.
1982; Gleason and Cronquist 1991; Egorova 1999; Ball and
Reznicek 2002).

The analyses presented here clearly demonstrate that this
group is polyphyletic, with species represented in six differ-
ent lineages on the trees resulting from both analyses (Fig.
1, 2). The largest core group (clade D4d; Fig. 1, 2) including
members of sects. Vesicariae, Lupulinae, Paludosae (sensu
Reznicek and Catling 2002 [but not as to type]), and Carex
is strongly supported as monophyletic in all analyses. These
sections consistently have large inflated perigynia, sturdy
and usually persistent geniculate styles, and robust growth
form. Most, but not all, grow in paludal habitats and many
have diploid chromosome numbers higher than 60. Carex
acutiformis, the type species of sect. Paludosae, and C. ves-
tita, also usually classified in sect. Paludosae, have smaller,
thinner perigynia, and less rigid styles, and are not included
in this core clade. Instead they show greater sequence sim-
ilarity to C. scabrata and C. amplifolia from sect. Anomalae,
although this relationship is not strongly supported. The
placement of C. acutiformis in a different clade from C.
riparia is in accord with the viewpoint of Egorova (1999)
who transferred all Eurasian species of sect. Paludosae, in-
cluding C. riparia, to sect. Tumidae Kük. except for C. acu-
tiformis. Sections Vesicariae and Lupulinae, represented by
six and three species, respectively, are paraphyletic within
this larger group in both analyses. A close relationship be-
tween C. comosa and C. hystericina, more often segregated
from sect. Vesicariae as part of sect. Pseudocypereae (Mac-
kenzie 1931–35; Fernald 1950; Gleason and Cronquist 1991;
Egorova 1999), is strongly supported, but this species pair
is nested within a clade that also includes species from sects.
Vesicariae and Lupulinae. Two groups have long been rec-
ognized within the small North American sect. Lupulinae
(Reznicek and Ball 1974), with C. intumescens and C. grayi
differing from the other four species in many characters,
including growth form, shape and texture of perigynia and
achenes, number and position of spikelets, length of lowest
bract sheath, chromosome numbers, and nature of the silica
bodies in the epidermal cells of the nutlets (Menapace et al.
1986). Similarly, C. retrorsa has been considered ‘‘anoma-
lous’’ within sect. Vesicariae and shares many features with
the C. lupulina group as well as hybridizing with both C.
lupulina and C. lupuliformis Sartw. ex Dewey (Reznicek and
Ball 1974). Our analyses are consistent with the structural
comparisons in both cases: C. intumescens and C. grayi form
the sister clade to the entire core group, rather than grouping
with C. lupulina, and C. retrorsa is well supported as sister
to C. lupulina rather than to any of the other five species of
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Vesicariae. It is clear that at least the currently recognized
sects. Vesicariae, Lupulinae, and Paludosae will need re-
alignment or merger if monophyly is to be the criterion for
sectional circumscription. Much broader sampling across
sects. Carex, Paludosae, and Vesicariae, currently in pro-
gress by the first author, is required before these decisions
can be made.

Two small sections of ‘‘bladder sedges’’ are each strongly
supported within different lineages from the core assemblage
and from each other. Section Squarrosae, represented by C.
squarrosa and C. typhina, forms a well-supported clade with
C. shortiana, a similar species that often hybridizes with at
least one of the Squarrosae species (Cayouette and Catling
1992; Cochrane 2002). This group is weakly supported in
the parsimony analysis and strongly supported in the Bayes-
ian analysis as part of a clade that includes species from
sects. Phacocystis and Racemosae, a relationship that has not
been suggested previously. Similarly, the strongly supported
clade formed by the two species representing sect. Rostrales
is well supported (parsimony analysis) or strongly supported
(Bayesian analysis) as sister to an assemblage of species
with which it has not previously been allied, including rep-
resentatives of sects. Ceratocystis, Indicae, Rhynchocystis,
and Spirostachyae. Many of these groups are widespread
with representatives in Europe, Asia, Africa, and Australia.
Broader geographic sampling is needed to test the mono-
phyly of this assemblage and determine relationships within
it.

The association of multispicate C. collinsii and unispicate
C. pauciflora (sect. Leucoglochin) with the ‘‘bladder sedg-
es,’’ as indicated by Mackenzie (1931–35) in his sectional
sequence and as advocated by Savile and Calder (1953) in
their circumscription of the new subgen. Kuekenthalia is not
supported by our analyses. Carex pauciflora has no apparent
relation to the ‘‘bladder sedges,’’ instead it groups with other
unispicate species in the Core Unispicate clade (clade A, Fig.
1, 2). The placement of the monotypic sect. Collinsiae as
sister to the Griseae/Careyanae clade has not been predicted
and is difficult to justify based on morphology.

Relationships among sections Ceratocystis, Spirostachyae,
Rhynchocystis, and Rostrales.—The relationship between
sects. Ceratocystis and Spirostachyae has also been contro-
versial (Crins and Ball 1988) with some authors uniting the
two as sect. Extensae Fries (Mackenzie 1931–35) or under
the sect. Spirostachyae (Kükenthal 1909), while others main-
tain them as distinct sections (Chater 1980; Jermy et al.
1982; Egorova 1999). Both sections have widespread distri-
bution across three or more continents, although the only
species of Spirostachyae in North America are recent intro-
ductions (Crins 2002). The two sections can be distinguished
by the shape and structure of the pistillate spikelets, shape
of the nutlets, the presence or absence of reddish-brown
crystalline inclusions in the epidermal cells of the perigynia,
and the flavonoid composition (Crins and Ball 1988). In both
parsimony and Bayesian analyses, the two species of Cera-
tocystis are strongly supported as a subclade distinct from
the subclade that includes C. punctata (sect. Spirostachyae),
but all three species are very well supported (94% BS) as a
larger clade that also includes the European species, C. syl-
vatica (sect. Hymenochlaenae sensu Kükenthal 1909; sect.

Sylvaticae sensu Jermy et al. 1982) and C. pendula (sect.
Rhynchocystis) as well as the African species, C. echino-
chloe (subgen. Vigneastra), and the two species of sect. Ros-
trales, as noted above. Our analyses are thus in agreement
with Chater (1980) and Crins and Ball (1988) who recog-
nized the affinity of these two groups while maintaining
them as distinct sections. Support for the monophyly of C.
sylvatica with C. pendula is also strong in both analyses.
This supports Chater’s (1980) placement of both species in
sect. Rhynchocystis, rather than their classification into dif-
ferent sections as suggested by Kükenthal (1909), Jermy et
al. (1982), and Egorova (1999), who specifically said that
the two were ‘‘not related phylogenetically’’ (Egorova
1999). Despite the very good support for the clade including
all eight species and the strong support for each species pair,
relationships among the species pairs have only weak sup-
port in the combined analysis and weak or no support in the
individual analyses, so we can draw no further conclusions
about this lineage.

Relationships among sections Laxiflorae, Paniceae, Griseae,
and Careyanae.—Five species included in the present study
belong to sections that are exclusively or predominantly dis-
tributed in eastern North America, usually in deciduous for-
est habitats. Carex albursina and C. blanda belong to sect.
Laxiflorae, a group that was formerly circumscribed (Kü-
kenthal 1909; Mackenzie 1931–35; Fernald 1950; Bryson
1980; Manhart 1986; Gleason and Cronquist 1991) to in-
clude species now segregated as sect. Careyanae, represent-
ed here by C. plantaginea. Naczi advocated recognition of
the two groups (Naczi 1992; Naczi et al. 2002) identified by
Bryson (1980), based on morphology, and Manhart (1986),
based on secondary chemistry, as two distinct sects. Laxiflo-
rae s.s. and Careyanae. Phylogenetic analysis using mor-
phological data (Naczi 1992) indicated that sect. Careyanae,
so defined, did not form a monophyletic group with sect.
Laxiflorae but was more closely related to species in sects.
Griseae and Oligocarpae (Heuff.) Mack., which together
formed a clade. These ideas are fully supported by the pre-
sent analysis, although sampling from each group was very
limited.

The two sampled species of sect. Laxiflorae are strongly
supported as monophyletic, as is their close relationship to
species of sect. Paniceae. Affinities between sect. Laxiflorae
and sect. Paniceae have been previously implied or specified
(Mackenzie 1931–35; Koyama 1962), and species originally
described as part of sect. Paniceae (e.g., C. chapmanii
Steud.) are now classified in sect. Laxiflorae (Bryson and
Naczi 2002). This relationship between sects. Laxiflorae and
Paniceae was also strongly supported in the analyses of
Roalson et al. (2001), where the sections were represented
by two different species. Their analyses, as well as those of
Waterway et al. (1997) and Heindrichs et al. (2004a), also
support the inclusion of sect. Bicolores (Tuck. ex L. H. Bai-
ley) Rouy in this monophyletic group, as earlier suggested
by Bailey (1886) and implied by the sectional sequence of
Mackenzie (1931–35), Fernald (1950), and Ball and Rezni-
cek (2002).

The three species representing sects. Careyanae (C. plan-
taginea) and Griseae (C. hitchcockiana and C. oligocarpa)
are also strongly supported as monophyletic in the combined
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analyses and in two of the three individual gene analyses
(ETS-1f and trnL–trnF). There is no support for a sister-
group relationship between this clade and the Laxiflorae/
Paniceae clade. Instead, both the ETS analysis and the com-
bined analysis strongly support a clade formed by the Car-
eyanae/Griseae group with the monotypic sect. Collinsiae
and two western North American endemics from sect. Au-
locystis. Previous suggestions regarding the relationships of
C. collinsii have placed it near sect. Rostrales based on nar-
row, elongated, somewhat inflated perigynia, while affinities
with sect. Hymenochlaenae have been suggested for sect.
Aulocystis. The novel arrangement shown in our combined
analysis may represent a distinct evolutionary lineage from
which we have sampled only a small fraction of the species
and, as a result, have difficulty recognizing the basis for the
relationship. However, since support for this larger clade is
only significant in the combined analysis and in the analysis
using only ETS-1f, which dominates the combined analyses,
we should be cautious in interpreting this set of relationships
until more species within the group are sampled and support
from other gene regions has been demonstrated.

Other sectional relationships.—Several authors have implic-
itly (Mackenzie 1931–35; Jermy et al. 1982; Ball and Rez-
nicek 2002) or explicitly (Bailey 1886; Kükenthal 1909)
suggested a close relationship among some or all of sects.
Racemosae (! Atratae (Heuff.) H. Christ in older works),
Scitae Kük., Limosae, and Phacocystis (! Acutae (J. Carey)
H. Christ in older works). Egorova (1999) considered spe-
cies in these sections (except Phacocystis, which she placed
in a new subgen. Kreczetoviczia Egorova) to be related and
among the most advanced in subgen. Carex. These groups
are poorly represented in our analyses, but they do show
substantial sequence similarity and are frequently grouped
together (but without statistical support) in the clade that
includes clade D4c, the Shortianae/Squarrosae clade dis-
cussed above. The two species of sect. Limosae form a well-
supported clade in both analyses, but the two species of sect.
Phacocystis are only supported as monophyletic in the
Bayesian analysis and in the parsimony analysis using trnL
data alone. Section Racemosae is polyphyletic with C. sty-
losa forming an unsupported clade with sect. Limosae and
C. prasina and C. mertensii supported as sister to C. aqua-
tilis (sect. Phacocystis) in the combined parsimony analysis
and sister to the C. aquatilis/C. crinita clade in the Bayesian
tree. The polyphyly of sect. Racemosae is not surprising giv-
en Nannfeldt’s (1977) description of this section as ‘‘noto-
riously unnatural.’’ Our analyses provide no support for Ego-
rova’s subgen. Kreczetoviczia, nor do they support combin-
ing sects. Limosae and Paniceae, as has been suggested by
Koyama (1962). However, much more extensive sampling
of these large groups is needed to gain an understanding of
their evolutionary relationships.

Species from sects. Clandestinae (! Digitatae (Fries) H.
Christ), Acrocystis, Pictae Kük., and Lamprochlaenae have
also been explicitly (Koyama 1962; Savile and Calder 1953)
or implicitly (Mackenzie 1931–35; Ball and Reznicek 2002)
grouped together. Savile and Calder (1953) noted the simi-
larity of smuts attacking species from these sections while
Egorova (1999) considered species in these groups to be
among the most advanced in subgen. Carex, in part due to

their tolerance for dry habitats. The presence of species from
all of these groups in clade D3 suggests affinity, but this
clade is well supported only in the Bayesian analysis and
also includes species from sects. Hymenochlaenae s.s., Ab-
ditispicae, and subgen. Vigneastra. The position of C. de-
pauperata in this clade is curious, since it has much larger,
distinctive perigynia, and the section in which it is placed
(Depauperatae or Rhomboidales Kük.) is often aligned with
sect. Paniceae (Kükenthal 1909; Jermy et al. 1982) rather
than with any of the groups in clade D3. Furthermore, sect.
Clandestinae appears to be polyphyletic, with C. peduncu-
lata nested within clade D4 and C. digitata in clade D3. This
is in accordance with the findings of Roalson et al. (2001),
where the five sampled species of this group belonged to
four different lineages, and of Heindrichs et al. (2004a) with
seven sampled species in three different lineages. Many spe-
cies in these groups are widely distributed in temperate re-
gions, and a more global approach to sampling will be re-
quired to clarify their relationships.

Conclusions and Recommendations for Future Studies

In conclusion, it is worth noting that none of the previous
hypotheses regarding the evolution of tribe Cariceae receive
significant support from our analyses. Neither the various
theories suggesting that different unispicate groups gave rise
to different genera or different groups within Carex (or vice
versa) (Kreczetovicz 1936; Nelmes 1952; Smith and Faulk-
ner 1976), nor the idea that subgen. Vigneastra is primitive
within the tribe (Nelmes 1951), nor the more recent theory
of Reznicek (1990) that species with compound inflores-
cences similar to those found in some members of subgen.
Vignea may be the progenitors of Carex, are even weakly
supported by these or previous molecular analyses. Molec-
ular analyses also fail to support Egorova’s (1999) ideas
about trends from primitive wetland to more advanced dry
land species within subgen. Carex, nor the segregation of
subgen. Kreczetoviczia from subgen. Carex. The two largest
lineages appear to have diverged early in the evolution of
the tribe with the Vignea clade and Core Carex clade evolv-
ing independently from each other and probably from the
Core Unispicate and Schoenoxiphium clades for a very long
time, although the existence and position of a Caricoid clade
remains equivocal, particularly the relationship of Schoenox-
iphium to the other groups. Given the strong monophyly of
the tribe, it is likely to have had a single origin, but this
group has either not yet been included in molecular studies,
or radiation was rapid from a common ancestor that is now
extinct (cf. Egorova [1999] who argues for parallel devel-
opment of the different groups of Carex from an extinct
‘‘ProtoCarex’’).

On the other hand, our analyses support the monophyly
of core groups within some previously recognized sections
and they are consistent with several earlier ideas about re-
lationships within subgen. Vignea and Carex. Although there
is no support for species of subgen. Vigneastra as primitive
within the tribe, there is support for the basal position of at
least some species of this group within the Core Carex clade.
As in the previous analysis of Starr et al. (2004), there is
also support for a monophyletic group of unispicate Kobre-
sia species and for differential placement of androgynous vs.



VOLUME 23 189Phylogeny of Tribe Cariceae

dioecious unispicate Carex species. Our analyses have also
suggested some new groupings within the Core Carex and
Vignea clades, most quite plausible based on morphology,
but some novel assemblages require serious investigation.

As we have noted throughout the text, more sampling is
needed before we can fully understand relationships among
Cariceae. In particular, Kobresia and Schoenoxiphium need
detailed work, and the remaining unispicate carices should
be added to the growing list of sequenced species. The spe-
cies of subgen. Vigneastra should also be a very high pri-
ority. Within subgen. Carex, potentially primitive groups
with androgynous lateral spikes (e.g., Decorae (Kük.)
Ohwi), those with paniculiform inflorescences (e.g., Fecun-
dae Kük.), and those with very low chromosome numbers
(e.g., Siderostictae Franch. ex Ohwi) should be sampled.
Within subgen. Vignea, more species with three stigmas
(e.g., Macrocephalae, Gibbae Kük.) and additional species
with compound inflorescences should be added to molecular
phylogenetic analyses.

While adding these groups should go a long way toward
understanding evolutionary relationships and trends in char-
acter evolution, more intensive sampling of all groups is
needed to achieve the goal of a stable and robust phylogeny
that can be used in studies of adaptive radiation, niche con-
servatism, community assembly, biogeography, and the evo-
lution of diversity. The tribe Cariceae, with its broad geo-
graphic distribution, wide range of habitats, and mix of spe-
cies-rich and species-poor lineages has the potential to be-
come a model system for such studies. To make this
possible, we need to broaden the geographic sampling to
include species from eastern Asia, subtropical Southeast
Asia, Africa, New Zealand, South America, and add more
species from Eurasia as well as doing intensive sampling
within many of the larger clades.

With more than 2100 species to be sampled, the DNA
regions to be sequenced must be chosen to give maximum
information with minimal investment in time and expense.
All three DNA regions, used independently for the 99-taxon
data matrix, were able to recover the two largest major
clades with significant statistical support in our analyses, but
only the combined data allowed resolution of many other
major groups. Our analyses suggest that combined data from
the trnL–trnF region and ETS-1f were most useful at re-
solving and providing support for interior branches within
the tree, while ETS-1f and ITS data were most variable
among closely related species. The new cpDNA spacer re-
gion used in the Vignea analysis was not particularly vari-
able in this group, but substitution rates in all DNA regions
were lower in subgen. Vignea, suggesting that exploration
of variability in the trnE–trnD region in other parts of the
tree would be warranted, especially since homoplasy was
extremely low for characters from this gene region.

As more species are included in the analyses, more par-
simony-informative characters will be needed. A nested
strategy, using different but overlapping sets of DNA re-
gions, will help to resolve the ‘‘backbone’’ tree, as well as
the resolution within individual clades. The clades that we
already know are well supported (e.g., the ‘‘expanded Po-
rocystis’’ clade, the Laxiflorae/Paniceae clade, the Carey-
anae/Griseae clade, or various sections within Vignea) and
can be the subject of intensive studies (sampling many more

species) using the more variable DNA regions (ETS-1f, ITS,
trnL–trnF or other variable nuclear or chloroplast introns to
be developed). The ‘‘backbone’’ tree can be further devel-
oped with somewhat more conservative DNA regions as
species from as yet unstudied groups are added to exemplars
from each major clade. More conservative regions could in-
clude trnL–trnF, trnE–trnD, or other variable chloroplast in-
trons and spacer regions, or even rapidly evolving coding
genes. A more thorough search for variable DNA regions at
both ends of the spectrum and a coordinated sequencing
strategy involving researchers from different geographic re-
gions is needed before a fully resolved phylogenetic hypoth-
esis for Cariceae can become a reality.
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