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Figure 5.6: Plots of the sensitivity of the first four compartments, where Z = W (1), etc., to the same four
parameters as in Figure 5.
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Figure 5.7: Sensitivity of the viral load over 100 days of periodic STI.
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5.3.5 Observation Matrices

The cost of data collection varies widely across the five compartments in the model. The viral load V is
often the only compartment measured. The uninfected cells X and the infected cells Y , can be measured
together with considerably less expense than measuring them separately. The same is true for the immune
precursors W and the immune effectors Z. In order to suggest an effective and frugal experimental protocol, it
is useful to determine which compartments measurements are essential and whether combining or eliminating
compartments compromises the quality of the data. In order to answer these questions, we created a set
of observation matrices Ci to represent different combinations of compartments. When our compartmental
vector is multiplied by one of these observation matrices, we change the observations made in the parameter
estimation problem.

The observations we examined were:

Observations
[X, Y, W,Z, V ]

[X, Y, W + Z, V ]
[X + Y, W + Z, V ]
[X + Y, W + Z]

[X, Y, V ]
[X + Y, V ]

[V ]

5.3.6 The Effect on dJ
dq

from Changing the Observables

Our next step was to incorporate different observation matrices C into the cost function and analyze dJ
dq for

each. To summarize the results, measuring only [V ], or [X + Y, V ] causes a significant loss in sensitivity
with respect to most parameters, whereas the results obtained with [X + Y, W + Z], [X + Y,W + Z, V ], and
[X, Y, W + Z, V ] are strikingly similar to those obtained with the full set of observables [X, Y, W,Z, V ]. As
in Section 3.3 we used a time sampling of once a day for 100 days in each data set, and the results below
are for the untreated model. Similar results were obtained in the treated model. Figures 8 and 9 illustrate
the changes that occur in the sensitivity of our cost function as we change the observation matrix. The 100
different data sets used to generate the results for any one of the observation matrices were not the same as
the data sets used for any of the other observation matrices.

5.4 The Inverse Problem: Estimating the Parameters

5.4.1 Why solve the Inverse Problem?

All of the analysis in this paper is based on the the modified Wodarz-Nowak Model. Now we concern ourselves
with another question: Is our model a good model? One way to answer this question is to answer another
question instead: Given a data set, does our model describe the data set? Solving the inverse problem answers
the latter question.

Inverse problems arise in a variety of important applications in science and industry. These range from
biomedical and geophysical imaging to groundwater flow modeling. In all these applications the goal is to
estimate some unknown attributes of interest, given measurements (a data set) which are indirectly related
to these attributes. For example, in medical tomography, one wishes to image structures within the body
from measurements of X-rays which have passed through the body [9]. For our model, the data set which the
immunologist can measure is the vector of observables ŷ = Cẑ. For instance, ŷ=[X + Y, V] indicates that the
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Figure 5.8: dJ
dq for various observation matrices.
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Figure 5.9: dJ
dq when only the viral load is observed.

data available is the total count of X plus Y , the combined total of uninfected T helper cells and infected T
helper cells, and V, the number of free virions. The attributes of interest that we wish to estimate given the
data ŷ are the components of q.

Solving the inverse problem identifies the parameters q∗ for which the model best describes the given data
ŷ. That is, we determine z(q∗) so that the “distance” between Cz(q∗) and ŷ is as small as possible. We use
the least squares cost function,

J(q) =
∑

i |log(C ∗ z(ti,q))− log(C ∗ ẑi)|2
σ2

i

,

to determine this distance. Therefore, solving the inverse problem is equivalent to solving q∗ such that

q∗ = argminq∈Qad
J(q) =

∑
i |log(C ∗ z(ti,q))− log(C ∗ ẑi)|2

σ2
i

where Qad is called Q-admissible, the space of valid values for q.
Given a data set, does our model describe the data set? The answer is yes if J(q∗) is “small”.

5.4.2 Implementation

Simulating Data

To formulate the inverse problem requires data. Since we did not have access to real data, we simulated data
by

log ẑi = log zi + σεi,

where εi = ε(ti) ∼ N(0, 1) and we assumed the vector of measurement errors were σ2 = [.01.01.01.01.25] · λ,
for λ ≥ 1. That is, σ2 is the error incurred when a clinician actually measures each compartment. Therefore,
when we generate data we are assuming that X, Y, W and Z are each measured with 1% error from the true
measurement and V is measured with 25% error from the true measurement.
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Since we are assuming that X, Y, W, Z, V are mutually independent, then for example we can assume that
the measurement error for measuring X and Y together is the sum of the measurement errors of measuring X
and then Y individually. Hence, the measurement error for Cẑi=[X + Y] is σ2

X + σ2
Y .

Optimization Methods

To find q∗, we used the Nelder Mead simplex method (MATLAB’s fminsearch). We tried other optimization
methods, including Steepest Descent, Newton CG and BFGS methods, but Nelder Mead outperformed these
for our data. Nelder Mead has the further advantage that the gradient ∇qJ = ∂J/∂q need not be calculated;
the method only requires evaluations of the cost function J(q).

Using the Sensitivity Analysis

If it becomes difficult to find q∗ over all the parameters, then we can concern ourselves with optimizing J just
over the parameters to which the model is most sensitive. The five most sensitive parameters for the model
with treatment in order of sensitivity, identified by the sensitivity analysis that we performed, are

β = proliferation rate of Infected T helper cells,

c = proliferation rate of Immune Precursors Cytotoxic T Lymphocyte,

b = natural death rate of Immune Precursors Cytotoxic T Lymphocyte,

a = natural death rate of Infected T helper cells, and

f = drug efficacy.

Further Assumptions

We solved the inverse problem for thousands of different synthetic data sets ẑ, where the error σ2 was generated
for λ=1, 10, 100, 1000, and 10000; and z = z(ti,qtrue), with qtrue =[1, .1, .02, .2, 1 ,.027, .5, .001, .1, 25, 1,
.75]. Note that each J(q) evaluation requires a forward solution of the ODE, as in Section 3.2. For each of
these, we assumed that zinit = [10, .3, .008, .001, 7, .5].

Furthermore, we let C be the identity matrix (so we are assuming full observability, that each compartment
of z can be measured), that ti = 1, 2, 3, 4, ..., 100 (measurements for each compartment are taken each day
over a 100 days), and that the periodic treatment u(t) is being applied.

5.4.3 Results

Two general approaches were used. First, for qinit = qgen, synthetic data was generated for λ=1, 10, 100,
1000, and 10000. When the parameters are independent, this approach allows us to estimate a probability
density for each of the components of q.

Secondly, we solved the inverse problem for many different values of qinit = qtrue + qtrue · ηδ, where
δ ∼ N(0, 1). As η increases, qinit is perturbed further from qtrue. Since q∗ ≈ qtrue, this methodology should
enable us to estimate a confidence neighborhood about qtrue so that for any qinit in this neighborhood we
can make a confidence statement about how well our inverse problem algorithm can find q∗ adequately close
to qtrue.

Estimating Probability Densities

As mentioned before, we simulated data by

log ẑi = log zi + σ · ε,
where

ε ∼ N(0, 1),
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and we assumed the vector of measurement errors was σ2=[.01, .01, .01, .01, .25]·λ, for λ ≥ 1 where lambda
is a scalar to amplify the noise in the data. Simulations were run for lambda=1, 10, 100, 1000 and 10000.

Keeping qinit = qtrue fixed, we varied the amount of noise in the data by generating 100 different synthetic
data sets for each of the values λ=1, 10, 100, 1000 and 10000. When the parameters are independent, this
approach allowed us to construct a marginal probability density for each of the components of q.

Figure 10(a) shows the results of our algorithm for the five most sensitive parameters: β, c, b, a, and f

when λ = 10. Figure 10(b) shows a probability density for β when λ = 10.
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Figure 5.10: (a) Boxplot of q=[β c b a f ] vs the percent variation of each these parameters (q∗) from qtrue,
q∗−qtrue

qtrue
, over 100 inverse problem solves for λ =10. (b) The probability density of beta that we constructed

using the results from (a).

Trying to Find a Confidence Neighborhood

First, we attempted to find q∗ over all twelve parameters. For η =.01, .05, and .1, we saw that the q∗ procured
from our algorithm was not very far from qinit (see Figure 11). For values of η ≥ .2 (for large perturbations
of qinit from qtrue, the Nelder Mead algorithm was unable to solve the system at all. Hence, we turned to
the results of our sensitivity analysis to make the optimization problem simpler.

As mentioned earlier, when it becomes difficult to find q∗ over all the parameters, then we can concern
ourselves with optimizing J just over the parameters to which the model is most sensitive. Therefore, we set
qtrue =[β c b a f ], the five most sensitive parameters.

The only benefit to this approach was that we were able to solve the system for η ≤ .5. Unfortunately,
the q∗ procured from our algorithm still was not very far from qinit, as seen in Figure 12. Hence a new
optimization scheme is recommended which is not so dependent on qinit.

5.5 Conclusion

The results of our investigations provide some guidance for future study, including design of experiments
aimed to investigate the efficacy of STIs, the validity of the modified Wodarz-Nowak model for HIV infection
dynamics, and estimates for the parameters in the model.

Our first set of results from the sensitivity analysis concerns the parameters in the model. The sensitivity
analysis determined that the parameters β, a, p, and c were still the most sensitive and that with treatment,
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qtrue
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over 100 inverse problem solves for η =.05. β = q[3]. These plots indicate that we ought to try constraining
our optimization to the parameters that affect the model the most.
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100 inverse problem solved when η =.05. These plots indicate that even when constraining our optimization
to the parameters that affect the model the most, q∗ is still far from qtrue. Hence a new optimization scheme
is recommended which is not so dependent on qinit.
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the drug efficacy f becomes the fifth most sensitive parameter. These parameters play significant roles in the
dynamics of the model.

Our second set of results from the sensitivity analysis suggests times to collect data about the parameters.
Without STI, the system is most sensitive to β initially, which reduces quickly and then begins to dominate
again as time progresses. We suggest measuring z after five days, waiting a month, and then beginning
weekly measurements. Since sensitivity to a remains high throughout time, we would recommend regular
measurement throughout the entire observation period (e.g., weekly). The sensitivity to c is high initially, but
then decreases rapidly, so we might recommend measuring every third day for six weeks and then discontinuing
measurements. For b, we recommend the opposite approach. Because the results for each parameter suggest
a different measurement schedule, we suggest that the best approach may be to measure at regular intervals.
With STI, the sensitivity to β now begins to increase rapidly after two months. Consequently, with the
introduction of STI, we suggest more frequent measurement.

Our third set of results from the sensitivity analysis indicates which combinations of compartments play
a significant role in the dynamics of the model. Measuring only [V ], or [X + Y, V ] causes a significant loss in
sensitivity with respect to most parameters, whereas the results obtained with [X+Y, W+Z], [X+Y,W+Z, V ],
and [X, Y,W + Z, V ] are strikingly similar to those obtained with the full set of observables [X,Y, W,Z, V ].
This is a very useful result, since combining measurement of X with Y and W with Z leads to a large reduction
in cost of data collection without sacrificing the quality of the information collected.

In our work with the inverse problem, we have discovered the probability distributions for optimal β, c, b, a,

and f , the parameters to which the model is most sensitive, given the synthetic data sets that we constructed.
Although our approach was not able to achieve a solution for the inverse problem over all twelve parameters,
limiting the optimization to the most sensitive parameters results in some increase in the ability of the optmizer
to converge to the optimal parameter set.

Some questions for future consideration concern the details of the experimental protocol and future at-
tempts to solve the inverse problem. One issue of particular concern is how to time the STIs given that a
“day” in our model may not correspond to real time. Once data have been collected, the inverse problem can
be reexamined to find better estimates for parameters in the model.
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Abstract

This problem, motivated by Michelin, arises in the design of a run-flat, or PAX, tire system. A PAX tire
system consists of a larger than normal radius aluminum wheel, a low-profile tire, and a special rubber support
ring attached to the wheel inside the tire. The goal of the support ring is to provide a safe driving transition
in the case of a flat tire. After the air has deflated from the tire, the support ring carries the entire load of the
car.

Here we discuss ways to optimize the design of the support ring. This work represents a “first step” in the
process of solving the problem. In particular we focus on minimizing the interior temperature over different
feasible shapes for the design of the ring, subject to mass and stability constraints. This involves nonlinear
optimization and the solution of a 2D heat equation. In addition to addressing these initial aspects, we point
out which directions might yield the most improvement in future undertakings.

6.1 Introduction and motivation

A run-flat, or PAX, tire system is a new type of tire and wheel capable of running safely even when the tire is
unexpectedly deflated, say by a nail on the road. When the tire is deflated, the weight of the car is supported
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2Clarkson University
3Wayne State University
4University of Massachusetts at Amherst
5University of Maryland - Baltimore County
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by a stiff, one-piece rubber ring structure mounted on the wheel inside the tire. This interior ring must be
capable of supporting the weight of a car and passengers at road speeds long enough to reach a destination
where the tire can be replaced. The design of this ring is the subject of the current report.

There are several obvious criteria for an acceptable PAX tire system. The first of these is that the vehicle
must be able to run a suitable distance, for example 120 miles, with a completely deflated tire. Thus, the
ring structure must be capable of both supporting the cyclic loading to which a tire is subjected and evenly
distributing the heat generated by that loading. Under high temperatures the material properties of the rubber
can change and therefore decrease the structural stiffness. Experiments conducted on initial ring designs by
Michelin have shown that the heat generated is indeed a significant problem. In addition, we must constrain
the weight of the ring structure since it serves no purpose under normal operating conditions, i.e., when the
tire is inflated. Ideally, a set of four PAX tires should weigh the same as, or less than, a conventional set
of wheels and tires plus one spare tire. Some extra weight could possibly be justified by the added safety of
a PAX tire system. Lastly, the thickness of the ring, must obviously be small enough to fit inside the tire,
but not so small as to affect the drivability of the vehicle when the tire is flat. In short, our design goals are
minimize temperature and maximize mechanical stiffness, subject to constrained mass and dimensions.

A complete mathematical approach to the design of a PAX tire system must take all of these effects into
consideration. However, to obtain a model simple enough to be used in an optimization routine, we have
taken the approach of separating the mechanical properties of the design from the thermal properties. In
particular, the problem we attempt to solve in this paper has the objective of minimize temperature, subject
to constrained stiffness, mass and dimensions.

In order to most effectively determine the best overall shape for the ring element, as well as most efficiently
utilize the time available to our team during the workshop, we decided to divide the problem into two essentially
independent, but complementary parts. One approach is what we refer to as “Topology Optimization”. By
this we mean that initially we assume nothing about the shape of the structure, and through an optimization
routine we attempt to discover a general, optimal design. This can be thought of as a macroscopic or global
view of the optimization problem.

The second approach is to assume a certain general shape (ideally determined by the previous method) and
define parameters to specify its exact geometry. The objective function is then optimized over this relatively
small set of parameters. We refer to this method as “Geometric Optimization”. It can be thought of as a fine
tuning of the first method. When used together these two methods can determine a specific and yet globally
optimal design for the ring structure in the PAX tire system.

6.2 Physical Background

To determine the design of the ring, we choose the shape of one section, or element, of the structure, and
then repeat this shape around the rim of the wheel thus forming a ring. Although the ring is circular, and a
wedge from the ring would have some curvature, we assume the element is flat and use cartesian coordinates.
The radial direction of the tire is referred to as the depth of the element, and we fix this thickness of the
ring throughout the rest of the paper (based on the constraint described above for the height of the tire when
deflated).

As soon as the tire is deflated, the PAX system is in operation. The support ring undergoes cycling
loading, i.e. there is a pressure applied to it each time it hits the ground. Due to this cycling loading there are
mechanical strains and deformations. This contracting and expanding of the rubber generates heat internally.
In our model, we approximate the heat generated by a uniform heat source

Q̇ = freq ∗ σ ∗ ε ∗ sinδ, (6.2.1)

(given in watts per cubic meter) where freq is the frequency of the cycling loading, σ is the mechanical stress,
ε is the mechanical strain, δ is the phase angle [7]. For the purposes of our numerical calculations, Q̇ is given
by experimental data from Michelin with only temperature dependence.
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Figure 6.1: Skematic of current V-shape design at Michelin

Figure 6.2: Geometric characterization of V-shape design

For our physical model, we assume that the heat transfers only in the plane of the surface of the element and
that there is no heat transfer along the depth of the element. All air and heat dynamics outside the support
ring are assumed constant and are incorporated into appropriate boundary conditions for the element. This
reduces the problem of solving for the temperature to a two dimensional heat transfer problem with Newton
cooling on the open boundaries and insulation on periodic boundaries, which is described by a two dimensional
parabolic PDE with mixed Neuman boundary conditions.

6.3 Geometry Optimization

A current prototype for the support ring designed by Michelin has a periodically repeated V-shape as shown
in Figure 6.1. The periodic zig-zag pattern, sandwiched between two thin rubber sheets, becomes the support
ring (To picture this, imagine the support ring in action, supporting the weight of the car - adjacent to the
road is the tire casing, the outer rubber sheet of the support ring, the zig-zag structure, the inner rubber
sheet, and finally the wheel.). As a starting point for the geometry optimization, we assume that the current
V-shape design at Michelin (see Figures 6.1 and 6.2) is inherently good at bearing load without buckling. Thus
our objective is to specify the exact dimensions of a V-shape that simply distributes heat most effectively. To
do this we introduce 6 geometrical parameters that characterize the shape and dimensions, as illustrated in
Figure 6.2. The optimal V-shape obtained by our model is represented by an optimal set of values for these
parameters subject to the previous constraints and conditions.

6.3.1 Mathematical Model

We wish to minimize the maximum temperature over the area of the element at the final time, varying the
dimensions of the V-shape. We formulate our problem as a non-linear optimization problem with cost function
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Figure 6.3: Approximation of V-shape design for calculating critical load

maxx,y∈D T (tf , x, y), where D is the domain of the V-shape, T is the temperature, and tf is the final time.
Again, we assume that the heat generated by a cyclic load can be represented by a uniform heat source Q̇.

Then the planar heat transfer within the V-shape is governed by the 2-D heat equation,

ρcp
∂T

∂t
= k(

∂2T

∂x2
+

∂2T

∂y2
) + Q̇ (6.3.2)

We assume the initial distribution of heat is constant and equal to the ambient temperature, T∞. Heat
transfer through the edges of the V-shape is specified by two different boundary conditions. On the boundaries
which are actually in contact with the next V-shape (shown in red in Figure 6.2 and collectively referred to
as Γper, as in periodic boundary conditions) we assume that no heat is transferred, thus

∂T

∂x
n1 +

∂T

∂y
n2 = 0, on Γper

where ~n = (n1, n2) is the outward unit normal to the boundary. On boundaries in contact with air (shown
in black in Figure 6.2 and denoted by Γair), we assume that there is sufficient turbulent mixing for the air
temperature to be a constant. Thus we have Newton’s law of cooling,

∂T

∂x
n1 +

∂T

∂y
n2 = −h(T − T∞), on Γair.

With this model for heat generation and diffusion we can compute the temperature distribution T (t, x, y)
within the V at some final time tf .

We must also be able to compute the load that a given V-shape can safely support without buckling. This
is rather complicated and requires approximation. We approximate the V-shape by a rectangle of the same
contact area as the V-Shape and a width that is twice the minimum width of the V’s arms (b = 2hmin), as
shown in Figure 6.3. This is roughly like collapsing the arms of the V inward against each other and computing
the buckling load for the resulting solid rectangular block. For such a shape (with rectangular cross-section)
we have the following formula for Fcrit:

Fcrit =
4π2E(T )Ab2

12L2
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This represents a gross underestimation of the actual V-shape’s buckling load. Our model addresses
the third design goal (maximize mechanical stiffness) by requiring that Fcrit ≥ Fload = Masscarg. In our
computation we take A to be the area of the crossection of the V-shape.

Throughout, all material properties are taken to be independent of temperature for simplicity. The only ex-
ception is Young’s modulus E(T ), which is taken from the following look-up table based on experimental data:

Temperature T Young’s modulus E(T )
0 C◦ 4.6
20 C◦ 4.05
40 C◦ 3.8
60 C◦ 3.7
80 C◦ 3.6
100 C◦ 3.6

6.3.2 Optimization Problem

Our objective is to minimize the maximum temperature over the V-shape at the final time, by varying the
geometry parameters and keeping the total width and total height of the element fixed. Another requirement
is to make sure the V-shape is able to support a prescribed load. We formulate our problem as the following
non-linear optimization problem.

min
a1,a2,a3,b1,b2,s,L

max
x,y∈D

T (tmax, x, y)

2b2 + b1 = width,

a1 + a2 + a2 = height,

Fcrit ≥ Fload,

Volume ≤ Initial volume,

b2 − b1

2
≥ 0,

a1, a2, a3, b1, b2 ≥ 0,

0 ≤ s ≤ 100,

0 ≤ L ≤ Lmax.

Here, the parameters a1, a2, a3, b1, b2, s and L represent dimensions in the V-shape as illustrated in Image 2,
with L the radial thickness of the element. The domain defined by a1, a2, a3, b1, b2 and s is denoted by D.
The temperature distribution at time tmax is denoted by T (tmax, x, y). The first two constraints fix the planar
width and height of the V-shape so that two different V-shapes can be considered comparable since one is not
wider or narrower than the other. The third constraint expresses our requirement that the prescribed load be
less than the buckling load of a given V-shape. The fourth constraint adresses our weight constraint since the
thickness and density of the ring are fixed. The rest of the constraints are required to keep the dimensions of
the V-shape from collapsing during the optimization process.

6.3.3 Computation and Numerical Solution

The above optimization problem was implemented in MATLAB using the PDE Toolbox to solve the heat
equation (6.3.2). The initial program optimizes only the V-Shape but can be easily modified to support other
shapes. The input parameters are the initial dimensions of the element, material density ρ, specific heat cp,
thermal conductivity k, heat rate per unit volume Q̇, convection coefficient h, air temperature T∞, prescribed
load Fload, initial rubber temperature T0, final time tf , and the discrete time-step size. The body of the
program is a non-linear optimization routine, which calls a heat equation solver in each step. By modifying
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the code of our program, one can change the precision of the algorithm, maximum number of iterations, and all
lower and upper boundaries for constraints on variables. Of course, one has to make sure that the initial data
falls within these constraints. The outputs are the minimal value of the objective function, that is the attained
minimum of the overall maximum temperature on the element at the final time, the optimal dimensions, and
two images: one of the initial shape with heat distribution, and the other of the optimal shape with heat
distribution as well.

We have experimentally determined an interval of appropriate values for tf . This is because solving the
heat equation over a long time can become computationally expensive, especially since it must be done for
each objective function evaluation. For our computations, we chose tf as low as 500 seconds. This interval
was chosen because the temperature distribution changes little after 800 seconds (the overall temperature, of
course is still rising), so that computing the solution for longer times is unnecessary. If one solution is optimal
after the distribution stabilizes, it should remain optimal since the heat source is uniform. However, in order
to determine the actual maximum temperature at a specific final time, one should prescribe the optimal value
of the parameters as initial conditions and change tf to the desired amount.

6.3.4 Results

We tested our program with the following parameter values as input:

Input 1

GeometryParms = a1 a2 a3 b1 b2 s L ”V-shape” area
37 9.01 12.49 9.88 15.56 7.07 40 2000

PhysicalParms = ρ cp k Q̇ h TAir TExt load
1200 1940 0.23 5.85530 11 393.15 393.15 350

SolverParms =
T0 tmax timestep

298.15 500 10

Lower bound on L was 20. See Figure 6.4.

Input 2

GeometryParms =
a1 a2 a3 b1 b2 s L ”V-shape” area
37 9.01 12.49 9.88 15.56 7.07 40 2000

PhysicalParms = ρ cp k Q̇ h TAir TExt load
1200 1940 0.23 5.85530 11 393.15 393.15 350

SolverParms =
T0 tmax timestep

298.15 500 10

Lower bound on L was 40. See Figure 6.5.

Input 3

GeometryParms = a1 a2 a3 b1 b2 s L ”V-shape” area
37 9.01 12.49 9.88 15.56 20 30 2000

PhysicalParms = ρ cp k Q̇ h TAir TExt load
1200 1940 0.23 5.85530 11 393.15 393.15 350

SolverParms = T0 tmax timestep
298.15 500 10

Lower bound on L was 20. See Figure 6.6.
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Figure 6.4: Computed solution with parameters Input 1

Figure 6.5: Computed solution with parameters Input 2

Input 4

GeometryParms = a1 a2 a3 b1 b2 s L ”V-shape” area
37 9.01 12.49 9.88 15.56 25 40 2000

PhysicalParms = ρ cp k Q̇ h TAir TExt load
1200 1940 0.23 5.85530 11 393.15 393.15 350

SolverParms =
T0 tmax timestep

298.15 500 10

Lower bound on L was 30. See Figure 6.7.
Given these inputs, our program produces the following “optimal” values.

Final Geometry Parameter Values
a1 a2 a3 b1 b2 s L Tmax

Results 1 27.6192 5.0702 25.8107 15.1373 12.9313 7.0728 30.0000 357.5409
Results 2 26.2536 30.24645 2.0000 9.2065 15.8968 9.4405 40.0000 358.8926
Results 3 36.8345 9.1083 12.5572 15.0042 12.9979 20.0007 20.0000 360.9081
Results 4 31.9007 10.3611 16.2382 13.8389 13.5805 24.9999 30.0000 358.4912
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Figure 6.6: Computed solution with parameters Input 3

Figure 6.7: Computed solution with parameters Input 4

6.4 Topology Optimization

It should be said first that the topology optimization method is very ambitious and currently not too well un-
derstood. Whereas our implementation of the geometry optimization method has only 6 variables to optimize
over, the topology optimization can require more than 200 to get a usable result. With this many unknowns,
obviously the sensitivity of parameters is an issue. Considering this and other technical difficulties with the
topology optimization method, what we present here is a framework for its future implementation.

This work is based on a paper by Ole Sigmund [9] in which a MATLAB code is given for solving a topology
optimization problem involving only mechanical stresses (downloadable from the web at http://www.topopt.dtu.dk).
Here we first clarify exactly what is meant by topology optimization. Then we develop a model for the tem-
perature of the element, as well as a solution method, based on Sigmund’s, which can be used within in the
topology optimization method. Lastly we discuss some enhancements to Sigmund’s optimization routine, as
well as explore some limitations of the entire code through sensitivity analysis.

6.4.1 Problem description

The basic idea of topology optimization is that one starts with a domain that is discretized into smaller
elements (rectangles in 2D). Each rectangle is partially filled with material, in this case rubber. We iterate
from some initial distribution and hopefully converge to some final distribution where each element is either
completely filled or completely empty. We assume that the elements are initially filled uniformly, the total
amount of mass in the domain is always constant, and the physical properties of the material in each element
are some fraction of what they would be if the element were completely filled. This last assumption is what
is known as the “power-law approach” or SIMP (see [9] and references therein). The idea of a uniformly, yet
partially filled element is almost like starting with a solid chunk of rubber and carving away pieces until the
objective function is maximized, except that we must always have the same amount of mass. It more closely
resembles having a porous, malable material which can be squeezed to fit into certain rectangles but always
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maintains a fixed overall mass, as long as the material properties in each element are taken to be the average
over that element.

The amount of the material in each element is given by a fill-in coefficient between 0 and 1. The matrix of
all fill-in coefficients is x and the goal is to determine the optimal value for x.

In order to actually solve the problem using topology optimization one must be able to solve for both the
buckling load, Fcrit, and the temperature distribution, T , on a domain defined by the matrix x. These values
must then be used as either objective functions or constraints for the optimization problem. Since the problem
of solving for Fcrit was solved by Sigmund in [9], we emulate his approach and develop a method for solving
for the temperature.

The basis for the approach is to multiply the local stiffness matrices in the finite element method by the
fill-in coefficient raised to a penalty power. This is consistent with the power-law approach. Because of this,
as well as due to the fact that the boundaries of the domain upon which T and Fcrit must be solved are not
well defined, we must write our own finite element method for the heat equation.

6.4.2 Solution Method

Variational Formulation

Again, we model the increase in temperature of the structure using the heat equation

ρcpTt = k∆T + Q̇, ∀(t, x, y) ∈ [0, Tf ]× Ω, (6.4.3)

where T is the temperature of the structure, ρ is the density, cp is the specific heat, k is the thermal conductivity,
and Q̇ is the uniform heat source, and Ω is the material domain. We assume that initially the structure is at
the same temperature as the air inside the tire; this is given by the initial condition

T (0, ·) = T∞, ∀(x, y) ∈ Ω.

The surface of the structure is in direct contact with the air in the tire, so it is reasonable to suppose that
Newton’s law of cooling takes place along the open boundaries. We model this boundary condition as

∂T

∂n
= h(T∞ − T ), ∀t ∈ [0, TF ], (x, y) ∈ Γair

where n is the unit outward normal, T∞ is the temperature of the air, h is the convective heat transfer
coefficient, and Γair is the part of the boundary which contacts the air. For any part of the boundary of
this section of the ring that touches another section of the ring, in other words, a periodic boundary, we use
insulated boundary conditions

∂T

∂n
= 0, ∀t ∈ [0, TF ], (x, y) ∈ Γper.

Although there is air flow inside the tire, it is difficult to characterize the dynamics of the flow. Instead,
we let the parameter h account for their net effects.

To begin the finite element method, we first write (6.4.3) in variational form. We multiply (6.4.3) by a
test function φ ∈ H1(Ω) and integrate over Ω to obtain

ρcp(Tt, φ) = k(∆T, φ) + Q̇(1, φ), (6.4.4)

where (·, ·) denotes the usual L2 inner product on Ω, i.e.,

(f, g) =
∫

Ω

fg dΩ.

We integrate by parts in (6.4.4) to obtain

ρcp(Tt, φ) = −k(∇T,∇φ) + k

〈
∂T

∂n
, φ

〉

Γ

+ Q̇(1, φ),
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for all φ ∈ H1(Ω), where < ·, · >Γ denotes the L2 inner product only on Γ, the boundary of Ω. We substitute
our boundary condition to yield our final variational formulation

ρcp(Tt, φ) = −k(∇T,∇φ)− kh < T − T∞, φ >Γair
+Q̇(1, φ), φ ∈ H1(Ω).

Finite Element Method

Following standard finite element methods, we now approximate our solution space with a finite dimensional
function space. For simplicity we choose to use standard bi-quadratic, rectangular elements, see Figure (fig).
Thus the semi-discrete form of the heat equation becomes

ρcpMξ̇ + kAξ + khBξ = F

where ξ is a vector whose components represent the value of T at each of the nodes in the discretization of
the domain Ω and the finite element matrices are traditionally defined as follows

Mij := (φi, φj), (6.4.5)

Aij := (∇φi,∇φj), (6.4.6)

Bij :=< φi, φj >Γair
, (6.4.7)

and,
Fi := hT∞ < 1, φi >Γair +Q̇(1, φi). (6.4.8)

The only difference in this case, however, is that during the assembly of the global matrices, each local matrix
is multiplied by its fill-in coefficient raised to a penalty power, as per the power-law rule. For example, for
rectangle k the local mass matrix Mk is defined by

Mk := xp
k

[
(φi, φj)k

]
i,j=1,...,4

(6.4.9)

where (·, ·)k denotes integration only on rectangle k, and i and j represent the local labeling of the nodes.
The assembly of B can be handled various ways. While it makes some sense that a rectangle which is less

full should have less of a contribution to the mass and stability matrices, it is possible for it to contain a longer
portion of the boundary, and thus could contribute more to the matrices which represent integration over the
boundaries. One possibility is to assume that the length of the boundary inside an element is proportional to
the amount of material in that element, and thus B can be scaled with xp just as M and A.

Another approach, which is the one we implemented, is to determine a threshold value above which the
element is assumed “full” for the purposes of determining an exact boundary. If two elements border each
other and one is above the threshold while the other is below, then there is a definite boundary at their border.
We define a separate matrix of 0’s and 1’s for each border to determine whether or not it is a part of Γair.
The integrations required in B and F are then simply multiplied by the elements of this matrix.

It would not be difficult to modify the existing code to allow for the “probability” of there being a boundary
between two elements. Specifically, a value between 1 and 0 could be used based on the either how far above
or below a threshold the fill-in coefficients for each element is, or how far from each other they are. The local
matrices for B and F would then be multiplied by this coefficient raised to a penalty power.

Heat Equation Results

The linear ordinary differential system resulting from the semi-discrete form of the finite element method
describe above is simply solved using a built-in Matlab routine. We tested several different values for x

characteristic of various shapes. We give their solutions graphically in Figure 1 .
Our program shows how to solve the heat equation in a domain determined by the topology optimization

method. Several key issues remain before a full implementation of this method can be made for the coupled
thermal and mechanical optimization problem.
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Figure 6.8: Final temperature profiles for various shapes x

6.5 Optimality Criteria method

Before we can attempt to solve a coupled thermal and mechanical optimization problem, we must first have
an optimization algorithm which is capable of solving it. In his paper, Sigmund [9] used the optimality
criteria implementation which is only good for a single constraint and is based on a heuristic fixed point type
updating scheme (see section 4.4 [9]). In this section, we see the modification of the method based upon the
first order necessary optimality condition (known as Karush-Kuhn-Tucker conditions, see Theorem 12.1 [8])
for a constrained optimization problem. The merits of this modification are the following:

(1) The execution time for the optimization steps are decreased by approximately 10% (see the table below).

(2) This method can be generalized for more than a single constraint.

Consider the following general optimization problem where c(x) is assumed to be continuous in the design
variable x

min
x

c(x)

s.t. gj(x) = 0 j = 1, . . . , m.
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Table 6.1: Comparison of runtime between Sigmund’s optimization routine and our modified version

modified version Sigmund’s version
(20,20) single force 247.86s / .06s 280.26s / 1.68s
(60,20) single force 2511.5s / .25s 3341.73s / 7.01s
(10,10) uniform force 10.53s / .000s 9.62s / 0.18s
(30,20) uniform force 342.130s / .110s 286.58s / 1.27s

For the initial design x, the corresponding values of the Lagrange multipliers are determined by solving
the linear equation

m∑

i=1

λi

N∑
e=1

(εi(x)
∂gj(x)
∂xe

(xe)) =
N∑

e=1

(
∂gj(x)
∂xe

(xe)), j = 1, . . . , m, (6.5.10)

where

εi(x) =
∂gi(x)

∂xe

−∂c(x)
∂xe

i = 1, . . . , m.

The equations are derived from the sensitivity analysis of each constraint on the design variable x:

∆gj(x) =
N∑

e=1

∂gj(x)
∂xe

∆xe, j = 1, . . . , m. (6.5.11)

Note that the left hand side of equation 6.5.11 is zero since each gj is an equality constraint. We define

∆xe = xe
new − xe = xe(

√√√√
m∑

i=1

εi(x)− 1). (6.5.12)

These multipliers are then used to find the next iterate by the recursive formula

xe
new = xe

√√√√
m∑

i=1

εi(x). (6.5.13)

For more detail, the reader is referred to [1]. The results compared with the Sigmund’s code top.m are listed
in the following table. Total execution time is listed before the backslash. The second time listed is for the
optimization steps.

6.6 Modified version of top.m

% INITIALIZE

x(1:nely,1:nelx) = volfrac; lambda=1000;

loop = 0;

change = 1.; chlambda = 1000;

% START ITERATION

while (change > 0.01)

if chlambda <.01; break;

else

loop = loop + 1;

xold = x;
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lambdaold=lambda;

end;

% OPTIMALITY CRITERIA UPDATE

function [xnew,lambda]=OC(nelx,nely,x,volfrac,dc)

move = 0.2;

x=(abs([volfrac*(nelx*nely)-sum(sum(x))])/(nelx*nely))+x;

lambda= ((sum(sum(x.*sqrt(-dc))))^2)/((sum(sum(x)))^2);

xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lambda)))));

6.6.1 Sensitivity of top.m

Sigmund’s top.m solves a Topology Optimization problem for compliance minimization of statically loaded
structures. The code top.m is designed to find the optimal topology of a support structure at a given weight
while maintaining its structural stiffness. The code top.m assumes the support structure is statically loaded
and solves a 2D problem. It initially takes the shape of a rectangle, assigns a mesh to it and then uses an
artificial factor, the fill-in coefficient, to define how much mass each element contains. Eventually the fill-
in coefficient should converge to a matrix which defines a definite shape that is the optimal for the given
constraints and conditions.

Finding the limitations of top.m is one of our goals in this section. The factors that we want to study
are the load types, support conditions, the penalization power, and the Poisson’s ratio since our structure is
made of rubber.

(1) Change the load types and support conditions

In top.m, the load is applied vertically in the upper middle point of the domain and the structure is
supported horizontally in the two lower corners. However, in our problem, the optimization of support
ring, the load is uniformly applied vertically on the top of the ring, instead of at one point. And also,
the support should be fixed, which means the lower layer can’t have any displacement in both vertical
and horizontal direction. See Figure 6.9.

Figure 6.9: Design domain with load and support conditions. Left: load on one piont and supported in two
corners and right: uniform load and fixed support

It is simple to change those load types and support conditions. We only need to change line 79 in the
original code

F(2,1)=-1;

to

for elx=0:nelx

F(2\*(nely$+$1)\*elx$+$+2,1)=-1;

end
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and line 80

fixeddofs=union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

to

fixeddofs=[];

for elx=1:nelx$+$1

fixeddofs$=$union(fixeddofs,[2\*nely$+$1)\*elx$-$1,2\*(nely$+$1)*elx]);

end

The results are compared in Figure 6.10.

                                                                                                                               

Figure 6.10: Results of topology optimization. Left: load on one point and supported in two corners and right:
uniform load and fixed support

We also considered another support condition by supposing that the lower layer can only have displace-
ment in the horizontal direction. The result is shown in Figure 6.11.

                                                    

Figure 6.11: Result of topology optimization. Left: design domain and right: topology optimized domain

All of the experiments shown above are based on considering the uniform load as single load case.
Perhaps we could it as a multiple load case. First, we should know what multiple load means: in a
multiple load, the loads are applied on the object one by one, not at the same time. So, the final optimal
design of the object should be able to support each one of those loads. We compare the result in Figure
6.12.

(2) Change the size of the domain

We tried two sizes, first 30x20 then 20x30. The results are shown in Figure 6.13. The load is uniformly
applied vertically and is a single load case. The support is fixed.

(3) Change the penalization power
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Figure 6.12: Results of topology optimization. Left: single load case and right: multiple load case

                                                                                                

                                                  

Figure 6.13: Results of topology optimization. Left: size of domain is 30x20 and right: size of domain is 20x30

The power law approach to topology optimization is proved to be physically permissible as long as
simple conditions on the power are satisfied, such as p ≥ 3 for Poisson’s ratio equal to 1/3. Here p is the
penalization power. Since the Poisson’s ratio for rubber is about 0.45, the penalization power needs to
be 4.0 or 5.0. Unfortunately, we do not get convergent results when p = 4.0 or 5.0, and convergence is
slow for p = 3.5.

(4) Change the Poisson’s ratio ν

The Poisson’s ratio for rubber is about 0.45, so we tried ν = 0.4 and ν = 0.5 (see Figure 6.14.). As
above, the load is uniformly applied vertically and considered as single load case, and the support is
fixed.

                                                                            

Figure 6.14: Results of topology optimization. Left: ν = 0.4 and right: ν = 0.5
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