












cal simulations as shown in Fig. 9 and is valid for small t,
when the forcing term is dominant and before the perturba-
tions are swept significantly downstream. Equation �4� can
be deduced analytically from the PDE by considering the
asymptotic expansion h�x , t�=h0+h1�x�t+O�t2�. The qualita-
tive shape of the downstream transients is determined by this
perturbation.

We next consider the evolution of transients about a point
x=x0 where the forcing gradient has a maximum. When
���x0�=0, the second term in Eq. �4� is zero and the film is
unperturbed. Generally, ���x0� assumes opposite signs on
each side of x0, and the height is increased or decreased
according to Eq. �4�. The perturbation upstream of x0 will be
trapped and build up if the forcing is strong enough, whereas
the downstream perturbation will be swept away from x0.

The downstream transients, therefore, arise from peaks
�valleys� that form to the right of the maxima �minima� of
the forcing gradient and evolve into shock-rarefaction pairs.
The sharpness of the resulting shock depends on the strength
of the forcing, and the mass of the resulting structure is de-
termined by the size of the perturbation. This evolution is
predicted by the Riemann map in Sec. I B, noting that in the
Riemann map, for small hL and hR, the diagonal hL=hR sepa-
rates a region corresponding to rarefactions from the one for
compressive shocks. Therefore, a small perturbation from
constant height h0	1 /3 will evolve into a shock-rarefaction
pair.

1. Gaussian forcing

In �6�, the authors considered steady-state solutions for
Gaussian forcing since it is a reasonable ansatz for localized
forcing, such as laser heating. In the next sections we analyze
transient structures for the same forcing function, then com-
pare the results to forcing functions that more clearly illus-
trate aspects of the early-time solutions.

In Fig. 10 we show the evolution of an N wave from
Gaussian forcing. Initially the forcing creates a perturbation.
Then additional fluid gathers behind the forcing while the
rightmost peak moves to the right, sharpening as it leaves the
forcing region �Fig. 10, left� to form a leading shock and a
rarefaction consistent with the predictions of the Riemann
map in Fig. 2. A second shock, a negative perturbation con-

nected to the rarefaction behind the first, then emerges from
the forcing. The N wave finally exits the forcing region, leav-
ing the expected steady state about x=0 �Fig. 10, right�.

2. Rectangular forcing

To more clearly observe transient formation from multiple
inflection points, we consider a smoothed rectangular forcing
function as shown in Fig. 11 �left�. This forcing function is
given by

��x� = �2w�−1	tanh�r�x + w/2�� − tanh�r�x − w/2��
 ,

where w is the approximate width �the forcing region is con-
tained in �−w /2−1,w /2+1�� and r controls the sharpness of
the forcing. Here, the regions of rapid change in the forcing
function are separated, producing two nearly disjoint oppo-
site peaks which evolve separately. Initially, a peak and the
corresponding valley evolve around each inflection point of
� �according to the approximation� and the rightmost pertur-
bation is swept downstream, evolving into a shock-
rarefaction pair. The small oscillation in the figure between
the shocks is itself a small shock which does not appear in
the Gaussian case. Note that for the left shock-rarefaction
pair, the rarefaction extends slightly above the height h0,
leading into a small positive perturbation �this is due to
fourth-order effects�. The right shock-rarefaction pair has a
similar negative perturbation. As the rarefactions approach
each other, these perturbations create the small shock visible
as the waves combine.
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FIG. 9. For M =1 and h0=0.05, a comparison of the fluid profile
at an early time t=4 �solid line� to the approximation h�x , t��h0

+Mh0
2���x�t �dashed line�.

−5 0 5 10

0.04

0.05

0.06

x

h

t=8
t=16
t=24

−5 0 15

0.04

0.05

0.06

x

h

t=20
t=50
t=80
t=110

FIG. 10. �Color online� The evolution of the fluid profile at an
early time. Fluid gathers behind the forcing while the rightmost
peak is transported downstream. The rightmost shock sharpens as it
leaves the forcing, and the second shock subsequently emerges
from the forcing as well.

−5 0 20
0.03

0.05

0.09

x

h

t=16
t=32
t=160

Forcing Profile

120 180 240
0.045

0.05

0.055

x

h

t=1750
t=2250

FIG. 11. �Color online� Evolution from a smoothed rectangular
forcing with M =2, in which the formation of the positive and nega-
tive perturbations is separated. The shock-rarefaction pairs eventu-
ally merge to form an N wave �with the small oscillation between
the shocks still visible in the right plot�.
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3. Forcing with additional inflection points

We next consider a forcing function that illustrates how
multiple inflection points create shock-rarefaction pairs that
merge. In general, after leaving the forcing region, waves
merge according to their relative speeds. Here, we consider
an odd forcing function,

��x� = − xe−x2
,

with forcing region �−2.5,2.5�. �This happens to be the de-
rivative of the Gaussian forcing function, but this is not sig-
nificant to the result.� This forcing function produces two
shock-rarefaction pairs �Fig. 12, left� with a transient be-
tween them to form a “W” shape. The rightmost shock is
eventually overtaken �Fig. 12, right� by the faster left shock,
forming a single shock-rarefaction pair.

4. Triangular forcing

The purpose of considering triangular forcing is to em-
phasize that the appearance of an N wave is not sensitive to
the choice of forcing as long as ���x� has the same extrema
as the Gaussian forcing. That is, in general, N waves will
arise from any localized forcing function ��x� for which
���x� has a local maximum �greater than h0�, followed by a
local minimum �less than h0�, which—respectively—produce
rarefaction-shock �positive perturbation� and shock-
rarefaction �negative perturbation� pairs that merge and form
an N wave. For example, we considered the triangular forc-
ing function given by

��x� = �wg�w/2��−1�g�x + w/2� + g�x − w/2� − 2g�x�� ,

where g�x�=log cosh�rx� is a smooth approximation for r�x�,
with r fixed, and w is the approximate width �the forcing
region is slightly larger than �−w /2,w /2��. Using the trian-
gular forcing function above with w=6 and r=8 results in a
similar N wave �see Fig. 13�. The shocks are steeper because
the initial perturbation, close to the shape of ��, is much
sharper than the Gaussian forcing due to the rapid change in
�� at the corners of the initial triangle.

The process of merging waves also explains the
rarefaction-shock-rarefaction structure that results from
Gaussian forcing with M 	0. As in the N-wave case, two
shock-rarefaction pairs are produced by the forcing, but the

left shock in the M 	0 is faster than the right shock, and so
the two shocks merge to form a single shock between the
two rarefactions, as shown in Fig. 5 �right�.

C. Observing N waves in experiments

N waves have not been noted in previous physical experi-
ments on Marangoni and gravity-driven thin liquid films.
This is likely because in experiments, the amplitude of the N
wave would be relatively small. Since previous experiments
focused on type I and II steady-state solutions, the N waves
may have been overlooked as they were over-run by the
larger waves. For instance, Fig. 14 shows a compressive
shock forming the downstream height hB in a type II steady-
state solution. Its speed is faster than that of the N wave
�with a speed of approximately 0.24 compared to 0.09 for the
N wave�, and so the N wave is over-run. This is typical
behavior of the system in the case of a type II solution with
Riemann initial data hL�hR, which is explored more fully in
Sec. III. There is also some difficulty in producing N waves
experimentally. N waves are only visible as downstream
transients to type I solutions, and consequently M must be
small enough so that M 	Mc but also large enough to make
the N-wave magnitude significant without dewetting the sub-
strate. Despite these potential challenges, future experiments
could be conducted to investigate the development of N
waves, as well as the applicability of localized forcing as a
microfluidic valve for thin films.
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FIG. 12. �Color online� Wave structure from the forcing ��x�=
−xe−x2

with M =1.5. The transient structure mirrors the forcing, and
the central shock decays rapidly. Eventually, the two shocks merge
�right� to form a single shock-rarefaction pair.
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FIG. 13. �Color online� Evolution from a smoothed triangle-
shaped forcing with M =1. The result is an N wave similar to that
produced by Gaussian forcing. The rapid change in the forcing de-
rivative at the corners yields a sharper N wave than for the corre-
sponding M =1 Gaussian case.
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FIG. 14. �Color online� Over-run of the N wave by a faster
compressive wave. The downstream compressive wave is the down-
stream transient for a type II solution dictated by the left boundary
condition hL, whereas the N wave is formed from the effective
constant initial condition at hR in the forcing region. This type II
solution is discussed in Sec. III.
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III. SIMULATIONS WITH CONTROLLED
NONMONOTONIC INITIAL CONDITIONS

Up to this point we have only discussed solutions arising
from a constant initial film height. Next we describe solu-
tions that emerge from nonmonotonic initial conditions and
the Gaussian forcing function. As described in Sec. II A,
both type I and type II steady-state solutions of Eq. �3�
emerge from a constant initial film �selected by choosing the
forcing parameter M�. When the initial film profile is mono-
tonic but not constant, such as a monotonic jump up or down
from hL to hR, solutions of the unforced PDE �1� include
classical compressive waves, classical rarefactions, and non-
classical undercompressive waves. The types of waves that
emerge from monotonic initial data depend on the choice of
boundary data hL and hR; for each choice of �hL ,hR� the
resulting wave is denoted in the Riemann map of Fig. 2. The
shape of early transients is determined by the shape of the
initial profile.

We restrict our study to hL�hR with hL�2 /3 and small
hR. If the initial boundary heights �hL ,hR� are chosen in the C
�compressive� region of the Riemann Map �Fig. 2�, a single
compressive wave profile will evolve. In this case the steady-
state solutions are the same as those for constant initial pro-
file. Figure 15 contains two simulations with the same com-
pressive wave �hL=0.2, hR=0.05� moving through a forcing
region above and below MC�hL=0.2�. In Fig. 15 �left� with
M =1.5 the steady-state solution is type I, and in Fig. 15
�right� with M =3.0 the steady-state solution is type II. Note
that M =3.0 is below the critical forcing for a height of 0.05,
but the solution is type II because the critical forcing de-
pends on hL rather than hR.

On the other hand, if the initial boundary heights �hL ,hR�
are chosen in the CU region of the Riemann map �Fig. 2�, a
nonmonotonic double wave profile with a leading undercom-
pressive wave and a trailing compressive wave will evolve.
The goal of this section is to discuss how this nonmonotonic
structure interacts with the forcing region. In time the double
wave structure becomes wider since the leading undercom-
pressive wave is faster than the trailing compressive wave.
For the monotonic initial condition with a single jump down,
as we vary hL ,hR ,M, and the initial location of the jump, the
degree to which the CU structure will have developed varies
as well.

We wish to control the width �and overall shape� of the
structure as it enters the forcing region to probe the effect of

varying parameters. Thus, to regularize the initial data for the
simulations, we construct an initial condition that approxi-
mates the �nonmonotonic� double wave structure from the
Riemann map of Fig. 2 that evolves from a monotonic initial
condition with hL�hR.

A. Double wave approximation

We have noted that when a monotonic initial condition is
varied, the time and location of evolution of the double wave
structure also vary, which provides less control than is desir-
able. In addition, evolution of the double wave structure is
expensive computationally �requiring enough time and space
to move beyond the transient regime�. In order create an
efficient and controlled initial condition with variable width
and height, we artificially construct an initial profile that
mimics a double �CU� wave in shape and mass. For conve-
nience, we call this a double wave approximation �DWA�.

Consider a monotonically nonincreasing initial condition
with hL�hR chosen in the region of Fig. 2 labeled CU. Up-
stream of the forcing, the traveling-wave solution evolves as
if it were a solution of the unforced Eq. �1� until it reaches
the forcing region. As expected from the Riemann map, a
double wave structure composed of a compressive-
undercompressive wave pair develops �13,23�. The height of
the film hK�hR� between the wave pair is given by the point
�hK ,hR� on the kinetic relation curve in Fig. 2 and so is
determined by hR when it exists.

Figure 16 contains a comparison between a double wave
structure and a DWA. The double wave structure has evolved
for 850 time units from an initial condition with jump at x
=−250. The DWA parameters have been chosen so that the
integrated area closely matches the actual solution �a differ-
ence of 0.0038�, and so that the shocks that evolve are as
close as possible to those evolved in a double wave structure.
The capillary ridge not present in the DWA at t=0 �connect-
ing the left shock to the height hK� has formed by t=50, and
the “shocks” defined in the DWA as smoothed jumps remain
in the appropriate positions as the solution evolves. The ab-
solute maximum height difference between the two solutions
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FIG. 15. �Color online� Single compressive waves and Gaussian
forcing. On the left, hL=0.2, hR=0.05 with weak forcing M =1.5
	MC leads to a type I solution. On the right, hL=0.2, hR=0.05 with
strong forcing M =3.0�MC leads to a type II solution.
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FIG. 16. �Color online� Comparison of a double wave structure
�as in Fig. 3�, evolved from a jump at x=−250 for 850 units of time
before the labeled t=0, with a DWA was chosen to match the nucle-
ated and boundary heights. The shapes become nearly identical as
the solutions evolve. The forcing strength is M =1.5.
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is 0.1 at t=0, 0.0082 at t=50, and 0.0051 at t=150. This
measurement excludes the downstream transient in the
DWA, which has already exited the domain. This difference
occurs near the shocks, yet when the solutions interact with
the forcing, they are similar enough to produce essentially
the same behavior. The maximum difference at t=400, the
last time shown in Fig. 16, is 0.01, with the largest error
occurring in the upstream shock because of its horizontal
offset. This suggests that the DWA is an appropriate approxi-
mation for conveniently evolving double wave structures.
Note that the error at late times is on the order of the grid
size, �x=0.01.

As the DWA collides with the forcing, the solution de-
pends on both M and the boundary heights. The relevant
heights are summarized in Table I and illustrated in Fig. 17.
The choice of M determines three heights: the type II up-
stream height hA and downstream height hB, as well as the
critical height hC. The heights hA and hB are related by the
flux balance hA

2 −hA
3 =hB

2 −hB
3 with nontrivial root

hB = 1
2 �1 − hA + �1 + 2hA − 3�hA�3� .

The critical height hC is defined such that a constant initial
condition h0�hC will produce a type II solution, whereas
h0	hC will produce a type I solution. Table II contains an
example of how the relevant parameters vary with M. For
type II solutions, f�hB� is the flux through the forcing region

and f�hL� is the flux into the system at the left boundary.
Recall that hK is the intermediate height of the double wave
structure, determined by hR. The right boundary is taken to
be the small prewetting height hR=0.05, which determines
hK=0.653 for the DWA. The choice hL=0.4 and a DWA
create a transient flow greater than the boundary flux set by
hL. Figure 17 provides an illustration of how the heights in
Table I are related.

In �6� there is mention of a region of bistability and a call
for further investigation of this phenomenon. In fact, there
are three regimes, given a DWA as an initial condition, de-
termined by the forcing strength M and the left boundary hL.
Weak and strong forcing leads to type I and II steady-state
solutions consistent with solutions from constant initial con-
ditions. However, for weak forcing, a transient type II solu-
tion can occur and for moderate forcing close to MC �the
bistable region of �6�� the results are even more complicated.
We describe simulations for each of these regimes below and
the parameter ranges required for each solution.

B. Type I solution from a DWA and weak forcing

In the first case we maintain weak forcing such that M
�MC. If hK ,hL	hC, then the incoming fluid passes through
the forcing region without significant deformation �Fig. 18�.
However, a spike in height persists after the mass of fluid in
the DWA has flowed through the forcing region, correspond-
ing to the eventual formation of the type I steady state. The
fluid will be transmitted through the forcing region even if
hK�hB �as in Fig. 18�, which emphasizes the difference in

TABLE I. Relevant heights for a double wave structure interact-
ing with forcing, illustrated in Fig. 17.

Label Meaning Dependence

hL Upstream boundary Fixed

hR Downstream boundary Fixed

hK Central height of UC pair hR

hC Critical height for type II M

hA Upstream type II height M

hB Downstream type II height M
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FIG. 17. �Color online� The DWA of Fig. 16 interacts with lo-
calized forcing, with relevant heights labeled. Here, M =0.6 and
hC�M��0.5 is the critical height. The other values are hR=0.05,
hL=0.4, hK=0.65 for the double wave structure and hA=0.84, hB

=0.46.

TABLE II. The heights hA, hB, and hC for the values of M used
in this section. The values hA ,hB as functions of M and Mc�h�, the
functional inverse of hc�M�, can be found in �6�.

M Forcing type for hL=0.4 Type II hA Type II hB hC

0.6 Weak �steady-state type I� 0.84 0.46 0.5

1.0 Moderate �bistable� 0.89 0.38 0.43

1.5 Strong �steady-state type II� 0.93 0.30 0.36
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FIG. 18. �Color online� DWA with hR=0.185 colliding with
forcing at M =0.6. The height hK�0.47 satisfies hB	hK	hC since
hB=0.46 and hC=0.5. The wave passes through the forcing region
with little deformation, leaking through the forcing at height hK.
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flow for the type I and type II cases. That is, the incoming
fluid must have a height greater than hC in order for it to
collect upstream. In Fig. 18, we provide an example with
hK�0.47 and hB	hK	hC. In this example, hR is not 0.05
because hK needs to be small enough to pass through the
forcing region.

C. Transient type II leading to type I solution from a DWA
and weak forcing

If we maintain M �MC but choose hL	hB ,hC such that
hK�hC then a type II solution occurs as a transient, eventu-

ally collapsing to a type I solution. While fluid from the
double wave structure is colliding with the forcing, it can
only escape at the prescribed flux of f�hB� determined by hK,
and so some fluid gathers, which locally forms a type II
solution. The shock from hK to hA created in the formation of
the type II solution moves upstream from the forcing, while
the compressive shock of the DWA, from hL to hK, continues
to move downstream. Figure 19 �top row� shows the forma-
tion of this transient type II structure with hK=0.65 and hA
=0.84. Once the double wave structure has been absorbed,
the two shocks merge to become a single shock that is a
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FIG. 20. �Color online� Two solutions for M =1 that differ only by the jump position in the initial condition. For a jump at x=−50 �dashed
curves�, the fluid in the double wave structure being formed is enough to induce a type II steady state, whereas for the jump at x=−40 �solid
curves�, the fluid leaks through the forcing to form a type I steady state. Note that for constant h0=0.4 the solution would be type I. This
simulation was also run on a larger domain �−200,200� for long times to verify the stability of the type II solution.
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FIG. 19. Transient-induced type II leading to steady-state type I from a DWA initial condition with M =0.6 and a width of 60 units. Fluid
passes through the forcing region at a fixed height hB=0.46 with the remaining DWA mass gathering behind the forcing to form the upstream
ridge. After the DWA is absorbed, the gathered fluid leaks through the forcing with height hB=0.46, which finally collapses into a type I
steady state.
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jump from height hL to hA that moves to the right. The res-
ervoir is depleted as the gathered mass of fluid leaks through
the forcing region �Fig. 19, bottom row�. Once the upstream
ridge at hA is destroyed by the right-moving shock upstream
of the forcing, the transient type II solution no longer exists,
and so the remaining peak of fluid �bottom row, center� leaks
through the forcing without being constrained to the height
hB �bottom row, right�.

D. Type II solution from a DWA and moderate forcing

If hK�hC but hC�hL�hB, then the double wave struc-
ture can induce a stable type II solution despite the fact that
a constant initial condition h0=hL would lead to a type I
solution. The condition hC�hL�hB is a region of bistability
for type I and type II solutions for constant initial condition
h0=hL, as suggested in �6�. The condition hK�hC creates a
buildup of fluid behind the forcing and the local formation of
a type II structure as if evolved from constant initial condi-
tion hK �see Fig. 20�. An upstream shock is then formed
connecting hK to hA. After the DWA is absorbed it becomes a
shock from hL to hA that continues to move to the left. The
condition hL�hB is sufficient, by the Rankine-Hugoniot con-
dition, to guarantee that a shock formed connecting fluid at
height hL to hA will flow to the left.

The width of the DWA is significant in determining
whether a type II solution will be induced. The upstream
shock of the type II solution forms because of constrained
downstream flow and consequent upstream flow of the ex-
cess fluid. In this case, the constrained flow is transient, and
so it must persist long enough for fluid to gather and the
shock to form. Figure 20 shows two monotonic initial con-
dition with hL=0.4 and hR=0.05 and jumps at x=−50 and
x=−40. The characteristic ridge at height hK is not yet
formed as the structures collide with the forcing �this is the
reason why the DWA was not used for this particular simu-
lation�. The fluid that gathers behind the forcing is not
enough to form the upstream ridge at hA and the correspond-
ing shock, therefore not inducing type II �Fig. 20, solid line�.
However, the solution from the jump at x=−50 does have

enough mass to form the stable upstream shock. The tempo-
rary reservoir of fluid simply leaks out, leading to a type I
solution. The formation of the upstream shock connecting hA
to hL is the determining factor in creating the stable induced
type II solution; consequently the width of the DWA must be
sufficiently large to allow for the reservoir fluid to reach the
stable height hA. In �6�, a time-varying M was used to ma-
nipulate the behavior of the system in the bistable region in a
similar way, using a large M to produce the fluid reservoir
rather than introducing a double wave structure to provide
this extra mass.

E. Type II solution from a DWA and strong forcing

If hL�hC, then the fluid flow is always constrained by the
forcing even after the double wave structure is absorbed,
which leads to shocks offset by the mass of fluid in the
double wave structure, as shown in Fig. 21 with the tran-
sients shown in Fig. 22. The position of the shock is offset
depending on the width of the initial condition. Since the
initial heights are identical, the masses are unequal. At t
=800, the transients on the right are nearly identical, while
the waves on the left move at the same speed �due to the
jump conditions� but are offset due to the difference in mass
of the initial conditions; the mass transmitted is limited by
the flux determined by M. Note that the speed of the left-
moving shock is only accurate after the solution has ab-
sorbed transient waves and achieved the predicted interme-
diate heights. This occurs just after the fluid gathered behind
the forcing reaches its maximum height �see Fig. 22, at t
=100; by t=140 the shock has formed�. The small perturba-
tion visible near the origin before the downstream transient
sweeps over it is the N wave described in Sec. II A and Fig.
14 of that section. The left-moving compressive waves are
nearly identical despite the changes in the shape of the initial
condition.

IV. CONCLUSION

We have successfully addressed questions posed in �6�
about transient structures and the use of localized forcing to
control both transient and steady-state wave structures in a
Marangoni-driven thin liquid film. The waves that develop
from a given initial profile depend on the boundary data
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FIG. 21. �Color online� Three DWA initial conditions with vary-
ing widths, hL=0.4, and hR=0.05. Since M =1.5 is greater than Mc

for hL=0.4, a type II solution is guaranteed, and the differing widths
determine the position of the upstream shock according to the dif-
ferences in mass.
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FIG. 22. �Color online� Evolution of the fluid profile for M
=1.5, hL=0.4, and hR=0.05. The fluid in the DWA is absorbed into
the fluid gathered behind the forcing, yielding a type II solution
with a downstream compressive shock. The downstream behavior is
not affected by the DWA because the forcing constrains the flow.
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�hL ,hR�, the forcing shape ��x�, and the forcing parameter M.
We have particularly focused on N waves that appear as

early-time solutions. Using a constant initial profile we have
demonstrated how a variety of forcing functions and initial
conditions can create N waves in numerical simulations. We
have also explored solutions arising from monotonic initial
conditions that nucleate to form a compressive-
undercompressive pair known as a double wave structure.
Using an approximation to this structure, we demonstrated
that the additional buildup of mass before the wave reaches
the forcing region affects the steady-state solution when the
forcing parameter is in the moderate �bistable� regime. For
strong and weak forcing, the steady state is unaffected by the
nucleation.

We hope that future physical experiments will be con-
ducted to verify the existence of these waves. The results of
this analysis may be used to control the thickness of a coat-

ing flow, using careful choices of forcing function ��x�,
boundary data hL ,hR, and forcing parameter M to create a
microfluidic valve in the forcing region. Future experiments
could provide insight into potential applications of this
theory to biological and industrial coating flows.
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