Trash Talk: A Case Study of Waste Analysis at Pomona College

Char Miller
Pomona College

Bowen Close
Pomona College

Recommended Citation
Trash Talk: A case study of waste analysis at Pomona College

Purpose: This paper presents the pedagogical initiatives associated with and the practical outcomes of a multi-student independent study that analyzed the campus waste stream and developed real-world solutions in accord with the college’s sustainability commitments and goals.

Design/methodology: The paper reviews the course structure, presents research findings and the individual student-developed solutions, and assesses their ability to reduce the campus’s waste stream.

Findings: Developing a class to audit the campus waste stream offers students an unusual educational opportunity to apply theoretical insights to and test these against a real-world problem; their analyses and projects also have helped the college more sustainably manage its waste stream.

Originality/value: This paper identifies the practical and educational advantages for participating students; and the particular benefits the institution will derive from their waste-stream research.

1. **Introduction**

At the September 2006 opening convocation at Pomona College, President David Oxtoby posed a number of critical questions about the global economy and mass consumerism that he hoped the class of 2010 would wrestle with over the next four years. "Is growth in and of itself desirable?" he asked rhetorically. "Are there limits to growth? Can we begin an urgently needed dialog on the move toward a sustainable world?" (Oxtoby, 2006). His queries were not unique; many around the world had been raising similar concerns about the consequences of and limits to growth, particularly in light of the scientific evidence connecting human behavior to global warming and climate change (Creighton, 1998; Stern, 2007). Indeed, President Oxtoby, an environmental chemist, was well aware of the global dimension of these dialogs, noting that Jared Diamond’s recently published book, Collapse, revealed that some “societies learned to live with their local resources and have persisted to the present day, while others drove themselves into extinction.” He brought the international situation home to Pomona by suggesting that many of the disciplines these students would explore offered ways to assess the possibilities of creating a more sustainable and just society. He left his audience with a mutual dare: “I look forward to exploring with all of you in the years ahead how Pomona College can become a leader in educating students for a sustainable world” (Oxtoby, 2006; Oxtoby, 210).

President Oxtoby’s challenge was heightened in April 2007 when he signed the American Colleges University Presidents Climate Commitment (ACUPCC), which currently includes more than 670 signatories. Its “commitment text” requires these institutions, among other obligations, to identify the sources of their greenhouse emissions; develop and implement a plan by which to reduce them; integrate sustainability into the curriculum; and make accessible all reports related to its efforts (ACUPCC – http://www.presidentsclimatecommitment.org/about/commitment). Like its peer signatories, Pomona College has adopted new environmental and sustainability policies and has created an organizational infrastructure to develop and accomplish its declared sustainability goals (Pomona College, 2010; Pomona College 2009; President’s Advisory Committee, 2007a). After signing the ACUPCC, President Oxtoby charged the newly formed President’s Advisory Committee on Sustainability (PACS) with generating ideas for how to move forward. Its initial recommendations lead to the establishment of a full-time Sustainability Coordinator position, which quickly transitioned into the creation of the Sustainability Integration Office (SIO). The SIO has utilized student interns and researchers to audit the college’s greenhouse emissions, energy flows, paper usage, water consumption, and other environmental impacts (Pomona College, 2007b); it has also generated short- and long-term goals and strategies in the form of the College’s First sustainability Action Plan (release forthcoming).

One aspect of this critical work that had not been sufficiently addressed was the campus waste stream. Although previous data collection had demonstrated the extent of the waste stream and its costs (Table 1), no research had been done on its constituent elements. In response, in Spring 2010, the director of the Environmental Analysis Program and the director of the SIO co-taught a semester-long, five-student independent study focused on identifying the sources and composition of the campus’ waste. Entitled EA 199: Greening the Waste Stream, it introduced the class to the history and present state of waste management globally; presented them with strategies other campuses in the United States have employed to “green” their waste streams; and gave them training in the techniques available to audit, analyze, and reconfigure Pomona College’s system of trash collection and management. From this emerged significant baseline data that will further the college’s efforts to reduce, reuse, and recycle its waste, fulfilling a key element in its ACUPC-determined commitment to sustainability (http://www.presidentsclimatecommitment.org/about/commitment).

Table 1. Pomona College waste volume and hauling costs, 2006-2010

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Landfill TONS</th>
<th>Recycling TONS</th>
<th>Composting TONS</th>
<th>Green Waste TONS</th>
<th>Hazardous Waste TONS</th>
<th>Ewaste TONS</th>
<th>TOTAL DIVERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-07</td>
<td>699</td>
<td>$38,166.32</td>
<td>480</td>
<td>20</td>
<td>84.5</td>
<td>5</td>
<td>1,289</td>
</tr>
<tr>
<td>2007-08</td>
<td>655</td>
<td>$35,755.63</td>
<td>480</td>
<td>25</td>
<td>84.5</td>
<td>5</td>
<td>1,251</td>
</tr>
<tr>
<td>2008-09</td>
<td>686</td>
<td>$58,125.39</td>
<td>480</td>
<td>28</td>
<td>84.5</td>
<td>5</td>
<td>1,284</td>
</tr>
<tr>
<td>2009-10</td>
<td>544</td>
<td>$66,329.57</td>
<td>504</td>
<td>29</td>
<td>112</td>
<td>2</td>
<td>1,192</td>
</tr>
</tbody>
</table>

1. **Pomona College**

The founding member of the Claremont University Consortium, which includes five undergraduate colleges and two graduate institutions, Pomona College (est. 1887) is a private, residential, liberal-arts institution located in Claremont, California. It enrolls approximately 1,540 undergraduate students and employs 254 faculty and 473 staff, all of whom live, study, teach, research, and/or work on a 140-acre suburban campus. Its structures include 62 buildings, 12 of which are dormitories in which the students are housed and three dining halls and two cafés; the total built square footage is 1.4 million (with another 400,000 coming online in summer 2011). When the independent study of the campus waste stream emanating from these facilities was conducted in the Spring 2010 semester, all who enrolled were Environmental Analysis (EA) majors. At that time, the interdisciplinary EA program had 2.25 full-time equivalent faculty and 90 declared majors. The Sustainability Integration Office was created in 2009 and its work is conducted in close coordination with PACS; since 2008, it has hired approximately 50 students to serve as Sustainability Assistants or Sustainability Action Fellows whose research and data analysis has been central to the college’s evolving sustainability plans and management. Its first director also co-taught the independent study herewith described.

1. **Course goals and objectives**

This experimental class had a series of interrelated goals and objectives. By developing a methodology to analyze what went into the college’s trash cans, recycling bins, compost collectors, and dumpsters and from what sectors of the campus these materials originated, it produced the first sustained assessment of the particulars of the campus waste stream (Donovan, et al., 2010). It did so without the expenses usually associated with hiring outside consultants and contractors, yet provided data collection as rigorous as those professionals might have produced.
Proper Disposal Method

Recycling

Compost

Compost

Recycling / Compost

Recycling

Hazardous waste

Trash

E-waste

Recycling

It demonstrated as well to the students and teachers alike that it is possible to create a pedagogical environment that, in this case, blends historical and theoretical analyses at other U.S. colleges and universities so their findings could bolster initiatives on additional campuses. The opportunity to compare and contrast across campuses and regions, which is built into ACUPCC’s principles, adds a competitive and incentive-based drive, as in this instance, to narrow waste streams (ACUPCC: http://www.presidentsclimatecommitment.org/about/commitment).

IV. Course Structure

The class grew out of a conversation between the authors in the fall 2009 about how to seed the college's curriculum with courses on sustainability, a central goal of the ACUPCC commitment text: “Campuses that address the climate challenge by reducing global warming emissions and by integrating sustainability into their curriculum will better serve their students and meet their social mandate to help create a thriving, ethical and civil society.”

(ACUPCC: http://www.presidentsclimatecommitment.org/about/commitment). Although it was by then too late to create a university-approved class for the following semester, Pomona College offers faculty and students the option of setting up independent studies that do not require as much lead time to develop. Through the Environmental Analysis program's listserv and informal faculty and student networking, we issued an invitation for a limited number of students to enroll in EA 199: Greening the Waste Stream; we also submitted a rationale to the college registrar that read in part:

The students will be working individually and collectively to analyze the college's waste-stream, doing baseline calculations of the materials that leave campus (part of this will include haz-mat suited dumpster diving); an economic assessment of the costs of this removal; and then they will prepare individual graded reports on policies [Pomona] might adopt to diminish these costs (and the consumption that precedes them); these reports then will form part of the annual Sustainability Report that [the SIO] must present to the administration and trustees…. (Miller, 2010).

Once approved, the course instructors developed a reading list and syllabus; constructed a SAKAI-based intranet website to facilitate the posting of resources, data, readings, and other information pertinent to the class’ agenda. The SIO director arranged a field trip to the local e-waste recycling center and met with key individuals in facilities administration to secure their support and guidance; these contacts and those with the housekeeping staff proved critical to the project’s success.

During the first seven weeks, students investigated relevant sections of Pomona College's sustainability reports; read historical and theoretical analyses of waste management issues across place and time; studied other campuses’ initiatives to audit and control their waste streams (e.g. University of California-Davis; University of Oregon); presented oral reports on the central concerns that animated the policies and the implications flowing from these varied readings; and began to develop appropriate methodologies, strategies, and tools for investigating the campus waste stream.

The objective of this first stage was for students to familiarize themselves with the different steps communities and institutions have taken to deal with waste. They also explored the reliability and applicability of these techniques to Pomona and gained experience working together, especially important given the range of their ages (from sophomores to seniors) and subfield emphases (from environmental economics and development to race, class, and gender). This segment of the class concluded with two projects: students prepared and presented visual depictions of the Pomona waste stream, graphic representations that helped clarify their thinking in advance of the second project, a hands-on sorting of a small, random sampling of one day’s worth of campus trash that Housekeeping had collected. Donning gloves, the students and the teachers went through six, 55-gallon bags that were designated as “trash” and “recycling,” separating each into one of three categories (trash, recycling, compost).

This activity set the foundation for the one of the major activities of the final seven weeks of the semester—a full-scale sorting of an estimated 400 pounds of waste during an all-afternoon session. In anticipation of that arduous labor, the class refined the analytical tools they would employ, established a ratio for the number of bags, and types of material (“trash” and “recycling”) that would be selected from five sectors of the campus—administrative; residential; academic (science; and non-science; and the campus center (student union). After determining the nomenclature they would ask Housekeeping to employ when it tagged the bags, and denoting the kind of waste collected and from which sector, they also expanded the range of categories into which to place the sorted items (Table 2). Finally, with help from the SIO, they assembled the necessary protective gear, scales, and other material to facilitate their analyses. The results (Table 3) confirmed that a large portion of Pomona College's trash actually was recyclable; changing that ratio would save the college money and divert material analyses at other U.S. colleges and universities so their findings could bolster initiatives on additional campuses. The opportunity to compare and contrast across campuses and regions, which is built into ACUPCC’s principles, adds a competitive and incentive-based drive, as in this instance, to narrow waste streams (ACUPCC: http://www.presidentsclimatecommitment.org/about/commitment).

<table>
<thead>
<tr>
<th>Category</th>
<th>Proper Disposal Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compostable paper</td>
<td>Compost</td>
</tr>
<tr>
<td>General paper</td>
<td>Recycling</td>
</tr>
<tr>
<td>Cardboard</td>
<td>Recycling</td>
</tr>
<tr>
<td>Misc. paper</td>
<td>Recycling</td>
</tr>
<tr>
<td>Paper cups</td>
<td>Recycling / Compost</td>
</tr>
<tr>
<td>Metal</td>
<td>Recycling</td>
</tr>
<tr>
<td>Food wastes (currently compostable)*</td>
<td>Compost</td>
</tr>
<tr>
<td>Food wastes (Theoretically compostable)*</td>
<td>Trash / Compost</td>
</tr>
<tr>
<td>CRV plastic</td>
<td>Recycling</td>
</tr>
<tr>
<td>Non-CRV plastic</td>
<td>Recycling</td>
</tr>
<tr>
<td>Plastic film</td>
<td>Recycling</td>
</tr>
<tr>
<td>CRV glass</td>
<td>Recycling</td>
</tr>
<tr>
<td>Non-CRV glass</td>
<td>Recycling</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Hazardous waste</td>
</tr>
<tr>
<td>Electronic</td>
<td>E-waste</td>
</tr>
<tr>
<td>Liquid</td>
<td>Trash</td>
</tr>
<tr>
<td>"Gross"**</td>
<td>Trash</td>
</tr>
<tr>
<td>Trash</td>
<td>Trash</td>
</tr>
</tbody>
</table>

[8]This activity set the foundation for the one of the major activities of the final seven weeks of the semester—a full-scale sorting of an estimated 400 pounds of waste during an all-afternoon session. In anticipation of that arduous labor, the class refined the analytical tools they would employ, established a ratio for the number of bags, and types of material (“trash” and “recycling”) that would be selected from five sectors of the campus—administrative; residential; academic (science; and non-science; and the campus center (student union). After determining the nomenclature they would ask Housekeeping to employ when it tagged the bags, and denoting the kind of waste collected and from which sector, they also expanded the range of categories into which to place the sorted items (Table 2). Finally, with help from the SIO, they assembled the necessary protective gear, scales, and other material to facilitate their analyses. The results (Table 3) confirmed that a large portion of Pomona College's trash actually was recyclable; changing that ratio would save the college money and divert material away from Los Angeles County landfills that are reaching capacity and theoretical analyses at other U.S. colleges and universities so their findings could bolster initiatives on additional campuses. The opportunity to compare and contrast across campuses and regions, which is built into ACUPCC’s principles, adds a competitive and incentive-based drive, as in this instance, to narrow waste streams (ACUPCC: http://www.presidentsclimatecommitment.org/about/commitment).

Table 2. Sorting categories for waste audit and proper disposal methods
To build off their hands-on research, the students completed two additional assignments. They first drafted a report of their findings (Donovan et al., 2010), which was folded into the SIO’s annual Sustainability Report (Pomona College Sustainability Annual Report, 2010). They also developed a PowerPoint presentation of their results that they presented in separate sessions to the class teachers, PACS, and the Housekeeping staff. In each setting, their findings were assessed and debated, and important questions were raised about the local and larger implications of their research. Two questions were combined with the students’ insights into the political and individual projects that would help green the campus waste stream. Students were required to write a project proposal that identified the problem that they wished to resolve and discuss its purpose, practically, and value; determine the precise steps that the SIO could take to resolve this concern; establish a working budget needed for the function of the project; and then present the findings of their proposals to the SIO. Students were required to write a project proposal that identified the problem that they wished to resolve and discuss its purpose, practically, and value; determine the precise steps that the SIO could take to resolve this concern; establish a working budget needed for the function of the project; and then present the findings of their proposals to the SIO. All four respondents agreed that the class goals had been made clear; that its content and structure made sense given the stated goals; and that the students gained from this class analyzing the campus waste stream.

1. Pedagogical Challenges and Learning Outcomes

Because of the experimental nature of the class—the teachers nor the students had participated in such a course before—all its participants were flying blind in some respects. Had the course been focused on carbon audits, energy independence, or reductions in greenhouse gas emissions there would have been a plethora of studies on which to draw (Button, 2009; Eagan et al., 2008; Helferty et al., 2009; Rappaport and Creighton, 2007; Wells et al., 2009). But establishing this class’ reading list proved somewhat more complicated by the relatively obscurity of the topic of greening the waste stream. Although it was not difficult to locate readings on the history of waste management in the United States, texts the teachers thought crucial to set the broader context, it was not immediately obvious how to locate case studies of waste-stream analyses at other colleges and universities. This ownership was complicated by the simple expedient that the SIO director contacted peers across the country to find out what reports their campuses had generated; these became essential building blocks for the class syllabus.

1. Course Ramifications

The various assignments—presentations; the final report; and individual projects—made sense given what the hoped students would be able to generate in terms of data and relevant insights about its import. That said, the success of any particular assignment depends on its relationship to course objectives, and goals, as well as student abilities. Given that this was an undergraded class, and that these students were of different interests and skills, it was not obvious that the course requirements would fully capture or adequately reflect student achievement.

Table 3. Results of waste audit — materials designated for landfill, by weight

<table>
<thead>
<tr>
<th>Category</th>
<th>Total weight</th>
<th>% of weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recyclable</td>
<td>128.5</td>
<td>41.8%</td>
</tr>
<tr>
<td>Compostable</td>
<td>58.4</td>
<td>18.0%</td>
</tr>
<tr>
<td>Trash</td>
<td>58.4</td>
<td>18.0%</td>
</tr>
<tr>
<td>Haz/eWaste</td>
<td>1.6</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

To assess these presumed outcomes that derived from anecdotal evidence the co-teachers had gained during the semester through conversations and email communications with individual students, they used SurveyMonkey to create an online survey of learning outcomes (Wells, 2009). It asked students about course goals, structure, and pedagogy; the extent of their learning about waste streams; whether knowledge of this “real-world” issue increased motivation; and the usefulness of course requirements and their “applied” nature.

Posted in mid-July, 2010, survey was sent out with an email message inviting students to respond within two weeks. Within the stated timeframe, four of the five students completed the survey, a completion rate of 80%. Its results confirmed our hypotheses about what the students learned in and gained from this class analyzing the campus waste stream.

All four respondents agreed that the class goals had been made clear; that its content and structure made sense given the stated goals; and that the presentation of its subject matter, in class and out, had facilitated their learning. They were unanimous, in their concurrence that the class greatly increased their knowledge of waste-stream dynamics in general and Pomona College’s in specific. All four affirmed that this knowledge heightened their understanding of the individual’s levels of consumption and waste-creation and the larger society’s. As one student observed: “I am amazed at how much awareness of my own consumption patterns increased as a result of this class. It increased my knowledge of the complex issues involved in waste collection and motivated them in their research. One student put it this way: “I learned...”

1. Pedagogical Challenges and Learning Outcomes

Without claiming too much for this single independent study on greening the waste stream, it nonetheless fulfilled some of these wider ambitions. It provided students with an opportunity to test theoretical knowledge, offered them a chance to analyze information that could have a clear benefit for their campus community (and beyond), benefit that was captured in the final team report and in their final individual projects; and it enabled them to work together as a team to resolve any difficulties, foreseen and unforeseen, that might arise over the course of the semester.

To assess these presumed outcomes that derived from anecdotal evidence the co-teachers had gained during the semester through conversations and email communications with individual students, they used SurveyMonkey to create an online survey of learning outcomes (Wells, 2009). It asked students about course goals, structure, and pedagogy; the extent of their learning about waste streams; whether knowledge of this “real-world” issue increased motivation; and the usefulness of course requirements and their “applied” nature.

Posting in mid-July, 2010, survey was sent out with an email message inviting students to respond within two weeks. Within the stated timeframe, four of the five students completed the survey, a completion rate of 80%. Its results confirmed our hypotheses about what the students learned in and gained from this class analyzing the campus waste stream.

All four respondents agreed that the class goals had been made clear; that its content and structure made sense given the stated goals; and that the presentation of its subject matter, in class and out, had facilitated their learning. They were unanimous, in their concurrence that the class greatly increased their knowledge of waste-stream dynamics in general and Pomona College’s in specific. All four affirmed that this knowledge heightened their understanding of the individual’s levels of consumption and waste-creation and the larger society’s. As one student observed: “I am amazed at how much awareness of my own consumption patterns increased as a result of this class. It increased my knowledge of the complex issues involved in waste collection and motivated them in their research. One student put it this way: “I learned...”

1. Course Ramifications

The student evaluations shaped the teachers’ post-semester debriefing about the class, and their assessment of what had worked and what had been less successful. If we were to teach the class again, its orientation would shift in large part because it would begin with a much richer resource base, courtesy of the initial class’ residuum analyses of the campus waste stream and its constituent elements. A second iteration of the class, therefore, could focus more squarely on developing projects that would produce an even greater decrease in the waste stream. As good as the students’ final projects were in Spring 2010, they had been developed in four short weeks. If given a full 13-week semester to conceive, test, and realize such projects, we believe the resulting outcomes and recommendations would be much more impressive.

1. Course Ramifications

Without claiming too much for this single independent study on greening the waste stream, it nonetheless fulfilled some of these wider ambitions. It provided students with an opportunity to test theoretical knowledge, offered them a chance to analyze information that could have a clear benefit for their campus community (and beyond), benefit that was captured in the final team report and in their final individual projects; and it enabled them to work together as a team to resolve any difficulties, foreseen and unforeseen, that might arise over the course of the semester.

To assess these presumed outcomes that derived from anecdotal evidence the co-teachers had gained during the semester through conversations and email communications with individual students, they used SurveyMonkey to create an online survey of learning outcomes (Wells, 2009). It asked students about course goals, structure, and pedagogy; the extent of their learning about waste streams; whether knowledge of this “real-world” issue increased motivation; and the usefulness of course requirements and their “applied” nature.

Posting in mid-July, 2010, survey was sent out with an email message inviting students to respond within two weeks. Within the stated timeframe, four of the five students completed the survey, a completion rate of 80%. Its results confirmed our hypotheses about what the students learned in and gained from this class analyzing the campus waste stream.

All four respondents agreed that the class goals had been made clear; that its content and structure made sense given the stated goals; and that the presentation of its subject matter, in class and out, had facilitated their learning. They were unanimous, in their concurrence that the class greatly increased their knowledge of waste-stream dynamics in general and Pomona College’s in specific. All four affirmed that this knowledge heightened their understanding of the individual’s levels of consumption and waste-creation and the larger society’s. As one student observed: “I am amazed at how much awareness of my own consumption patterns increased as a result of this class. It increased my knowledge of the complex issues involved in waste collection and motivated them in their research. One student put it this way: “I learned...”

1. Course Ramifications

The student evaluations shaped the teachers’ post-semester debriefing about the class, and their assessment of what had worked and what had been less successful. If we were to teach the class again, its orientation would shift in large part because it would begin with a much richer resource base, courtesy of the initial class’ residuum analyses of the campus waste stream and its constituent elements. A second iteration of the class, therefore, could focus more squarely on developing projects that would produce an even greater decrease in the waste stream. As good as the students’ final projects were in Spring 2010, they had been developed in four short weeks. If given a full 13-week semester to conceive, test, and realize such projects, we believe the resulting outcomes and recommendations would be much more impressive.

1. Course Ramifications

Without claiming too much for this single independent study on greening the waste stream, it nonetheless fulfilled some of these wider ambitions. It provided students with an opportunity to test theoretical knowledge, offered them a chance to analyze information that could have a clear benefit for their campus community (and beyond), benefit that was captured in the final team report and in their final individual projects; and it enabled them to work together as a team to resolve any difficulties, foreseen and unforeseen, that might arise over the course of the semester.
There have been several immediate and practical consequences of EA 199: Greening the Waste Stream. The SIO adopted a number of the recommendations emanating from the individual student projects. It integrated the findings of the students’ final report on campus waste into Pomona’s 2009-10 Sustainability Annual Report (Pomona College, 2010), which has been submitted to the President and the Board of Trustees, with the opportunity to shape the college’s environmental practices and policies. There will be a curricular impact, too: using EA 199 as a model, the teachers approached the EA Program about the possibility of revamping the required spring-semester seminar around a series of campus-based sustainability issues. The faculty agreed, and the authors began developing a series of topics that would utilize ten teams of four students each to address such issues as how to manage the campus’ hazardous waste stream, generate new emergency-power systems, reduce dining-services waste, establish a campus bicycle plan, extend composting services into the dormitories and offices, assess the sustainability efforts of a five-star luxury hotel, evaluate the EA curriculum itself, and develop a local water-reclamation project.

1. Conclusions

In 2006, when President Oxtoby challenged the incoming class at Pomona to engage directly on questions of campus sustainability, he could not have known how fully they would respond (Oxtoby, 2010). Over the last three years, for instance, upwards of 50 students have worked for the SIO launching a series of research projects that transformed the way the college collected resource data, enabling it to more sustainably manage its resources and save money in the process. The EA Program benefited as well from the rapidly growing interest in sustainability studies: in 2008 it graduated 13 majors; in 2010 it graduated 26; 42 are expected to graduate in 2011. One member of the class of 2010 proved a key figure in EA 199, a reflection of the campus-wide engagement with pressing environmental issues.

EA 199: Greening the Waste Stream, in short, rode a wave of student interest, allowing its participants to focus their academic skills on a critical and understudied problem. They learned first hand how essential good data and good data-crunching is to the development of effective problem solving. This hard-won information and enhanced analytical skills were also essential to the creation of new policies that would allow the college to reduce its waste stream, a boon to the campus and community. In so doing, the class strengthened the college’s ACUPCC commitment to building sustainability into the core curriculum and daily life. Not incidentally, it also reaffirmed Pomona’s longstanding commitment to educating students to “bear their added riches in trust for mankind.”

References

Miller, C., 2010, Email communication to M. Adorno, Registrar, Pomona College, January 12.

President’s Advisory Committee on Sustainability, (2007), (http://www.pomona.edu/administration/sustainability/resources/publications/PACSFinalReport.pdf, last accessed on July 26, 2010).

[1] [14] Not including construction/demolition waste or the diversion that results from formal donation/reuse programs.

[2] [15] Recycling, composting, and green waste numbers are estimated based on average pick-up frequency and estimation of average volume.

[3] [16] Green waste numbers for 2006-07 and 2007-08 are unknown; the volume for 2008-09 is used as a place holder for these years.

[5] [18] “Currently compostable” refers to food wastes that can be handled under the campus’ current composting system, which cannot take wastes with dairy or meat ingredients.

[6] [19] Gross” refers to items such as hair, dust, etc. that did not fit into other categories and that was unpleasant to handle.