1-1-2009

Complex Symmetric Partial Isometries

Stephan Ramon Garcia
Pomona College

Warren R. Wogen

Recommended Citation
http://scholarship.claremont.edu/pomona_fac_pub/245
COMPLEX SYMMETRIC PARTIAL ISOMETRIES

STEPHAN RAMON GARCIA AND WARREN R. WOGEN

Abstract. An operator $T \in B(\mathcal{H})$ is complex symmetric if there exists a conjugate-linear, isometric involution $C : \mathcal{H} \to \mathcal{H}$ so that $T = CT^*C$. We provide a concrete description of all complex symmetric partial isometries. In particular, we prove that any partial isometry on a Hilbert space of dimension ≤ 4 is complex symmetric.

1. Introduction

The aim of this note is to complete the classification of complex symmetric partial isometries which was started in [10]. In particular, we give a concrete necessary and sufficient condition for a partial isometry to be a complex symmetric operator.

Before proceeding any further, let us first recall a few definitions. In the following, \mathcal{H} denotes a separable, complex Hilbert space and $B(\mathcal{H})$ denotes the collection of all bounded linear operators on \mathcal{H}.

Definition. A conjugation is a conjugate-linear operator $C : \mathcal{H} \to \mathcal{H}$, which is both involutive (i.e., $C^2 = I$) and isometric (i.e., $\langle Cx, Cy \rangle = \langle y, x \rangle$).

Definition. We say that $T \in B(\mathcal{H})$ is C-symmetric if $T = CT^*C$. We say that T is complex symmetric if there exists a conjugation C with respect to which T is C-symmetric.

It is straightforward to show that if $\dim \ker T \neq \dim \ker T^*$, then T is not a complex symmetric operator. For instance, the unilateral shift is perhaps the most ubiquitous example of a partial isometry which is not complex symmetric (see [7, Prop. 1], [9, Ex. 2.14], [6, Cor. 7]). On the other hand, we have the following theorem from [11]:

Theorem 1. Let $T \in B(\mathcal{H})$ be a partial isometry.

(i) If $\dim \ker T = \dim \ker T^* = 1$, then T is a complex symmetric operator,

(ii) If $\dim \ker T \neq \dim \ker T^*$, then T is not a complex symmetric operator.

(iii) If $2 \leq \dim \ker T = \dim \ker T^* \leq \infty$, then either possibility can (and does) occur.

Although these results are the sharpest possible statements that can be made given only the data $(\dim \ker T, \dim \ker T^*)$, they are in some sense unsatisfactory. For instance, it is known that partial isometries on \mathcal{H} that are not complex symmetric exist if $\dim \mathcal{H} \geq 5$ and that every partial isometry on \mathcal{H} is complex symmetric if $\dim \mathcal{H} \leq 3$, the authors were unable to answer the corresponding question if

2000 Mathematics Subject Classification. 47B99.

Key words and phrases. Complex symmetric operator, isometry, partial isometry.

First author partially supported by National Science Foundation Grant DMS-0638789.

1
dim $\mathcal{H} = 4$. To be more specific, the techniques used in [10] were insufficient to resolve the question in the case where dim $\mathcal{H} = 4$ and dim ker $T = 2$. Significant numerical evidence in favor of the assertion that all partial isometries on a four-dimensional Hilbert space are complex symmetric has recently been produced by J. Tener [13].

Suppose that T is a partial isometry on \mathcal{H} and let

$$\mathcal{H}_1 = (\ker T)^\perp = \text{ran } T^*$$

(1)
denote the initial space of T and $\mathcal{H}_2 = (\mathcal{H}_1)^\perp = \ker T$ denote its orthogonal complement (see [12, Pr. 127] or [2, Ch. VIII, Sect. 3] for terminology). With respect to the orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, we have

$$T = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}$$

(2)

where $A : \mathcal{H}_1 \to \mathcal{H}_1$ and $B : \mathcal{H}_1 \to \mathcal{H}_2$. Furthermore, the fact that $T^* T$ is the orthogonal projection onto \mathcal{H}_1 yields the identity

$$A^* A + B^* B = I,$$

(3)

where I denotes the identity operator on \mathcal{H}_1. Finally, observe that the operator $A \in B(\mathcal{H}_1)$ is simply the compression of the partial isometry T to its initial space.

The main result of this note is the following concrete description of complex symmetric partial isometries:

Theorem 2. Let $T \in B(\mathcal{H})$ be a partial isometry. If A denotes the compression of T to its initial space, then T is a complex symmetric operator if and only if A is a complex symmetric operator.

Due to its somewhat lengthy and computational proof, we defer the proof of the preceding theorem until Section 3. We remark that Theorem 2 remains true if one instead considers the final space of T. Indeed, simply apply the theorem with T^* in place of T and then take adjoints.

Corollary 1. Every partial isometry of rank ≤ 2 is complex symmetric.

Proof. Let $T \in B(\mathcal{H})$ be a partial isometry such that rank $T \leq 2$. If rank $T = 0$, then $T = 0$ and there is nothing to prove. If rank $T = 1$, then this is handled in [10]. In the case rank $T = 2$, we may write

$$T = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}$$

where A is an operator on a two-dimensional space. Since every operator on a two-dimensional Hilbert space is complex symmetric (see [11, Cor. 3], [11, Cor. 3.3], [7, Ex. 6], [10, Cor. 1], [14, Cor. 3]), the desired conclusion follows from Theorem 2. □

Corollary 2. Every partial isometry on a Hilbert space of dimension ≤ 4 is complex symmetric.

Proof. As mentioned earlier, the results of [10] indicate that only the case dim $\mathcal{H} = 4$ and dim ker $T = 2$ requires resolution. The corollary is now immediate consequence of Theorem 2 and the fact that every operator on a two-dimensional Hilbert space is complex symmetric. □
We conclude this section with the following theorem, which asserts that each C-symmetric partial isometry can be extended to a C-symmetric unitary operator on the whole space (the significance lies in the fact that the corresponding conjugations for these two operators are the same).

Theorem 3. If T is a C-symmetric partial isometry, then there exists a C-symmetric unitary operator U and an orthogonal projection P such that $T = UP$.

Proof. Since T is a C-symmetric partial isometry, it follows that $|T| = P$ is an orthogonal projection and that $T = CJP$ where J is a conjugation supported on $\text{ran } P$ which commutes with P [8, Sect. 2.2]. We may extend J to a conjugation \tilde{J} on all of \mathcal{H} by forming the internal direct sum $J \oplus J'$ where J' is a partial conjugation supported on $\ker P$. The operator $U = CJ$ is a C-symmetric unitary operator. \qed

2. Partial isometries and the norm closure problem

Partial isometries on infinite-dimensional spaces often provide examples of note. For instance, one can give a simple example of a partial isometry T satisfying $\dim \ker T = \dim \ker T^* = \infty$ which is not a complex symmetric operator:

Example 1. Let S denote the unilateral shift on $l^2(\mathbb{N})$. Although S is certainly not a complex symmetric operator (by (ii) of Theorem 1, see also [9, Ex. 2.14], or [6, Cor. 7]), part (i) of Theorem 1 does ensure that the partial isometry $S \oplus S^*$ is complex symmetric. Indeed, simply take N to be the bilateral shift on $l^2(\mathbb{Z})$ and note that $S \oplus S^*$ is unitarily equivalent to $N - Ne_0 \otimes e_0$. That $S \oplus S^*$ is complex symmetric can also be verified by a direct computation [8, Ex. 5]. On the other hand, the partial isometry $T = S \oplus 0$ on $l^2(\mathbb{N}) \oplus l^2(\mathbb{N})$ is not a complex symmetric operator by Lemma [1].

Let $S(\mathcal{H})$ denote the subset of $B(\mathcal{H})$ consisting of all bounded complex symmetric operators on \mathcal{H}. There are several ways to think about $S(\mathcal{H})$. By definition, we have

$$S(\mathcal{H}) = \{ T \in B(\mathcal{H}) : \exists \text{ a conjugation } C \text{ s.t. } T = CT^*C \}.$$

If C is a fixed conjugation on \mathcal{H}, then we also have

$$S(\mathcal{H}) = \{ UTU^* : T = CT^*C, \ U \text{ unitary} \}.$$

Thus if we identify \mathcal{H} with $l^2(\mathbb{N})$ and C denotes the canonical conjugation on $l^2(\mathbb{N})$ (i.e., entry-by-entry complex conjugation), we can think of $S(\mathcal{H})$ as being the unitary orbit of the set of all bounded (infinite) complex symmetric matrices.

The following example shows that the set $S(\mathcal{H})$ is not closed in the strong operator topology (SOT):

Example 2. We maintain the notation of Example [1]. For $n \in \mathbb{N}$, let P_n denote the orthogonal projection onto the span of the basis vectors $\{ e_i : i \geq n \}$ of $l^2(\mathbb{N})$. Now observe that each operator $T_n = P_n S \oplus S^*$ is unitarily equivalent to $S \oplus 0_n \oplus S^*$ where 0_n denotes the zero operator on an n-dimensional Hilbert space. Each T_n is complex symmetric since $S \oplus S^*$ is complex symmetric (by Lemma [1]). On the other hand, since $P_n S$ is SOT-convergent to 0, it follows that the SOT-limit of the sequence T_n is $0 \oplus S^*$, which is not a complex symmetric operator (by Lemma [1]).
The preceding example demonstrates that the set of all complex symmetric operators (on a fixed, infinite-dimensional Hilbert space \mathcal{H}) is not SOT-closed. We also remark that the conjugations corresponding to the operators T_n from Example 1 depend on n. In contrast, if we fix a conjugation C, then it is elementary to see that the set of C-symmetric operators is a SOT-closed subspace of $B(\mathcal{H})$.

We conclude with a related question, which we have been unable to resolve:

Question. Is $S(\mathcal{H})$ norm closed?

3. Proof of Theorem 2

This entire section is devoted to the proof of Theorem 2. We first require the following lemma:

Lemma 1. If \mathcal{H}, \mathcal{K} are separable complex Hilbert spaces, then $T \in B(\mathcal{H})$ is a complex symmetric operator if and only if $T \oplus 0 \in B(\mathcal{H} \oplus \mathcal{K})$ is a complex symmetric operator.

Proof. If T is a C-symmetric operator on \mathcal{H}, then it is easily verified that $T \oplus 0$ is $(C \oplus J)$-symmetric on $\mathcal{H} \oplus \mathcal{K}$ for any conjugation J on \mathcal{K}. The other direction is slightly more difficult to prove.

Suppose that $S = T \oplus 0$ is a complex symmetric operator on $\mathcal{H} \oplus \mathcal{K}$. Before proceeding any further, let us remark that it suffices to consider the case where

$$\mathcal{H} = \text{ran} T + \text{ran} T^*.$$ \(\text{(4)}\)

Otherwise let $\mathcal{H}_1 = \text{ran} T + \text{ran} T^*$ and note that \mathcal{H}_1 is a reducing subspace of \mathcal{H}. If \mathcal{H}_2 denotes the orthogonal complement of \mathcal{H}_1 in \mathcal{H}, then with respect to the orthogonal decomposition $\mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{K}$, the operator S has the form $T' \oplus 0 \oplus 0$, where T' denotes the restriction of T to \mathcal{H}_1. By now considering S with respect to the orthogonal decomposition $\mathcal{H} \oplus \mathcal{K} = \mathcal{H}_1 \oplus (\mathcal{H}_2 \oplus \mathcal{K})$, it follows that we need only consider the case where \(\text{(4)}\) holds.

Suppose now that \(\text{(4)}\) holds and that S is C-symmetric where C denotes a conjugation on $\mathcal{H} \oplus \mathcal{K}$. Writing the equations $CS = S^*C$ and $CS^* = SC$ in terms of the 2×2 block matrices

$$S = \begin{pmatrix} T & 0 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$ \(\text{(5)}\)

(the entries C_{ij} of C are conjugate-linear operators), we find that

$$C_{11}T = T^*C_{11},$$ \(\text{(6)}\)

$$C_{21}T = C_{21}T^* = 0,$$ \(\text{(7)}\)

$$T^*C_{12} = TC_{12} = 0.$$ \(\text{(8)}\)

Since $C_{21}T = C_{21}T^* = 0$, it follows that C_{21} vanishes on $\text{ran} T + \text{ran} T^*$ and hence on \mathcal{H} itself by \(\text{(4)}\). On the other hand, \(\text{(8)}\) implies that C_{12} vanishes on the orthogonal complements of $\text{ker} T$ and $\text{ker} T^*$ in \mathcal{H}. By \(\text{(4)}\), this implies that C_{12} vanishes identically.

It follows immediately from \(\text{(6)}\) that C_{11} and C_{22} must be conjugations on \mathcal{H} and \mathcal{K}, respectively, whence T is C_{11}-symmetric by \(\text{(6)}\). This concludes the proof of the lemma. \(\square\)
Now let us suppose that \(T \) is a partial isometry on \(\mathcal{H} \) and let
\[
\mathcal{H}_1 = (\ker T)^\perp = \operatorname{ran} T^*.
\]
and \(\mathcal{H}_2 = \ker T \). With respect to the decomposition \(\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \), it follows that
\[
T = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}
\]
where \(A : \mathcal{H}_1 \to \mathcal{H}_1 \), \(B : \mathcal{H}_1 \to \mathcal{H}_2 \), and
\[
A^* A + B^* B = I.
\]

\((\Rightarrow)\) Suppose that \(T \) is a complex symmetric operator. For an operator with polar decomposition \(T = U|T| \) (i.e., \(U \) is the unique partial isometry satisfying \(\ker U = \ker T \) and \(|T| \) denotes the positive operator \(\sqrt{T^*T} \)), the Aluthge transform of \(T \) is defined to be the operator \(\tilde{T} = |T|^{1/2} U |T|^{1/2} \). Noting that
\[
T^* T = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix},
\]
we find that
\[
\tilde{T} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}.
\]
By [5, Thm. 1], we know that the Aluthge transform of a complex symmetric operator is complex symmetric. Applying Lemma 1 to \(\tilde{T} \), we conclude that \(A \) is complex symmetric, as desired.

\((\Leftarrow)\) Let us now consider the more difficult implication of Theorem 2, namely that if \(A \) is a complex symmetric operator, then \(T \) is as well. We claim that it suffices to consider the case where \(\operatorname{ran} B = \mathcal{H}_2 \). In other words, we argue that if
\[
K = \operatorname{ran} T + \operatorname{ran} T^*,
\]
then we may suppose that \(K = \mathcal{H} \). Indeed, \(K \) is a reducing subspace for \(T \) and \(T = 0 \) on \(K^\perp \). By Lemma 1 if \(T|_K \) is a complex symmetric operator, then so is \(T \).

Write \(B = V|B| \) where \(V : \mathcal{H}_1 \to \mathcal{H}_2 \) is a partial isometry with initial space \((\ker B)^\perp \subseteq \mathcal{H}_1 \) and final space \(\mathcal{H}_2 \) (since \(\operatorname{ran} B = \mathcal{H}_2 \)). In particular, we have the relations
\[
V^* B = |B| = B^* V, \quad |B| = \sqrt{I - A^* A}.
\]
By hypothesis, the operator \(A \in B(\mathcal{H}_1) \) is complex symmetric. Therefore suppose that \(K \) is a conjugation on \(\mathcal{H}_1 \) such that \(KA = A^* K \) and observe that the equations
\[
A \sqrt{I - A^* A} = \sqrt{I - AA^* A}, \quad A^* \sqrt{I - AA^*} = \sqrt{I - A^* AA^*}, \quad K \sqrt{I - A^* A} = \sqrt{I - AA^* K}, \quad K \sqrt{I - AA^*} = \sqrt{I - A^* AK},
\]
follow from a standard polynomial approximation argument (i.e., if \(p(x) \in \mathbb{R}[x] \), then \(Ap(A^* A) = p(AA^*)A \) and \(Kp(A^* A) = p(AA^*)K \) hold whence the desired identities follow upon passage to the strong operator limit). In particular, it follows from the preceding that
\[
(KA) \sqrt{I - A^* A} = \sqrt{I - A^* A(KA)},
\]
that is
\[KA|B| = |B|KA, \quad A^*K|B| = |B|A^*K. \tag{11} \]

Let us now define a conjugate-linear operator \(C \) on \(\mathcal{H} \) by the formula
\[
C = \begin{pmatrix}
AK & KB^*\\
BK & -VA^*KV^*
\end{pmatrix}.
\tag{12}
\]

Assuming for the moment that \(C \) is a conjugation on \(\mathcal{H} \), we observe that
\[
\begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}^T \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}.
\]

Since it is clear that \(J \) is a partial conjugation which is supported on the range of \(|T|\) and which commutes with \(|T|\), it follows immediately that \(T \) is a \(C \)-symmetric operator (see [8, Thm. 2]).

To complete the proof of Theorem 2, we must therefore show that \(C \) is a conjugation on \(\mathcal{H} \). In other words, we must check that \(C^2 \) is the identity operator on \(\mathcal{H} \) and that \(C \) is isometric. Since these computations are somewhat lengthy, we perform them separately:

Claim: \(C^2 = I \).

Pf. of Claim. We first expand out \(C^2 \) as a \(2 \times 2 \) block matrix:
\[
C^2 = \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} = \begin{pmatrix} AA^* + KB^*BK & AB^* - KA^*KV^* \\ BA^* - VA^*KV^*BK & BB^* + VA^*KV^*VA^*KV^* \end{pmatrix}.
\]

To obtain the preceding line, we used the fact that \(K \) is a conjugation and \(A \) is \(K \)-symmetric. Letting \(E_{ij} \) denote the entries of the preceding block matrix we find that
\[
E_{11} = AA^* + KB^*BK = AA^* + K(I - A^*A)K = AA^* + (I - AA^*) = I.
\]
\[
E_{12} = AB^* - KB^*VA^*KV^* = AB^* - |B|A^*KV^* \quad \text{by (11)}
\]
\[
= AB^* - KA^*K|B|V^* \quad \text{by (11)}
\]
\[
= AB^* - A|B|V^* = AB^* - AB^* \quad \text{since } B^* = |B|V = 0.
\]
\[
E_{21} = BA^* - VA^*KV^*BK
\]
\[\begin{align*}
= BA^* - YA^* K |B| K & \quad \text{since } V^* B = |B| \\
= BA^* - V |B| A^* K K & \quad \text{by (11)} \\
= BA^* - V |B| A^* & \quad \text{by (11)} \\
= 0.
\end{align*} \]

As for \(E_{22} \), it suffices to show that \(E_{22} \) agrees with \(I \) (the identity operator on \(\mathcal{H}_2 \)) on the range of \(B \), which is dense in \(\mathcal{H}_2 \). In other words, we wish to show that

\[E_{22}Bx = BB^*Bx + VA^*KV^*V A^* KV^* Bx = Bx \quad \text{(13)} \]

for all \(x \in \mathcal{H}_2 \). Let us investigate the second term of (13):

\[\begin{align*}
VA^*KV^*VA^* KV^* Bx &= VA^*KV^*V |B| A^* K x & \quad \text{by (10)} \\
&= VA^*KV^*V |B| A^* K x & \quad \text{by (11)} \\
&= V |B| A^* K A^* K x & \quad \text{by (11)} \\
&= BA^*KA^* K x & \quad \text{since } B = V |B| \\
&= BA^* A x & \quad \text{since } A^* A + B^* B = I \\
&= B (I - B^* B) x & \quad \text{since } A^* A + B^* B = I \\
&= Bx - BB^* Bx.
\end{align*} \]

Putting this together with (13), we find that \(E_{22}Bx = Bx \) for all \(x \in \mathcal{H}_2 \) whence \(E_{22} = I \), as claimed. \(\square \)

Claim: \(C \) is isometric.

Pf. of Claim. The proof requires three steps:

(i) Show that \(C \) is isometric on \(\mathcal{H}_1 \),

(ii) Show that \(C \) is isometric on \(B \mathcal{H}_1 \), which is dense in \(\mathcal{H}_2 \),

(iii) Show that \(C \mathcal{H}_1 \perp C(B \mathcal{H}_1) \).

For the first portion, observe that

\[\begin{align*}
\left\| C \begin{pmatrix} x \\ 0 \end{pmatrix} \right\|^2 &= \left\| \begin{pmatrix} AK & KB^* \\ BK & -VA^* KV^* \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \right\|^2 \\
&= \left\| \begin{pmatrix} AK x \\ BK x \end{pmatrix} \right\|^2 \\
&= (AK x, AK x) + (BK x, BK x) \\
&= (A^* AK x, K x) + (B^* BK x, K x) \\
&= (A^* A + B^* B) K x, K x \\
&= (K x, K x) \\
&= \|K x\|^2 \\
&= \|x\|^2.
\end{align*} \]

Thus (i) holds.
Now for (ii):

\[
\left\| C \begin{pmatrix} 0 \\ Bx \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} \begin{pmatrix} 0 \\ Bx \end{pmatrix} \right\|^2 \\
= \left\| \begin{pmatrix} KB^*Bx \\ -VA^*KV^*Bx \end{pmatrix} \right\|^2 \\
= \|KB^*Bx\|^2 + \|VA^*KV^*Bx\|^2 \\
= \|B^*Bx\|^2 + \|VA^*K\|B\|x\|^2 \\
= \|B^*Bx\|^2 + \|VA\|Kx\|^2 \\
= \|B^*Bx\|^2 + \langle BA^*K, BA^*K \rangle \\
= \|B^*Bx\|^2 + \langle BA^*Kx, BA^*Kx \rangle \\
= \|B^*Bx\|^2 + \langle (I - A^*A)A^*Kx, A^*Kx \rangle \\
= \|B^*Bx\|^2 + \langle A^*K(I - A^*A)x, A^*Kx \rangle \\
= \|B^*Bx\|^2 + \langle K(I - A^*A)x, AA^*Kx \rangle \\
= \langle B^*Bx, B^*Bx \rangle + \langle KAA^*Kx, (I - A^*A)x \rangle \\
= \langle (I - A^*A)x, (I - A^*A)x \rangle + \langle A^*Ax, (I - A^*A)x \rangle \\
= \langle x, (I - A^*A)x \rangle - \langle A^*Ax, (I - A^*A)x \rangle + \langle A^*Ax, (I - A^*A)x \rangle \\
= \langle x, (I - A^*A)x \rangle \\
= \langle x, B^*Bx \rangle \\
= \langle Bx, Bx \rangle \\
= \|Bx\|^2.
\]

Thus (ii) holds.

Now for (iii):

\[
\left\langle C \begin{pmatrix} x \\ 0 \end{pmatrix}, C \begin{pmatrix} 0 \\ By \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix}, \begin{pmatrix} AK & KB^* \\ BK & -VA^*KV^* \end{pmatrix} \begin{pmatrix} 0 \\ By \end{pmatrix} \right\rangle \\
= \left\langle \begin{pmatrix} AKx \\ BKx \end{pmatrix}, \begin{pmatrix} KB^*By \\ -VA^*KV^*By \end{pmatrix} \right\rangle \\
= \langle AKx, KB^*By \rangle - \langle BKx, VA^*KV^*By \rangle \\
= \langle B^*By, KA^*Kx \rangle - \langle BKx, VA^*K\|B\|y \rangle \\
= \langle B^*By, A^*x \rangle - \langle BKx, VB^*A^*Ky \rangle \\
= \langle AB^*By, x \rangle - \langle BKx, BA^*Ky \rangle \\
= \langle AB^*By, x \rangle - \langle B^*BKx, A^*Ky \rangle \\
= \langle AB^*By, x \rangle - \langle (I - A^*A)Kx, A^*Ky \rangle \\
= \langle AB^*By, x \rangle - \langle K(I - AA^*)x, A^*Ky \rangle \\
= \langle AB^*By, x \rangle - \langle KA^*Ky, (I - AA^*)x \rangle \\
= \langle AB^*By, x \rangle - \langle Ay, (I - AA^*)x \rangle
\]
\[
= \langle AB^* By, x \rangle - \langle (I - AA^*)Ay, x \rangle \\
= \langle AB^* By, x \rangle - \langle A(I - A^*A)y, x \rangle \\
= \langle AB^* By, x \rangle - \langle AB^* By, x \rangle \\
= 0.
\]

By the polarization identity, it follows that
\[
\left\langle C \begin{pmatrix} x_1 \\ Bx_2 \end{pmatrix}, C \begin{pmatrix} y_1 \\ By_2 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} x_2 \\ By_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ By_1 \end{pmatrix} \right\rangle
\]
holds for all \(x_1, x_2, y_1, y_2 \in \mathcal{H} \) whence \(C \) is isometric on \(\mathcal{H} \). \(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, POMONA COLLEGE, CLAREMONT, CALIFORNIA, 91711, USA
E-mail address: Stephan.Garcia@pomona.edu
URL: http://pages.pomona.edu/~sg064747

DEPARTMENT OF MATHEMATICS, CB #3250, PHILLIPS HALL, CHAPEL HILL, NC 27599
E-mail address: wrw@email.unc.edu
URL: http://www.math.unc.edu/Faculty/wrw