1-1-2010

Review: Nontangential Limits in Pt(μ)-spaces and the Index of Invariant Subgroups

Stephan Ramon Garcia
Pomona College

Recommended Citation
Nontangential limits in $P^t(\mu)$-spaces and the index of invariant subspaces. (English summary)

This deep and interesting article answers a number of fundamental questions about boundary behavior in $P^t(\mu)$ spaces and the relationship between the measure μ and the index of invariant subspaces of $P^t(\mu)$. The introduction is well written and inviting and hence we freely paraphrase portions of it below.

In order the summarize the results of this article, a few preliminary definitions are required. First, let μ denote a finite positive measure on the closed unit disk \overline{D}, let $1 \leq t < \infty$, and let $P^t(\mu)$ denote the closure of the analytic polynomials in $L^t(\mu)$. Multiplication by z is a bounded linear operator on $P^t(\mu)$ and is denoted by S. An invariant subspace of $P^t(\mu)$ is a closed linear subspace M of $P^t(\mu)$ which satisfies $SM \subseteq M$.

The two most familiar examples of $P^t(\mu)$ spaces are those corresponding to $\mu = \frac{1}{2\pi} m$ (normalized Lebesgue measure on ∂D) and $\mu = \frac{1}{\pi} A$ (normalized Lebesgue measure on D). These cases satisfy $\mu(\partial D) > 0$ and $\mu(\partial D) = 0$, respectively, and they illustrate the type of phenomenon that motivates the article. In particular, observe that:

- For $\mu = \frac{1}{2\pi} m$, one obtains the classical Hardy spaces H^t. It is well known that each $f \in H^t$ has a nontangential limit $f^*(z)$ at m-almost every $z \in \partial D$ and that $f^* = f$ as elements on $L^t(\mu)$. Moreover, one has a strong uniqueness criterion, for $f^* = 0$ on a set of positive m-measure implies that $f = 0$. By Beurling’s Theorem ($t = 2$) and its extension to other values of t, it follows that every nonzero invariant subspace of H^t has index 1.

- For $\mu = \frac{1}{\pi} A$ one obtains the Bergman spaces L^t_a. Functions in L^t_a need not have nontangential limits at any point of ∂D. Furthermore, for any $1 \leq n \leq \infty$ there exist invariant subspaces of L^t_a having index n [C. Apostol et al., J. Funct. Anal. 63 (1985), no. 3, 369–404; MR0808268 (87i:47004a); J. Eschmeier, Math. Ann. 298 (1994), no. 1, 167–186; MR1252824 (94k:47010); H. Hedenmalm, S. Richter and K. Seip, J. Reine Angew. Math. 477 (1996), 13–30; MR1405310 (97i:46044)].

In light of these results the authors are led to study the case where D is the set of analytic bounded point evaluations for $P^t(\mu)$ and $P^t(\mu)$ contains no nontrivial characteristic functions (i.e., $P^t(\mu)$ is irreducible). It is known in this case that the restriction of μ to ∂D must be of the form $h |dz|$.

If $\mu(\partial D) > 0$, then one has a boundary function $f|\partial D$ for each $f \in P^t(\mu)$. However, the precise relationship between $f|\partial D$ and the limiting behavior of the analytic function $f|D$ is not immediately clear. The following questions are suggested by the examples above:

1. Is $f|\partial D$ the boundary value function of f in some suitable sense?
2. Is $f|\partial D = f^* |\partial D$-almost everywhere?
3. Is \(f \) determined by \(f|_{\partial \mathbb{D}} \)? In other words, does \(f|_{\partial \mathbb{D}} = 0 \) imply that \(f = 0 \)?

4. Is the index of every nonzero invariant subspace equal to 1?

The first major theorem of this paper answers all four of these questions in the affirmative:

Theorem A. Suppose that \(\mu \) is supported in \(\overline{\mathbb{D}} \) and is such that the set of analytic bounded point evaluations for \(\mathcal{P}^t(\mu) \) is equal to \(\mathbb{D} \) and \(\mathcal{P}^t(\mu) \) is irreducible, and that \(\mu(\partial \mathbb{D}) > 0 \). Then:

(a) If \(f \in \mathcal{P}^t(\mu) \), then the nontangential limit \(f^*(z) \) of \(f \) exists for \(\mu|_{\partial \mathbb{D}} \)-almost all \(z \), and \(f^* = f|_{\partial \mathbb{D}} \) as elements of \(\mathcal{L}^t(\mu|_{\partial \mathbb{D}}) \).

(b) Every nonzero invariant subspace of \(\mathcal{P}^t(\mu) \) has index 1.

An important consequence of this work is an affirmative answer to a conjecture of J. B. Conway and L. M. Yang [in Holomorphic spaces (Berkeley, CA, 1995), 201–209, Cambridge Univ. Press, Cambridge, 1998; MR1630651 (99e:47027)]. In particular, the present authors show that for \(1 < t < \infty \) one has \(\dim M/zM = 1 \) for every nonzero invariant subspace \(M \) of \(\mathcal{P}^t(\mu) \) if and only if \(h \neq 0 \).

On the other hand, away from the part of \(\partial \mathbb{D} \) where \(\mu \) has mass, the boundary behavior of \(\mathcal{P}^t(\mu) \) functions can be wild. To be more specific, there is a natural notion of interpolating sequences for \(\mathcal{P}^t(\mu) \) spaces and Theorem B of this article shows (under the hypotheses of Theorem A) that for \(t \in (1, \infty) \) and \(E \subseteq \partial \mathbb{D} \) with \(\mu(E) = 0 \), there is an interpolating sequence for \(\mathcal{P}^t(\mu) \) which clusters nontangentially at \(m \)-almost every point of \(E \). In particular, this implies that there are functions in \(\mathcal{P}^t(\mu) \) which have nontangential limits at \(m \)-almost no points of \(E \). In the case \(\mu(\partial \mathbb{D}) = 0 \) and \(t \in (1, \infty) \), this proves the existence of an interpolating sequence for \(\mathcal{P}^t(\mu) \) that clusters nontangentially at \(m \)-almost every point of \(\partial \mathbb{D} \). The argument used to prove [A. Aleman, S. Richter and C. Sundberg, J. Anal. Math. 86 (2002), 139–182; MR1894480 (2003g:30058) (Proposition 7.3)] then yields invariant subspaces of \(\mathcal{P}^t(\mu) \) of index greater than 1. Thus one has a new proof of the results of [C. Apostol et al., op. cit.] and [J. Eschmeier, op. cit.] on the index of invariant subspaces of the Bergman spaces \(\mathcal{L}^t_a \).

For bounded point evaluations \(\lambda \) for \(\mathcal{P}^t(\mu) \), let \(e_\lambda \) denote the associated evaluation functional and let \(M_\lambda = \|e_\lambda\|_{\mathcal{P}^t(\mu)^*} \). One of the key elements in proving Theorem A is obtaining the inequality

\[
\limsup_{\lambda \to z} (1 - |\lambda|^2)^{1/t} M_\lambda \leq \frac{C}{h(z)^{1/t}},
\]

for \(m \)-almost all \(z \in \partial \mathbb{D} \) where \(C \) is some constant. Remarkably, for \(t > 1 \) the authors are even able to prove the following asymptotic result:

Theorem C. Under the hypotheses of Theorem A, if \(t > 1 \), then

\[
\lim_{\lambda \to z} (1 - |\lambda|^2)^{1/t} M_\lambda = \frac{1}{h(z)^{1/t}}
\]

for \(m \)-almost all \(z \in \partial \mathbb{D} \).

The proofs of these results utilize portions of J. E. Thomson’s proof of the existence of bounded point evaluations [Ann. of Math. (2) 133 (1991), no. 3, 477–507; MR1109351 (93g:47026)] along with X. Tolsa’s recent work on analytic capacity [Acta Math. 190 (2003), no. 1, 105–149; MR1982794 (2005c:30020)]. The methods used are similar to those developed independently by J. E. Brennan in his recent proof, based upon Tolsa’s work, of Thomson’s Theorem [Algebra
The authors are even able to refine Thomson’s result somewhat. For a compactly supported measure \(\nu \) in \(\mathbb{C} \), they describe the locations of bounded point evaluations for \(P_t(\mu) \) in terms of the Cauchy transform of an annihilating measure (Corollary 2.2).

Reviewed by Stephan R. Garcia

References

MR0544604 (80j:30050)

MR0534718 (81j:30054)

MR1386764 (97c:47036)

MR1120512 (93d:46042)

MR1637674 (99g:46025)

MR1352599 (96h:47030)

MR1342492 (96f:47013)

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2010, 2013