1999

Laboulbeniales on semiaquatic Heteroptera. VIII. Monandromyces, a new genus based on Autophagomeces microveliae (Laboulbeniales)

Richard K. Benjamin
Rancho Santa Ana Botanic Garden

Follow this and additional works at: http://scholarship.claremont.edu/aliso
Part of the Botany Commons

Recommended Citation
Available at: http://scholarship.claremont.edu/aliso/vol18/iss2/14
LABOULBENIALES ON SEMIAQUATIC HETEROPTERA. VIII. MONANDROMYCES, A NEW GENUS BASED ON AUTOPHAGOMYCES MICROVELIAE (LABOULBENIALES)

RICHARD K. BENJAMIN

Rancho Santa Ana Botanic Garden
1500 North College Avenue
Claremont, Calif. 91711-3157
e-mail: Richard.Benjamin@cgu.edu

ABSTRACT

A new genus of Laboulbeniales (Laboulbeniaceae: Stigmatomycetinae), Monandromyces, was described. Its type species, M. hemipteralis, was based on Autophagomyces hemipteralis. The latter, which parasitizes a riparian bug, a species of Microvelia (Heteroptera: Velidiidae), was characterized by Roland Thaxter in 1931. Ten new species of Monandromyces—taken from members of three genera of Velidiidae—were described as follows: M. australis, M. falcatus, M. polhemorum, M. proteburns, M. tenuistipitis, and M. umbonatus (on Microvelia spp.); M. neosalardi (on Neokaldus spp.); and M. elongates, M. longispinae, and M. pseudoveliae (on Pseudovelia spp.). Keys to the species were given and all were illustrated with line drawings.

Key words: Ascomycetes, Autophagomyces, fungi, Heteroptera, insect parasites, Laboulbeniales, Monandromyces, morphology, taxonomy, Velidiidae.

INTRODUCTION

In his summary treatment of Autophagomyces Thaxt. (1912), Thaxter (1931) broadly defines the genus to include 16 taxa with hosts in two distinctive orders of insects. Fifteen species parasitize beetles (order Coleoptera; suborder Polyphaga [see classification in Arnett 1985: 266–267]). The type species, A. platanensis Thaxt., and five other species, A. guatemalensis Thaxt., A. kamerunensis Thaxt., A. longicaulis Thaxt., A. nigripes Thaxt., and A. subfuscatus Thaxt., occur on members of the family Anthicidae (series Cucujiformia; superfAMILY Tenebrionoidea); two species, A. gracilis Thaxt. and A. grenadinus Thaxt., are on Phalacridae (Cucujiformia; superfAMILY Cucujidea); two species, A. sarawakensis Thaxt. and A. peyerimhoffii (Maire) Maire ex Thaxt., are on Corylophidae (Cucujidea) (Note: Thaxter incorrectly places the host of A. sarawakensis in the Phalacridae [Benjamin 1995]), and five species, A. bryxalis Thaxt., A. coronatus (Maire) Maire ex Thaxt., A. decarthicola (Speg.) Thaxt., A. spegazzinii Thaxt., and A. strangulatus Thaxt., are on Pselaphidae (series Staphyliniformia; superfAMILY Staphylinoidea) (Note: I [Benjamin 1995: 41] incorrectly place the Pselaphidae in Cucujidea). Finally, one species, A. microveliae Thaxt., infects a riparian bug of the family Velidiidae (order Heteroptera; suborder Gerromorpha; superfAMILY Gerroidea [see classification in Henry and Froeschner 1988]).

During my studies of Laboulbeniales, I have accumulated specimens and data pertaining to Autophagomyces sensu lato and, on the basis of new information, have revised the taxonomic status of several of the species cited above.

My early interpretation of two seemingly distinct fungi parasitizing a species of Mesovelia Mulsant & Rey resulted in the description of two species that I placed in separate genera, A. poissonii and Dioicomyces mesoveliae R. K. Benj. (Benjamin 1970). Later (Benjamin 1986), I discovered that these “species” are instead the monoeocious and dioeocious morphs of a species of Triceromyces, T. poissonii (R. K. Benj.) R. K. Benj. This phenomenon, trioeicy, not previously recognized in Laboulbeniales, also is found in two other species of Triceromyces on Mesoveliidae, T. bifornis R. K. Benj. and T. bullatus R. K. Benj. (Benjamin 1986, 1998).

Recently I described another new genus, Corylophomyces R. K. Benj., to accommodate C. sarawakensis (Thaxt.) R. K. Benj. (=Autophagomyces sarawakensis), C. peyerimhoffii (Maire) R. K. Benj. (=A. peyerimhoffii), and C. sericoderi (Santam.) R. K. Benj. (=A. sericoderi), along with two additional species, C. reflexus R. K. Benj. and C. weirii R. K. Benj. (Benjamin 1995). These taxa, which are dioeocious, have simple males, females with distinctive two- or three-celled appendages, and all parasitize Corylophidae.
During visits to Dr. John T. Polhemus’s laboratory at the Colorado Entomological Museum, Englewood, in April 1991 and May 1993, I was permitted to examine, for Laboulbeniales, accumulations of semiaquatic Heteroptera collected by John and/or his son Dr. Dan A. Polhemus in Africa, Australia, Indonesia, and Malaysia. On species of three genera of Veliidae, Microvelia Westwood, Neolaudias Distant, and Pseudovelia Hoberlandt, I found specimens of 10 distinctive Laboulbeniales having a combination of characteristics matching those of Thaxter’s Autophagomyces microveliae, characters that clearly distinguish them generically from the type species of Autophagomyces, A. platensis, and its allies on Anthicidae, as well as those species parasitizing Cryptophagidae, Phalacridae, and Pselaphidae.

The purpose of this paper is to describe, illustrate, and comment briefly on the morphology and development of a new genus to accommodate Autophagomyces microveliae and ten new species.

MATERIALS AND METHODS

Except for the host of Autophagomyces microveliae, Microvelia albolineolata Bueno, all other hosts of fungi described in this study were collected in the field by John and/or Dan Polhemus and preserved in 70–80% ethyl alcohol. Some specimens later had been pinned (affixed to paper points), dried, and placed in museum boxes, and any of these insects found to bear fungi were relaxed before removal of the parasites. Labels and insects were carefully separated from the pin. Labels were set aside in vials for eventual reunion with the insects. Infected insects were placed directly into 0.2% saline or a fluid consisting of benzene (5%), ethyl alcohol (45%), water (35%), and ethyl acetate (15%) for a few hours or overnight after which they were removed to 70% ethyl alcohol for storage along with a duplicate set of labels. Unsorted lots of insects still in fluid were carefully examined with a dissecting microscope and those bearing parasites were segregated and placed, along with appropriate labels, in vials containing fresh 70% ethyl alcohol.

Using methods described previously (Benjamin 1971: 101–102 [up to step e]; 1986: 247; 1993: 560), I carefully removed the fungi from hosts and mounted them in glycerine on slides. All observations related to the descriptions and illustrations were made using a Leitz Dialux microscope having differential interference contrast optics. In the citations of specimens taken from insects collected by John and/or Dan Polhemus, CL numbers, i.e., collection localities as described in their field notebooks, are given.

Loan of the slides bearing Thaxter’s type and isotypes of Autophagomyces microveliae was kindly arranged by Dr. Donald H. Pfister, curator of the Farlow Herbarium.

Terminology and abbreviations used in describing the ascoma (used here for the entire perithecium-bearing thallus) are defined in the text or in a separate key to labeling preceding the first set of legends for figures, and mostly are those outlined by Tavares (1985: 431–434). Ascomata of all the taxa discussed in this paper are bilaterally symmetrical and usually are oriented on slides so that they can be viewed only laterally. Thus, with few exceptions, descriptions and measurements of thalli were based on study of specimens as seen from one side or the other. When thalli are mounted on slides, the true relationship of the perithecium relative to the receptacle and appendage may, at times, be ± altered. This occurs when the perithecial stalk cell twists one way or the other when the cover glass is applied. An attempt was made to interpret correctly such distortions in preparing the descriptions. With reference to the perithecium and receptacle, anterior (or forward) is in the direction away from the appendage whereas posterior (or backward) is in the direction toward the appendage. In referring to cells of the receptacle, stalk and basal cells of the perithecium, and cells of the appendage, inner (or inward) is in the direction of the longitudinal axis of the ascoma, outer (or outward) is in the direction away from the axis. In all measurements, length (height) precedes width (breadth). Total length of the thallus, where in some instances the receptacle or perithecium may be ± curved, bent, or reflected, was measured along the median axis. Occasionally, length is the only dimension given for some cells where orientation made meaningful determination of width uncertain, e.g., cell VII, cells n, m, n’, and outer wall cells. The length of cells I and II of the receptacle, which are separated by a strongly diagonal cross wall, was, for cell I, measured upward from the tip of the foot and, for cell II, downward from the base of cell VI to the tips of the region of overlap of each cell with the other. Because perithecial basal cell n gives rise to two vertical rows of outer wall cells instead of only one row each as do basal cells m and n’, the relationship of a cell (cells) of one of the n-basal-cell-derived rows of outer wall cells to those derived from basal cells m or n’ is given as ex n adj. m or ex n adj. n’, i.e., adjacent to the m- or n’-basal-cell-derived row of outer wall cells.

TAXONOMY

Monandromyces R. K. Benj., gen. nov.

Receptaculum cellularum trium superpositum (I, II, III) consistans, perithecium stipitatum et appendicem simplicem liberam utrinsecus gerens; cellulae basilaris (I) et suprabasilaris (II) fortiter oblique superpositae; cellulae II perithecium superpositum; cellulae terminalis (III) appendicem subtenens. Appendix cellularum trium superpositum et antheridii singuli simplicis terminalis consistans; cellula
Receptacle consisting of three in-line superposed cells (I, II, III) bearing distally on one side a stalked perithecium and on the other side a simple, free appendage; basal (I) and suprabasal (II) cells strongly obliquely superposed; cell II subtending the perithecium; terminal cell (III) subtending the appendage. Appendage consisting of three superposed cells and a single, terminal, simple, flask-shaped antheridium; basal cell small, broader than long to nearly isodiametric; median cell elongate, several times longer than broad; terminal cell small, nearly isodiametric or ± elongate, always less than length of median cell; antheridium flask shaped with an elongate, slender effe- ture tube. Perithecium with two stalk cells (VI, VII), three persistent basal cells (m, n, n'), and four vertical rows of outer wall cells of five cells each. Trichogyne forming slender, divericate branchlets terminally; body consisting of a single slender cell or of two superposed cells separated by a median transverse cross wall, the pair of cells abruptly constricted above and below. Ascogonic cell single. Ascospores 1-septate.

Type species.—*Monandromyces microveliae* (Thaxt.) R. K. Benj.

Etymology.—From the combination of mon- (one) + andro- (male) + -myces (fungus) (all in Gr. compound words) in reference to the appendage with its single antheridium.

KEY A. THE SPECIES OF MONANDROMYCES

| A. Host Microvelia | B. | C. Terminal cell of stalk of primary appendage two or more times longer than broad | D. Terminal cell of stalk of primary appendage nearly isodiametric | E. Posterior cell (ex n adj. n') of terminal tier of outer wall cells forming a prominent, broad-based ± conical projection | F. Receptacle ca. one half total length of thallus | G. Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average | H. Host Neoalardus | I. One suprabasal outer wall cell (ex n adj. n') forming a protuberance | J. Outer wall cells lacking outgrowths | K. Host Pseudovelia | L. Host Neoalardus | M. Host Neoalardus | N. Host Neoalardus | O. Host Neoalardus | P. Host Neoalardus | Q. Host Neoalardus | R. Host Neoalardus |
|-------------------|----|---------------------------------|-------------------|--------------------------------|-----------------|------------------|-----------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Host Microvelia | B. | C. Terminal cell of stalk of primary appendage two or more times longer than broad | D. Terminal cell of stalk of primary appendage nearly isodiametric | E. Posterior cell (ex n adj. n') of terminal tier of outer wall cells forming a prominent, broad-based ± conical projection | F. Receptacle ca. one half total length of thallus | G. Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average | H. Host Neoalardus | I. One suprabasal outer wall cell (ex n adj. n') forming a protuberance | J. Outer wall cells lacking outgrowths | K. Host Pseudovelia | L. Host Neoalardus | M. Host Neoalardus | N. Host Neoalardus | O. Host Neoalardus | P. Host Neoalardus | Q. Host Neoalardus | R. Host Neoalardus |
| Host otherwise | | | | | | | | | | | | | | | | | |
| Small, well-defined, dome-shaped protuberance arising from a cell of basal tier of outer wall cells | G. Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average | | | | | | | | | | | | | | | | |
| Basal cells of vertical rows of outer wall cells lacking outgrowths | | | | | | | | | | | | | | | | | |
| Terminal cell of stalk of primary appendage two or more times longer than broad | | | | | | | | | | | | | | | | | |
| Terminal cell of stalk of primary appendage nearly isodiametric | | | | | | | | | | | | | | | | | |
| Posterior cell (ex n adj. n') of terminal tier of outer wall cells forming a prominent, broad-based ± conical projection | | | | | | | | | | | | | | | | | |
| Cells of terminal tier of outer wall cells lacking outgrowths | | | | | | | | | | | | | | | | | |
| Receptacle ca. one half total length of thallus | | | | | | | | | | | | | | | | | |
| Receptacle ca. only one third total length of thallus | | | | | | | | | | | | | | | | | |
| Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average | | | | | | | | | | | | | | | | | |

KEY B. THE SPECIES OF MONANDROMYCES

<table>
<thead>
<tr>
<th>A. One of the basal or suprabasal perithecial outer wall cells bearing a short or long lateral protuberance</th>
<th>B.</th>
<th>C.</th>
<th>D.</th>
<th>E.</th>
<th>F.</th>
<th>G.</th>
<th>H.</th>
<th>I.</th>
<th>J.</th>
<th>K.</th>
<th>L.</th>
<th>M.</th>
<th>N.</th>
<th>O.</th>
<th>P.</th>
<th>Q.</th>
<th>R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One of the basal or suprabasal perithecial outer wall cells bearing a short or long lateral protuberance</td>
<td>B.</td>
<td>C.</td>
<td>D.</td>
<td>E.</td>
<td>F.</td>
<td>G.</td>
<td>H.</td>
<td>I.</td>
<td>J.</td>
<td>K.</td>
<td>L.</td>
<td>M.</td>
<td>N.</td>
<td>O.</td>
<td>P.</td>
<td>Q.</td>
<td>R.</td>
</tr>
<tr>
<td>Host otherwise</td>
<td></td>
</tr>
<tr>
<td>Small, well-defined, dome-shaped protuberance arising from a cell of basal tier of outer wall cells</td>
<td>G. Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average</td>
<td></td>
</tr>
<tr>
<td>Basal cells of vertical rows of outer wall cells lacking outgrowths</td>
<td></td>
</tr>
<tr>
<td>Terminal cell of stalk of primary appendage two or more times longer than broad</td>
<td></td>
</tr>
<tr>
<td>Terminal cell of stalk of primary appendage nearly isodiametric</td>
<td></td>
</tr>
<tr>
<td>Posterior cell (ex n adj. n') of terminal tier of outer wall cells forming a prominent, broad-based ± conical projection</td>
<td></td>
</tr>
<tr>
<td>Cells of terminal tier of outer wall cells lacking outgrowths</td>
<td></td>
</tr>
<tr>
<td>Receptacle ca. one half total length of thallus</td>
<td></td>
</tr>
<tr>
<td>Receptacle ca. only one third total length of thallus</td>
<td></td>
</tr>
<tr>
<td>Length of cells I and II of the receptacle subequal; thallus ca. 200 μm long on average</td>
<td></td>
</tr>
</tbody>
</table>

Eymology.—From the combination of mon- (one) + andro- (male) + -myces (fungus) (all in Gr. compound words) in reference to the appendage with its single antheridium.
1. Monandromyces microveliae (Thaxt.) R. K. Benj., comb nov.

="Autoophagomycetes microveliae" Thaxt., Mem. Amer. Acad. Arts 16: 96, Pl. 18, fig. 5, 1931 (Basionym).

Ascoma: Erect, nearly straight, bent backward slightly below cell II of receptacle, hyaline to pale yellow, except basal cell of appendage, which is brownish yellow, and perithecium, which is tinged with pale brownish yellow. Length from tip of foot to tip of appendage; basal cell (I) short, tapered slightly to its wall variable in thickness and appearing slightly wide distally,

Notes.—Thaxter’s three slides include seven mature individuals of Autoophagomycetes microveliae (4016 [3], 4017 [2], and 4018 [2]) on which the above description is based. Monandromyces microveliae (Fig. 1) differs from the other species parasitic on Microvelia by its erect, nearly straight habit; its relatively long, slender stalk (cells I and II); the pronounced external convexity of the cells comprising the lower three of the five tiers of outer wall cells, especially the median tier; and the ± distally rounded lip cells, which are nearly equal in length.

Ascoma: Fortiter basi obstipa infra cellularum III et VI, cetera prope recta; pallide luteobrunnea, perithecio alicuanto fuscato.

Specimens examined.—INDONESIA: SUMATRA; Sumatra Barat Prov.; Fort de Kock, ca. 80–90 km N of Padang; 1925; E. Jacobson coll.; on the posterior legs of Microvelia albolineolata Bueno; Thaxter 3302 (FH Acc. #s 4016 [HOLOTYPE], 4017, and 4018 [ISOTYPES]).

Notes.—Monandromyces umbonatus differs from the other species parasitic on Microvelia by its erect, nearly straight habit; its relatively long, slender stalk (cells I and II); the pronounced external convexity of the cells comprising the lower three of the five tiers of outer wall cells, especially the median tier; and the ± distally rounded lip cells, which are nearly equal in length.

Key to labeling of the figures: I, basal cell of receptacle; II, suprabasal cell of receptacle; III, terminal cell of receptacle; VI, primary stalk cell of perithecium; VII, secondary stalk cell of perithecium; a, original septum of spore (also its position in a developing thallus); an, antheridium; d, perithecial initial; ha, haustorium, or part thereof; m, perithecial basal cell derived from cell VI; n, one of two perithecial basal cells derived from cell VII; n', the other perithecial basal cell derived from cell VII; o, a primordial outer wall cell; pa, primary appendage; k, trichophoric cell, lies between carpospogenic cell and trichogyne; tr, trichogyne (also trichogyne remnant); w, tiers of outer wall cells, 1 (basal) to 5 (terminal) (also position of a cell in a vertical row of outer wall cells).

Fig. 1–10. 1–2. Monandromyces microveliae (Thaxter 3302 [INDONESIA; Sumatra]).—1. Mature individual (holotype).—2. Appendage showing slightly mononiform aspect of lateral wall of median cell of stalk as viewed in optical section.—3–10. M. australis (3–8, RKB 3629 [AUSTRALIA; Western Australia]; 9–10, RKB 3779 [INDONESIA; Flores Island]).—3. Juvenile individual at two-outter-wall-cell stage of development with well-developed trichogyne having an ovoid, transversely septate basal part.—4. Mature individual.—5. Appendage of same.—6. Mature individual.—7. Distal part of perithecium of same showing variable lengths of lip cells (i.e., cells of terminal tier of outer wall cells).—8. Ascospore.—9. Mature individual.—10. Appendage of same. (Bars. A = 20 μm, Fig. 1, 4, 6, 9; B = 10 μm, Fig. 3; C = 10 μm, Fig. 2, 5, 7, 8, 10.)
brown, with perithecium somewhat darker. Length from tip of foot to tip of perithecium 206-262 μm.

Receptacle: Length 58-70 μm from tip of foot to base of appendage; basal and suprabasal cells (I, II) subequal in length; cell I tapered downward to the blackened foot, 38-45 × 10-13 μm; cell II 38-50 μm long, 13-20 μm wide distally; cross walls separating cells I and II angled upward from rear to front; terminal cell (III) slightly longer than broad, 13-20 μm long, 11-15 μm wide and externally convex distally, adnate on the inside to base of perithelial stalk cell (VI).

Appendage: Free, slightly sigmoid, 85-100 μm long; basal cell shorter than wide, 6-9 × 10-12 μm; median cell 25-35 × 8-10 μm, wall variable in thickness, appearing somewhat moniliform in optical section, the thicker areas ± evenly separated from one another and, in surface view, appearing slightly darker than intervening thinner areas; terminal cell twice as long as wide, (14-)18-20 × 8-10 μm; antheridium 30-40 μm long, venter 10 μm wide, somewhat asymmetrical, outer margin slightly concave, efferent tube 13-22 × 2.5-3 μm.

Perithecium: Primary stalk cell (VI) about twice as long as broad, 20-30 × 12-15 μm; secondary stalk cell (VII) slightly shorter, 16-23 × 12-16 μm; perithelial basal cells (m, n, n') comprising ca. 20% of total length of perithelial body above stalk cells; body elongate, ± uniformly inflated upward from base, then tapered towards apex, broadest near middle, 39-54 μm wide, 126-168 μm long including basal cells; cells comprising median tier of outer wall cells individually more strongly convex than those of the two subtending tiers of cells; perithelial basal cells, especially m and n', and cells (ex m and n') of basal and suprabasal tiers of outer wall cells with narrow vertical rows of very short, closely spaced, transverse striae bordering the lateral margins of the cells; apex slightly tipped forward, posterior cell (ex n adj. n') slightly longer than other three and forming a prominent umbo ca. 7-10 μm high. Ascospores 50-60 × 5-6 μm.

Etymology: From *umbonatus* (L.), in reference to the umbonate terminal outer wall cell.

Holotype: INDONESIA: TIMOR; Nusa Tenggara Timur Prov.; spring and stream at Oe Noah near Polen, 23 km NE of Soe, 840 m; 12 Sept 1991; D. A. & J. T. Polhemus (CL 2594); on the left, mid, lateral surface of the abdomen of a ♀ of *Microvelia* sp.; RKB 3777A (designated slide; RSA).

Isotypes—Data as for the holotype; RKB 3777A (designated slides; RSA).

Notes: Fifteen mature individuals of *Monandromyces umbonatus* were recovered from a single female host. Features that most readily distinguish this species from others in the genus are: 1) the prominent umbo arising from the posterior cell of the terminal tier of outer wall cells (Fig. 11, 13); 2) the slightly sigmoid appendage with its asymmetrical antheridial venter (Fig. 12); and 3) the ± strongly convex cells of the lower three tiers, especially the median tier, of outer wall cells (Fig. 13).

3. *Monandromyces falcatus* R. K. Benj., *sp. nov.*

Fig. 19-21

Ascoma: Erect, receptaculum et stipites perithecii (cellula VI) stipitem elongatum prope ½ thalli in total longitudine formantes; cellula basilaris (I) receptaculi leniter postice angulata; perithecium forterior postice recurvatum super appendicem; pagina distalis postica receptaculi, cellulae basilares et terminales stipitis appendicis, et perithecium atroalutobrunnea, aliter pallide luteobrunnea. Thallus totalis 340-378 μm longus ad apicem perithecii. **Receptaculum:** Gradiatum angustatum ad pedem, 100-102 μm longum; cellula basilaris (I) extra forter convexa in parte distalis, 44-47 × 10-12 μm; cellula suprabasilaris (II) gradiatum angustatum ad basam, 58-60 μm longa, 21-25 μm lata in parte distalis; angulus septi inter cellulas I et II sursum ad distum; cellula terminalis (III) 30-35 × 14-16 μm, interne basi cellulae VI adnata. **Appendices:** Liber, gracilis, prope recta, leniter decrescens ad apicem, 94-97 μm longa; cellula basilaris (I) lato in parte distalis, 50-53 μm wide, somewhat asymmetrical, cellula suprabasilaris (II) lato in parte distalis, 50-53 μm wide; cellula media (III) 31 × 10-12 μm; cellula terminalis 20-22 × 8-9 μm; antheridium 32-33 μm longum, venter 6-8 μm latus, tubus 12-15 × 2.5-3 μm. **Perithecium:** Cellula VI elongata, 95-100 μm longa, 24-28 μm latæ in parte distalis; cellula VII paulo brevis ca. 23 μm in altitude; cellulae basilares perithecii (m, n, n') prope ½ corporis perithecii in total longitudine supra cellulas VI et VII; corpus perithecii elongatum, fortiter curvatum, inflatum ad medium, decrescens ad apicem, margo antica concava, margo postica convexa, 146-184 μm longum cum cellulis basilariis perithecii, 40-50 μm in maxima latitudinem; cellulae basilares perithecii et omnes cellulae stratorum basilarium, suprabasilarium, et medium seriebus angustis verticalibus striariarum confertarum brevissimorum prope margines cellularum; apex rotundatus; cellulae stratì terminalis ex cellulis m et n contiguo n' breviores quam cellulae ex cellulis n' et n' contiguo m. Ascosporeae 50-53 × 15 μm. Typus RKB 3778A (RSA).

Ascoma: Erect, receptacle and perithelial stalk cell (VI) forming an elongate stipe comprising ca. one half total length of thallus; cell I of receptacle angled slightly backward below cell II; perithecium strongly...
recurred backwards over appendage; distal posterior surface of receptacle, basal and terminal cells of stalk of appendage, and perithecia dark yellow-brown, otherwise pale yellow-brown. Length from tip of foot to tip of perithecia 340–378 µm. Receptacle: Tapered gradually below cells III and VI, 100–102 µm long from tip of foot to base of appendage; basal cell (I) outwardly strongly convex distally, 44–47 × 10–12 µm; suprabasal cell (II) tapered downward, 58–60 µm long, 21–25 µm wide distally; cross wall separating cells I and II angled upward from rear to front; terminal cell (III) about twice as long as broad, 30–35 × 14–16 µm, adnate on the inside to base of perithecial stalk cell (VI). Appendage: Free, slender, nearly straight, tapered upward slightly from base, 94–97 µm long; basal cell isodiametric, 10–13 × 13–14 µm; median cell 31 × 10–12 µm; terminal cell slightly more than two times longer than broad, 20–22 × 8–9 µm; antheridium 32–33 µm long, venter 6–8 µm wide, efferent tube 12–15 × 2.5–3 µm. Perithecium: Primary stalk cell (VI) elongate, only slightly wider above than below, 95–100 µm long, 24–28 µm wide distally; secondary stalk cell (VII) relatively short, ca. 23 µm high, perithecial basal cells (m, n, n') comprising ca. 25% of total length of perithecial body above stalk cells; body curved, tapered upward from base, broadest near median, then tapered towards apex, 146–184 µm long including basal cells, 40–50 µm wide, posterior margin concave, anterior margin strongly convex; perithecial basal cells and cells of basal, suprabasal, and median tiers of outer wall cells with short, narrow, closely spaced, transverse striata vertically arranged adjacent to lateral margins of cells; apex rounded; two cells (ex m and n adj. n') of terminal tier of outer wall cells slightly shorter than other two cells. Ascospores 50–53 × 5 µm.

Etymology.—From falcatus (L.), in reference to the falcate habit of the thallus.

Holotype.—INDONESIA: NEW GUINEA; Irian Jaya Prov.; Batuputih River near Krooy, 3 km NW of Kaimana, 30 m; 12 Oct 1991; D. A. & J. T. Polhemus (CL 2639); on the left lateral surface of the pronotum just above the middle leg of Microvelia sp.; RKB 3778A (designated slide; RSA).

Isotype.—Data as for the holotype; RKB 3778A (designated slide; RSA).

Notes.—I found only three individuals of Monandromyces falcatus; however, the thalli were fully mature and the species should not be confused with any other in the genus. Distinguishing characteristics of the species include the elongate, strongly falcate habit of the thallus (Fig. 19) and the stalk of the appendage, which has a relatively long terminal cell that, like the much shorter basal cell, is more darkly pigmented than the even longer median cell (Fig. 20). The narrow, vertical zones of short, transverse striations bordering adjacent margins of the perithecial basal cells and the cells of the lower three tiers of outer wall cells (Fig. 19) are a feature also of M. elongatus (Fig. 41), which is otherwise very different in overall habit.

Fig. 3–10

Ascoma: Erect, prope rectum vel plus minusve fortiter postice recurvum pede usque ad apicem; luteobrunneum praeter perithecia aroteoluteo-brunneum et ¾–¾ partem internam cellulam basilaris appendicis aroteoluteo-brunneum. Thallus totus 185–210 µm longus ad apicem perithecia. Receptaculum: Relative breve circa ½ longitudinis thalli in tota longitudine, 58–66 µm longum ad basim appendicis; cellula basilaris (I) deorsum decrescens ad pedem denigratum, fortiter convexa in parte distialibus, 34–45 × 11–15 µm; cellula suprabasilaris (II) 21–40 × 15–25 µm; angulus septi inter cellulas I et II sussum ad frontem; cellula terminalis (III) 12–18 × 15–15 µm, interne basi cellulae VI adnata. Appendix: Libera, recta vel plus minusve recurvata, 9–33 µm longa; cellula basilaris prope isodiamicra, 8–10 × 10–12 µm; cellula media 15–25 × 9–11 µm; cellula terminalis isodiamicra, 8–10 × 9–11 µm; antheridium 30–40 µm longum, venter 8–11 µm latus, tubus 15–25 × 3–3.5 µm. Perithecium: Cellula VI 20–23 × 18–18 µm; cellula VII 11–14 µm in altitude; cellulae basilares perithecia (m, n, n') prope ½ corporis perithecia in tota longitudine supra cellulas VI et VII; corpus peritheci plus minusve rectum, infatum ad medianum, decrescens ad apicem, margo antica fortiter convexa, margo postica prope recta vel parce concava, 137–160 µm longum cum cellulis basilaribus peritheci, 43–50 µm in maxime latitudine; cellula basilaris n peritheci striis transversis dispersis; cellulae omnes statorum basilarium et superbasilarium scribus angustis verticalibus striatum conferuntur brevissimam prope margins cellulam; apex decrescens; cellulae brevores strati terminalis ex cellula n cellulae n' contiguo 11–13 µm longa, cellulae longiores strati terminalis ex cellulae n contiguo m 20–25 µm longa. Ascosporeae 54–59 × 5.5–6 µm. Typus RKB 3629 (RSA).

Ascoma: Erect, nearly straight to ± strongly curved backward from base to apex; pale yellow-brown except peritheciu and lower one third to one half of basal cell of appendage, which are dark yellow-brown. Length from tip of foot to tip of perithecia 185–210 µm. Receptacle: Relatively short, ca. one third total length of thallus, 58–66 µm long from tip of foot to base of appendage; basal cell (I) tapered downward to blackened foot, outwardly convex distally, 34–45 × 11–15 µm; suprabasal cell (II) slightly shorter and wider than cell I, 21–40 × 15–25 µm; cross wall separating cells I and II angled upward from rear to front; terminal cell (III) slightly longer than broad, 12–18 × 10–15 µm, adnate on inside to base of perithecial stalk cell (VI). Appendage: Free, straight to ± curved, 59–83 µm long; basal cell nearly isodiametric, 8–10 × 10–12 µm; median cell 15–25 × 9–11 µm; terminal cell isodiametric, 8–10 × 9–11 µm; antheridium 30–40 µm long, venter 8–11 µm wide, efferent tube 15–25 × 3–3.5 µm. Perithecium: Primary stalk cell (VI) slightly longer than broad, 20–23 × 10–18 µm; secondary stalk cell (VII) shorter, 11–14 µm high, perith-
the basal cells (m, n, n') comprising ca. 20% of total length of perithecial body above stalk cells; body ± straight, tapered upward from base, broadest near middle, then tapered towards apex, 137–160 µm long including basal cells, 43–50 µm wide, anterior margin strongly convex, posterior margin nearly straight to base of subterminal tier of outer wall cells, which may be tipped slightly backward; perithecial basal cell n with scattered, transverse striae; cells of basal and suprabasal tiers of outer wall cells with a few ± elongate, but usually very short, narrow, closely spaced, transverse striae mostly vertically arranged adjacent to lateral margins of cells; apex tapered; cells of terminal tier of outer wall cells differing slightly in length, the shortest (ex n adj. n') 11–13 µm long, the longest (ex n adj. m) 20–25 µm. Ascospores 54–59 × 5.5–6 µm.

Etymology.—From *australis* (L.), southern, in reference to the known range of the taxon in Indonesia and Australia.

Holotype.—AUSTRALIA: WESTERN AUSTRALIA; Serpentine River, 2 km E of South Western Highway and falls, clear stream; 4 Dec 1977; J. T. Polhemus (CL 880); on the anterior surface of the pronotum near the margins of *Microvelia peramoena* Hale; RKB 3629 (designated slide; RSA).

Isootype.—Data as for the holotype; RKB 3629 (designated slide; RSA).

Paratypes.—INDONESIA: FLORES ISLAND; Nusa Tenggara Timur Prov.; Wae Garit River, 6 km W of Ruteng, 1100 m; 24 Oct 1985; J. T. & D. A. Polhemus (CL 2179); on the 1st abdominal sternite, just below the left margin of a ♀ of *Microvelia* n. sp. *M*. *magnifica* Lundblad [slide J. T. Polhemus]; RKB 37779 (designated slides; RSA).

Notes.—The collection of *M. australis* from Western Australia included three mature (cf. Fig. 4, 6), two nearly mature, and two immature individuals, one of the latter bearing a trichogyne (Fig. 3). The material from Flores Is., which differed from that from Australia only in having a ± curved thallus (cf. Fig. 9) (probably influenced by its position on the host), numbered seven mature and two immature individuals. Among the species of *Monandromyces* on *Microvelia*, the primary distinguishing characteristics of *M. australis* are the relatively short receptacle and the nearly straight, ± asymmetric, dark yellowish brown perithecial field.
Fig. 22–29.—22–25. *Monandromyces tenuistipitis* (RKB 3777B [INDONESIA; New Guinea]).—22. Very immature individual showing perithecial initial (p) arising from cell II and an immature appendage, subtended by cell III, before differentiation of the terminal antheridium. Note also remnant of haustorium (ha) projecting downward and to the right of the blackened foot.—23. Mature individual (holotype); note barely visible protuberance (arrow).—24. Appendage of same.—25. Ascospore.—26–29. *M. protuberans* (RKB 3631 [AUSTRALIA; Western Australia]).—26. Juvenile individual at two-outer-wall-cell stage of development bearing a trichogyne with an ovoid, transversely septate basal part.—27. Mature individual (holotype) showing distinctive perithecial protuberance (ex n. adj. m).—28. Appendage of same.—29 Ascospore. (Bars. A = 20 μm, Fig. 23, 27; B = 10 μm, Fig. 26; C = 10 μm, 22, 24, 25, 28, 29.)

Holotype.—INDONESIA: TIMOR; Nusa Tenggara Timur Prov. spring and stream at Oe Noah near Polen, 23 km NE of Soë, 840 m; 12 Sept 1991; D. A. & J. T. Polhemus (CL 2594); on the mid right surface of the prostoneum of a ♀ of Microvelia sp.; RKB 3777B (designated slide; RSA).

Isotype.—Data as for the holotype; RKB 3777B (designated slides; RSA).

Notes.—*Monandromyces polhemorum* was found on the same host as *M. umbonatus*, which grew on the mid, left, lateral surface of the abdomen. Twelve mature, three nearly mature, and six immature individuals (two with trichogynes [Fig. 17]) of *M. polhemorum* were recovered. As the thallus matures, it appears to undergo a slight natural twist of ca. 90°, and in slide mounts of mature specimens the relationship of the appendage to the base of the perithegium could only be observed in far or near view, as depicted in Fig. 15; the distortion appears not to be an artifact of preparation. Except for a slight external convexity of the median cell of its stalk, the appendage is slightly but uniformly tapered upward from the base (Fig. 16). Another distinguishing feature of *M. polhemorum* is the ± pronounced distal inflation of cell II of the receptacle (Fig. 15).

prope uniformis in latitudinem supra pedem denigratum, paululum extra convexa in parte distalibus; cellula suprabasilaris (II) elongata, gracilis, prope uniformis in latitudinem, 65–75 × 8–8 μm; angulus sepi inter cellulas I et II sursum ad frontem; cellula terminalis (III) 10–11 × 8 μm, interne basi cellulae VI adnata. Appendix: Libera, 52–56 μm longa; cellula basilaris latitudinale aliquanto magis quam altitude, 6–7 × 5–6 μm; antheridium relative angustum, 24–25 μm longum, venter circa 5 μm latus, tubus 14–15 × 2 μm. Peritheium: Cellula VI relative longa, apice dilatata, leniter constricta prope basis, 45 × 14–15 μm; cellula VII circa 8–10 μm in altitude; cellulae basilarum perithecii (m, n, n') prope ⅔ corporis perithecii in tota longitudine supra cellulas VI et VII; corpus perithecii rectum uniformiter inflatum ad medium, decrescens ad apicem, margines convexae, circa 121 μm longum cum cellulis basilaribus, circa 45 μm in maxime latitudinem; cellula ex n contiguo m stratis basilaribus processum brevissimum tholiforme circa 2 μm altum gignens; cellulae basilarum perithecii et cellulae omnes stratorum basilarium et suprabasilarum striis transversis dispersis vel seribus angustis verticalibus striarum conferantar plus minusve brevibus prope margines cellulae; cellula ex n contiguo m strati terminalis aliquanto longior quam ceterum. Ascosporae 40–46 × 5 μm. Typus RKB 3778B (RSA).

Ascoma: Erect, nearly straight, except basal cell of receptacle ± strongly curved; receptacle and appendage pale yellowish brown; peritheium and basal cell of appendage dark orange-brown. Length from tip of foot to tip of perithecium 245–260 μm. Receptacle: Elongate, slender, comprising ca. ⅔ of length of thallus, 96–98 μm long from tip of foot to base of appendage; basal cell (I) nearly uniform in width above blackened foot, except slightly externally rounded distally, 30–33 × 8–9 μm; suprabasal cell (II) elongate, slender, nearly uniform in width above juncture with cell I, 65–75 × 7–8 μm; cross wall separating cells I and II angled upward from rear to front; terminal cell small, slightly longer than wide, 10–11 × 8 μm, adnate on inside to base of perithelial stalk cell (VI). Appendage: Free, 52–56 μm long; basal cell slightly wider than high, 5 × 8 μm; median cell as wide as basal cell, externally ± convex, 16–17 × 8 μm; terminal cell slightly higher than wide, 6–7 × 5–6 μm, narrower than basal and median cells; antheridium relatively narrow, 24–25 μm long, venter ca. 5 μm wide, effertent tube 14–15 × 2 μm. Peritheium: Primary stalk cell (VI) relatively long, broadest above, slightly constricted near base, 45 μm long, 14–15 μm wide distally; secondary stalk cell (VII) ca. 8–10 μm high, perithelial basal cells (m, n, n') comprising ca. 25% of total length of body above stalk cells; body straight, uniformly inflated upward from base, broadest near middle, then evenly tapered to apex, ca. 121 μm long above stalk cells, ca. 45 μm wide, basal outer wall cell (ex n adj. m) bearing near its base a very short, broad-based, dome-shaped protuberance, estimated at ca. 2 μm high; perithelial basal cells and cells of basal and suprabasal tiers of outer wall cells with narrow transverse striae of varying lengths arranged randomly or in closely spaced vertical rows adjacent to lateral margins of cells; one cell of terminal tier of outer wall cells (ex n adj. m) slightly longer than others. Ascosporae 40–46 × 5 μm.

Etymology.—From the combination of tenui- (in L. comp.), slender, + stipes (L.), stipe, in reference to the stalk of the thallus.

Holotype.—INDONESIA: NEW GUINEA; Irian Jaya Prov.; Batuputh River near Kroyo, 3 km NW of Kaimana, 30 m; 12 Oct 1991; D. A. & J. T. Polhemus (CL 2639); on the lower surface of the femur of the right anterior leg of Microvelia sp.; RKB 3778B (designated slide; RSA).

Notes.—Only one very immature and two mature specimens of this distinctive species were found (Fig. 22, 23); they parasitized the same host as M. falcatus, which grew on the left lateral surface of the pronotum. The slender stipe (i.e., cells I, II, and VI) subtending the perithelial body is a prime distinguishing feature of M. tenuistipitis (Fig. 23). Unfortunately, the orientation of both mature individuals in the slide mount precluded accurate study of the small dome-shaped prominence arising from basal outer wall cell ex n adj. m. Its height of 2 μm given in the description is only an estimate; precise dimensions of the prominence must await discovery of additional specimens.

7. Monandromyces protuberans R. K. Benj., sp. nov. Fig. 26–29

Ascoma: Plus minusve curvatum vel flexum; pallide luteobrunneum praeter peritheciun atroluteobrunneum et cellula basilaris appendicis atroluteobrunnea. Thallus totus 205–230 μm longus ad apicem perithecii. Receptaculum: Prope rectum, circa ⅔ longitudinem thalli in tota longitudine, 85–110 μm longum ad basim appendicis; cellula basilaris (I) 36–46 × 8–11 μm pede denigratum inclusa; cellula suprabasilaris (II) 59–76 μm longa, 13–15 μm lata in parte distalibus; antheridiu m et cellulas I et II sursum ad frontem; cellula terminalis (III) interne basi cellula VI adnata, prope isodiametra, 9–16 × 9–12 μm. Appendix: Libera, 65–75 μm longa; cellula basilaris prope isodiametra, 7–9 × 9–11 μm; cellula media 19–30 × 9–10 μm; cellula terminalis isodiametra, 7–9 × 7–9 μm; antheridium 30–38 μm longum, venter 8–11 μm latus, tubus 16–22 × 2.5–3 μm. Perithegium: Cellula VI contricione media, 23–30 μm longa, basi et apice 10–15 μm lata; cellula VII relative parva, circa 10–12 μm in altitude; cellulae basilaris perithecii (m, n, n') prope ⅔ corporis perithecii in tota longitudine supra cellulas VI et VII; corpus relative latum uniformiter inflatum ad medium, decrescens ad apicem, margines fortiter convexae, 100–112 μm longum cum cellulis basilaribus perithecii, 48–60 μm in maxime latitudinem; cellula ex n contiguo m strati basilaris processum tholiforme 8–15 μm altum gignens; cellulae basilaris perithecii et cellulae omnes stratorum basilarium, suprabasilarum, et mediiorum punctis dispersis vel striis minutis transversis dispersis vel seribus verticalibus striarum apprime prope margines cellulae; apex late rotundatus; cellulae strati terminale subaequales. Ascosporae 44–46 × 6 μm. Typus RKB 3631 (RSA).

Ascoma: More or less curved or bent forward abruptly near base of appendage; pale yellowish
brown, except perithecium and basal cell of appendage, which are dark yellow brown. Length from tip of foot to tip of perithecium 205–230 μm. **Receptacle:** Nearly straight, ca. 40% of length of thallus; 85–110 μm long from tip of foot to base of appendage; basal cell (I) including blackened foot 36–46 × 8–11 μm; suprabasal cell (II) about one third longer than cell I, 59–76 μm long, 13–15 μm wide distally; cross wall separating cells I and II angled upward from rear to front; terminal cell (III) adnate on inside to base of perithecial stalk cell (VI), nearly isodiametric, 9–16 × 9–12 μm. **Appendage:** Free, 65–75 μm long; basal cell nearly isodiametric, 7–9 × 9–11 μm; median cell 19–30 × 9–10 μm; terminal cell isodiametric, 7–9 × 7–9 μm; antheridium 30–38 μm long, venter ± externally convex, 8–11 μm wide, efferent tube 16–22 × 2.5–3 μm. **Perithecium:** Primary stalk cell (VI) with a well-defined median constriction, 23–30 μm long, 10–15 μm wide distally and at base; secondary stalk cell (VII) relatively small, ca. 10–12 μm high, perithecial basal cells (m, n, n') comprising ca. 20% of total length of body above stalk cells; body uniformly inflated upward from base, broadest near middle, then evenly tapered towards rounded apex, 100–112 μm long above stalk cells, median width 48–60 μm, basal outer wall cell (ex n adj. m) bearing a broad-based tapered to dome-shaped protuberance 8–15 μm high; perithecial basal cells and cells of basal, suprabasal, and median tiers of outer wall cells mottled or minutely punctate, especially near lateral margins of cells; cells of terminal tier of outer wall cells subequal in length. Ascospores 40–44 × 6 μm.

Etymology.—From protuberans (L.), bulging, in reference to the prominence formed by a cell of the basal tier of outer wall cells.

Holotype.—AUSTRALIA: WESTERN AUSTRALIA; Sabina River at Vasse Highway; 5 Dec 1977; J. T. Polhemus (CL 886); on the femur of the left anterior leg of a δ of *Microvelia peramoena* Hale; RKB 3631 (designated slide; RSA).

Isotypes.—Data as for the holotype, except on the femur of the left middle and right anterior legs; RKB 3631 (designated slides; RSA).

Paratypes.—AUSTRALIA: WESTERN AUSTRALIA; Capel; Capel River, slow clear stream; 5 Dec 1977; J. T. Polhemus (CL 884); on the femur and adjacent trochanter of the left anterior leg of 3 δs of *M. peramoena*; RKB 3630 (designated slides; RSA).

Notes.—Material available for my study of *M. protuberans* included 12 mature, two nearly mature, and 11 immature thalli, one bearing a trichogyne (Fig. 26). The broad-based protuberance arising from basal outer wall cell ex n adj. m (Fig. 27) readily distinguishes *M. protuberans* from other species of the genus including *M. teniistipitis*, the only other species parasitizing *Microvelia* that forms a projection, albeit very small, on the same basal outer wall cell.

8. **Monandromyces nealardi** R. K. Benj., n. sp.

Ascospores: Erect, prorectum, uniformer luteum. Thallus totus 290–365 μm longus ad apicem perithecii. **Receptacularia:** Elongatum, prope basim retroflexum, 98–130 μm longum ad basin appendicis; cellula basilaris (I) deorsum decretcens ad pedem denigratum, 40–43 × 10–12 μm; cellula suprabasilaris (II) gradatim dilatata a basi ad apicem, 57–86 μm longa, 20–28 μm lata in parte distalibus; anulus septi inter cellulas I et II sursum ad frontem; cellula terminalis (III) interne basi cellula VI adnata, altitude aliquanto magis quam latitudine, 20–24 × 13–17 μm. **Appendix:** Liberam, 126–137 μm longa; cellula basilaris latitudine aliquanto magis quam altitude, 5 × 8 μm; cellula media elongata, 50–60 × 12–15 μm; cellula terminalis circa 3plo longiora quam cellula basilaris, 25–33 × 12–18 μm; antheridium 30–40 μm longum, venter 12–18 μm latus, tubus 14–25 × 3–3.5 μm. **Perithecium:** Cellula VI constrictione media, 40–50 μm longa, basi et apice circa 14–20 μm lata; cellula VII 15–20 μm in altitude; cellulae basilaris perithecii (m, n, n') prope ½ corporis perithecii in tota longitudine supra cellulas VI et VII; corpus rectum, uniformer inflatum ad medium, decretcens ad apicem, 180–210 μm longum cum cellulis basilaribus perithecii, 40–60 μm in maxime latitudine; cellulae basilaris perithecii et cellulae omnes stratum basilarium, suprabasilarium, et subterminalium punctis dispersis vel striis transversis longitudinum variarum dispersis vel seriebus verticalibus striarum; cellulae omnes strati minimae longitudinis dissimulam; cellula ex n' brevissima, 12–15 μm longa; cellula ex m longissima, 35–38 μm longa, leniter curvata, apice truncato depresso cum umbone in medio. Ascospores 50–56 × 6–7 μm. Typus RKB 3628 (RSA).

Ascospores: Erect, nearly straight, uniformly pale yellow. Length from tip of foot to tip of perithecium 290–365 μm. **Receptacle:** Elongated, reflexed slightly backward near the base, 98–130 μm long from tip of foot to base of appendage. Basal cell (I) tapered slightly to blackened foot, 40–43 μm long, 10–12 μm wide distally; suprabasal cell (II) gradually widening upward from base, 57–86 × 20–28 μm distally; cross wall separating cells I and II angled upward from rear to front; terminal cell (III) adnate on inside to base of perithecial stalk cell (VI), slightly longer than wide, 20–24 × 13–17 μm. **Appendage:** Free, 126–137 μm long; basal cell shorter than wide, 7–11 × 13–17 μm; median cell elongate, 50–60 × 12–15 μm; terminal cell relatively long compared to basal cell, 25–33 × 12–18 μm; antheridium 30–40 μm long, venter 12–18 μm wide, efferent tube 14–25 μm × 3–3.5 μm. **Perithecium:** Primary stalk cell (VI) with median constriction, 40–50 μm long, ca. 14–20 μm wide distally and at base; secondary stalk cell (VII) 15–20 μm high, perithecial basal cells (m, n, n’) comprising ca. 20% of total body length above stalk cells; body straight, uniformly inflated upward from base, broadest near middle, then tapered towards apex, 180–210 μm long above stalk cells, median width 40–60 μm; perithecial basal cells and cells of basal, suprabasal, and especially subterminal tiers of outer wall cells with inconspicuous, vertically aligned or somewhat scattered, punctae or transverse striations of varying lengths; cells comprising terminal tier of outer wall cells all of
Fig. 30–35. Monandromyces neoalardi (RKB 3628A [MALAYSIA; Johor]).—30. Juvenile individual at two-outer-wall-cell stage of development with a well-developed trichogyne, which is without an ovoid, transversely septate basal part.—31. Tip of another juvenile perithecium with a similar trichogyne.—32. Mature individual (holotype).—33. Appendage of same.—34. Distal part of perithecium of same showing distinctively modified tip of the longest lip cell (ex m), and pattern of transverse striations near base of subterminal tier of outer wall cells.—35. Ascosporang. (Bars. A = 20 μm, Fig. 32; B = 10 μm, Fig. 30, 31; C = 10 μm, Fig. 33–35.)
Notes.—Material representing Monandromyces nealardi, the only species of Laboulbeniales known on Neoalardus, consists of five mature and two immature individuals, both of the latter bearing trichogyynes (Fig. 30, 31). Like Monandromyces falcatus (Fig. 20), the terminal cell of the stalk of the appendage of M. nealardi is considerably longer than the basal cell; however, it is significantly shorter than the median cell (Fig. 33). The singular modification of the tip of the longest cell (ex m) of the terminal tier of perithecial outer wall cells (Fig. 34) is one of the most notable characteristics of the species. The perithecial punctae and transverse striations (Fig. 32, 34) are relatively inconspicuous and are best viewed with interference contrast optics.

Ascoma: Leniter sigmoidum, uniformer palide lutocrunneum. Thallus totus 320–370 μm longus ad apicem peritheci. Receptaculum: Elongatum, plumereque plus minusve curvatum, 108–140 μm longum ad basim appendicis; cellula basilaris (I) deorsum decrescens ad pedem denigratam, 48–50 × 10–12 μm; cellula suprabasilaris (II) relative elongata, prope uniformer in diametro, 79–95 × 15–20 μm, angulus septi inter cellulas I et II sursum ad dorsum; cellula terminalis (III) circa 2 plio longiora quam lata, 25–30 × 13–17 μm, interne basi cellula VI adnata, margo externa fortissime convexa, cellula basilaris appendicis abrupte distinguibili: Appendicis: Libera, 63–92 μm longa; cellula basilaris latitudine magniore quam altitudo, 6 × 10–13 μm; cellula media 33–38 × 12–14 μm, margines plus minusve convex, crassitas parietis variabilis, paries aliquam moniliformis in latere aspectu; cellula terminalis prope isodiametra, 10–13 × 9–11 μm; antheridium 32–43 μm longum, venter plus minusve externe convexus, 12–14 μm latus in medio, tubus 17–29 × 3–4 μm. Perithecium: Cellula VI constrictione submedialia, 44–50 × 16–20 μm; cellula VII 12–18 μm in altitudo; cellulae basilares perithecii (m, n, n') prope ¼ corporis perithecii in tota longitudinal supra cellulas VI et VII; corpus uniformer inflatum ad partem submedianum, decrescens ad leniter obstipum apicem, 170–190 μm longum cum cellulis basilaribus perithecii, 60–76 μm in maxime latitudine; cellulae basilaris perithecii, praesertim n et n', et cellulae omnes sratorum basilarium et suprabasilarium stris angustis transversis dispersis vel seriebus verticalibus striaturn; cellulae strati terminales leniter inequales, cellula ex n' brevissima, 15–18 μm longa, cellula ex m longissima, circa 23 μm longa, cellulae ceterae, ex n contiguo m et n', 18–20 μm longa. Ascosporeae 60–65 × 71 μm. Typus RKB 3541B (RSA).

Ascoma: Slightly sigmoid; uniformly pale yellow tinged with brown. Length from tip of foot to tip of peritheciun 320–370 μm. Receptacle: Elongate, often ± curved, 108–140 μm long from tip of foot to base of appendage; basal cell (I) slightly tapered downward to blackened foot, 48–50 × 10–12 μm; suprabasal cell (II) relatively long, 79–95 × 15–20 μm, margins above juncture with cell I nearly parallel; cross wall
Monandromyces (Laboulbeniales) - 85

elongatus (RKB 3780 [INDONESIA; Sumatra]).—41. Mature individual (holotype) showing distinctive distributional pattern of perithecial striae and location of protuberance (arrow).—42. Appendage of same.—43. Ascospore. (Bars. A = 20 μm, Fig. 39, 41; B = 10 μm, Fig. 38, 40, 42, 43.)
separating cells I and II angled upward from front to rear; terminal cell (III) about two times longer than broad, 25–30 × 13–17 μm, adnate on the inside to base of perithecial stalk cell (VI), outer margin strongly convex, abruptly distinguished from base of appendage. Appendage: Free, 83–92 μm long; basal cell shorter than wide, 6 × 10–13 μm; median cell 33–38 × 12–14 μm, margins ± convex, wall variable in thickness, appearing moniliform in optical section, the thicker areas ± evenly separated from one another and, in surface view, appearing slightly darker than intervening thinner areas; terminal cell nearly isodiametric, 10–13 × 9–11 μm; antheridium 32–43 μm long, venter ± externally convex, median width 12–14 μm; efferent tube 17–29 × 3–4 μm. Perithecium: Primary stalk cell (VI) with submedian constriction, 44–50 × 16–20 μm; secondary stalk cell (VII) 12–18 μm high, perithecial basal cells (m, n, n') comprising ca. 20% of total body length above stalk cells; body uniformly inflated upward from base, broadest slightly below the middle, then tapered towards the blunt apex, which is bent slightly forward, 170–190 μm long above stalk cells, greatest width 60–76 μm; perithecial basal cells, especially n and n', and basal and suprabasal outer wall cells with narrow transverse striae of varying length, scattered or vertically aligned and closely spaced; cells comprising terminal tier of outer wall cells of slightly unequal lengths: the shortest, ex n', 15–18 μm; the longest, ex m, ca. 23 μm; the other two, ex n adj. m and n', 18–20 μm. Ascospores 60–65 × 7 μm.

Etymology.—Named for the host genus, Pseudovelia.

Holotype.—AFRICA: MADAGASCAR; Diego Suarez Prov.; Montagne d’Ambre Forest Reserve; stream at Petite Cascade; 991 m; 15 Nov 1986; J. T. & D. A. Polhemus (CL 2280); on the upper surface of the trochanter of the left rear leg of a δ of Pseudovelia sp.; RKB 3541B (designated slide; RSA).

Isotypes.—Data as for the holotype; RKB 3541B (designated slides; RSA).

Notes.—The collection of Monandromyces pseudoveliae included three mature and two nearly mature individuals. The marked curvature of the receptacle of the three fully mature thalli (cf. Fig. 36) probably was influenced by the position of growth of the fungus on the host integument. Unlike the other currently known species of the genus except for M. elongatus, also on Pseudovelia, the cross wall separating cells I and II of the receptacle of M. pseudoveliae angles upward from front to rear (Fig. 39) rather than upward from rear to front (cf. Fig. 1, 6, 11, 19, 32, 44). The pattern of ± evenly spaced thick and thin areas characterizing the wall of the median cell of the appendage of M. pseudoveliae (Fig. 38) is a feature also of M. microveliae (Fig. 2), M. umbonatus (Fig. 12), and M. longispinae (Fig. 48).

10. Monandromyces elongatus R. K. Benj., sp. nov.

Ascoma: Elongatum, erect, slightly sigmoid; pale yellow-brown; perithecial body, cell III of receptacle, and basal and terminal cells of appendage darker. Length from tip of foot to tip of perithecium 420–465 μm. Receptacle: Elongate, tapered downward below cell III and cell VI, 115–125 μm long from tip of foot to base of appendage; basal cell (I) 40–46 × 11–15 μm distally; suprabasal cell (II) broadest above, 70–80 μm long, 28–35 μm wide distally; cross wall separating cells I and II angled upward from front to rear; terminal cell (III) more than two times longer than broad, 28–38 × 13–19 μm adnate on the inside to base of perithecial stalk cell (VI), outer margin straight to very slightly concave above. Appendage: Free, 100–120 μm long; basal cell nearly isodiametric, 10–12 × 11–13 μm; median cell 33–43 × 12–15 μm, margins slightly convex; terminal cell nearly two times longer than broad, 15–19 × 9–11 μm; antheridium 40–45 μm long, body 9–10 μm wide, efferent tube 20–22 × 3 μm. Perithecium: Primary stalk cell (VI) with ± parallel margins, 69–75 × 19–25 μm; secondary stalk cell (VII) 31–40 μm high, perithecial basal cells (m, n, n') comprising ca. 25% of total body length above stalk cells; body uniformly inflated upward from base, broadest near middle, then tapered towards the rounded apex, which is slightly curved backward, 255–290
µm long above stalk cells, median width 60–70 µm, suprabasal outer wall cell (ex n adj. m) bearing at its base a short, dome-shaped protuberance ca. 6 µm high and 15 µm wide at base; perithelial basal cells and cells of basal, suprabasal, and median tiers of outer wall cells with short, narrow, closely spaced, transverse striae vertically arranged adjacent to lateral margins of cells; cells comprising terminal tier of outer wall cells subequal in length. Ascospores 70–82 × 6–7 µm.

Etymology.—From elongatus (L.), in reference to the elongate habit of the thallus.

Holotype.—INDONESIA: SUMATRA; Bengkulu Prov.; Ketalang River; 39 km SE of Muaraaman, 720 m; 8 Sept 1991; D. A. & J. T. Polhemus (CL 2585); on the right lateral surface of the thorax of a δ of Pseudovelia hypodonta (Lundblad); RKB 3780 (designated slide; RSA).

Isotype.—Data as for the holotype; RKB 3780 (designated slide; RSA).

Notes.—Like several species described in this work, specimens of M. elongatus available for study were limited, only four mature individuals being found; however, the species should be readily distinguished from all others in the genus. It differs in several ways from the other two taxa on Pseudovelia in its greater size; its small, median, domelike perithelial outgrowth (Fig. 41); and the precise arrangement of its perithelial sculpturing (Fig. 41). However, like M. pseudoveliae the septum between cells I and II of the receptacle of M. elongatus angles upward from front to rear (Fig. 41). Also, in M. elongatus the wall of the elongate median cell of the stalk of the appendage is ± uniform in thickness (Fig. 42), lacking the alternating thick and thin areas characterizing the appendages of M. pseudoveliae (Fig. 39) and M. longispinae (Fig. 48).

11. Monandromyces longispinae R. K. Benji, sp. nov. Fig. 44–49

Ascorna: Erect, slightly sigmoid, receptacle often ± strongly curved; pale orange-brown, the perithecium and its spinelike outgrowth often darker. Length from tip of foot to tip of perithecium 245–345 µm. Receptacle: Elongate, 75–97 µm long from tip of foot to base of appendage; basal cell (I) 38–59 × 10–13 µm, externally strongly convex distally; suprabasal cell (II) slightly broader above than below, 48–78 µm long, 16–25 µm wide distally; cross wall separating cells I and II angled upward from rear to front; terminal cell (III) slightly longer than broad, 16–23 × 11–16 µm, adnate on the inside to base of perithelial stalk cell (VI). Appendage: Free, 81–94 µm long; basal cell half as long as wide, 5–7 × 10–15 µm; median cell 30–40 × 10–15 µm, margins nearly parallel, wall variable in thickness, appearing moniliform in optical section, thickened areas ± evenly spaced, in surface view appearing slightly darker than intervening thinner areas; terminal cell slightly longer than wide, 10–14 × 9–11 µm; antheridium 30–38 µm long, venter 9–11 µm wide; efferent tube 15–22 × 2.5–3 µm. Perithecium: Primary stalk cell (VI) with a strong median constriction, ± equally wide above and below, 20–38 µm long, 15–25 µm wide distally; secondary stalk cell (VII) 12–20 µm high, 16–25 µm wide in face view, perithelial basal cells (m, n, n') comprising ca. 20% of total body length above stalk cells; body uniformly inflated upward from base, broadest near middle below perithelial outgrowth, then tapered upward towards rounded apex, which is curved slightly forward, 139–204 µm long above stalk cells, median width 53–78 µm, suprabasal outer wall cell (ex n adj. n') bearing a median, elongate, slightly sigmoid, attenuate, spinelike projection 63–125 × 12–18 (at base) µm; perithelial basal cells and cells of basal and suprabasal tiers of outer wall cells with punctae or short to elongate, narrow, transverse striae arranged across ± the entire breadth of the cells; cells comprising terminal tier of outer wall cells subequal in length. Ascospores 63–81 × 6–7 µm.

Etymology.—From the combination of longi- (in L. comp.), long, + spina (L.), spine, in reference to the long spine formed by the suprabasal wall cell of the thallus.
Fig. 44–49. *Monandromyces longispinae* (45, 47–49, RKB 3541C [AFRICA; Madagascar]; 44, RKB 3542B [AFRICA; Madagascar]; 46, RKB 3645 [AFRICA; Tanzania]).—44. Juvenile individual at four-outer-wall-cell stage of development showing early stage of development of perithecial outgrowth from a cell (n adj. n') of suprabasal tier of outer wall cells.—45. Tip of perithecium of juvenile individual from Madagascar with trichogyne having an ovoid, transversely sepaate basal part (see also: *M. australis*, Fig. 3; *M. polhemorum*, Fig. 17; and *M. pruiberans*, Fig. 26).—46. Tip of perithecium of juvenile individual from Tanzania with trichogyne without an ovoid, transversely sepaate basal part (see also *M. neoaiardi*, Fig. 30, 31).—47. Mature individual (holotype) showing elongate, attenuate perithecial outgrowth and pattern of perithecial striations.—48. Appendage of same showing median cell with its pattern of contrasting light and dark areas resulting from irregular thickening of its lateral wall.—49. Ascospore. (Bars: A = 20 μm, Fig. 47; B = 10 μm, Fig. 44; C = 10 μm, Fig. 45, 46; D = 10 μm, Fig. 48, 49.)

Holotype.—AFRICA: MADAGASCAR; Diego Suarez Prov.; Montagne d’Ambre Forest Reserve; stream at Petite Cascade; 991 m; 15 Nov 1986; J. T. & D. A. Polhemus (CL 2280); on the upper left surface of the abdomen of a ♀ of *Pseudovelia* sp.; RKB 3541C (designated slide; RSA).

Isotypes.—Data as for the holotype (♀♀); RKB 3541C designated slides; RSA).

Paratypes.—Data as for the holotype (5 ♀♀); RKB 3542B (designated slides; RSA).—AFRICA: MALAWI; Zomba Plat.; Mandala Falls; 1 Mar 1979; J. T. Polhemus (CL 986); on the upper anterior surface of the abdomen near the pronotum of a ♀ of *Pseudovelia* n. sp. [fide J. T. Polhemus]; RKB 3644 (designated slide; RSA).—TANZANIA: Amani; Dodwe Stream; 2 March 1979; J. T. Polhemus (CL 992); on the left anterior surface of the abdomen near the pronotum of a ♀ of *Pseudovelia* sp.; RKB 3645 (designated slide).

Notes.—Specimens of *Monandromyces longispinae* from Madagascar included 25 mature and seven in-
mature individuals. Those from Africa were fewer in number, including but one mature and three immature individuals from Malawi and two mature and three immature individuals from Tanzania.

The elongate, acuminate perithecial projection (Fig. 47) is the primary characteristic distinguishing _M. longispinae_ from all species in the genus.

The three mature individuals of _M. longispinae_ from Malawi and Tanzania—neighboring countries in mainland SE Africa located slightly NW of Madagascar across the Mozambique Channel—are identical morphologically to one another but deviate in several ways from those collected in Madagascar. They have relatively short perithecial projections compared to those from Madagascar, 63–73 μm vs. 80–125 μm long. The stalk of the appendage is gradually tapered rather than being ± cylindrical, and its median cell has a thicker wall. Also, the perithecial basal cells and outer wall cells are much less conspicuously striae. Finally, the trichogynie of a juvenile from Tanzania (Fig. 46, but see _M. neoalardi_ [Fig 30, 31]) lacks the basal, septate enlargement of a juvenile from Madagascar (Fig. 45). Because such differences may reflect only minor changes that have occurred following isolation of the perithecium prior to spore discharge (e.g., Fig. 9, 11, 32, 39, 41). The sheath enveloping each spore, as it appeared in nonliving, mounted specimens, was in close contact with the shorter cell of the body until gradually expanding towards the apex of the longer cell where it extended slightly beyond the tip. (e.g., Fig. 7, 13, 34). Following spore discharge, the distal part of the longer cell differentiated the foot, which served to affix the developing thallus to the host integument (Fig. 22).

Ascospores

Ascospores of _Monandromyces_ spp. were hyaline, ± aciculate, and consisted of two somewhat unequal cells (Fig. 8, 14, 18, 21, 25, 29, 35, 40, 43, 49). The shorter cell, depending on the species, comprised from about two fifths to one third of the length of the body of the spore and was oriented downward in the perithecium prior to spore discharge (e.g., Fig. 9, 11, 32, 39, 41). The sheath enveloping each spore, as it appeared in nonliving, mounted specimens, was in ± close contact with the shorter cell of the body until gradually expanding towards the apex of the longer cell where it extended slightly beyond the tip. (e.g., Fig. 7, 13, 34). Following spore discharge, the distal part of the longer cell differentiated the foot, which served to affix the developing thallus to the host integument (Fig. 22).

Ascoma

Immature individuals with a range of growth stages sufficient for studying thallloid development of one or more species of _Monandromyces_ were unavailable. The juvenile of _M. tenuistipitis_ shown in Fig. 22 was the youngest of any found in the taxa studied. The suprabasal cell (II) had given rise to the perithecial initial (d) and the terminal cell (III) subtended the four-celled appendage in which the cell terminating the three-celled stalk had not yet been transformed into an antheridium (an). However, juveniles of several species at the one- to two-outer-wall-cell stage of perithecial development and with well-developed trichogynes were recovered (Fig. 3, 17, 26, 30, 45, 46). Also, a few young thalli at still later stages of growth aided in interpreting the relationship to one another of perithecial basal and outer wall cells as well as other features of perithecial development (Fig. 44).

Receptacle.—The three cells (I, II, III) comprising the receptacle in _Monandromyces_ were superposed in line (e.g., Fig. 1, 19, 32, 41). However, early in development the terminal cell (III) became offset laterally and was united below with cell II by a ± diagonal cross wall and on the inside to the base of the perithecial primary stalk cell (VI), which was subtended by cell II (Fig. 3, 22, 30, 44). From the beginning, apparently, the cross wall separating cells I and II was strongly diagonal and was oriented upward from rear to front in all but two of the species, i.e., _M. pseudooveliae_ and _M. elongatus_, where the reverse was true (Fig. 39, 41).

Appendage.—In all species of _Monandromyces_, the median cell of the three-celled stalk was relatively very long compared to the length of the other two cells, especially the basal, which was isodiametric or even somewhat wider than long (Fig. 2, 5, 10, 12, 16, 20, 24, 28, 33, 38, 42, 48). Exceptions involved the terminal cell, which often was slightly longer than wide, and in the case of four species, i.e., _M. umbonatus_ (Fig. 12), _M. falcatus_ (Fig. 20), _M. neoalardi_ (Fig. 33) and _M. elongatus_ (Fig. 42), was two or more times longer than broad, but never as long as the median cell. The vertical wall of the median cell of the stalk in several species, i.e., _M. microveliae_ (Fig. 2), _M. umbonatus_, (Fig. 12), _M. pseudooveliae_ (Fig. 38), and _M. longispinae_ (Fig. 48), appeared ± moniliform in optical view, a result of the formation of ± evenly spaced lenticular thickenings.

There was no evidence of a spine, i.e., the indurated remnant of the tip of the original ascospore, on either the terminal antheridium or another cell of the appendage.

Perithecium.—Although only a few immature individuals were available among the several species of _Monandromyces_, those that were found provided information on several stages of early perithecial development. The perithecial primordium (d) arose distally from cell II of the receptacle (Fig. 22). Products of division of this cell led to formation of the two perithecial stalk cells (VI and VII) and the three perithecial basal cells (m, n, and n'). The latter gave rise to the four vertical rows of outer (w) and inner (p) wall cells,
and the female organ—three superposed organelles consisting of: a basal carpogenic cell \((cp)\), a median trichophoric cell \((tc)\), and a terminal trichogyne \((tr)\) (Fig. 3). Figures 3, 26, and 30 depict immature individuals at nearly the same stage of development showing the first permanent tier of outer wall cells \((w^1)\), a tier of outer-wall-cell primordia \((o)\), the first tier of inner wall cells \((p)\), and the female organ, the lower part of which was surrounded by the upwardly growing wall cells.

Trichogyynes were present on juveniles of five of the 11 species of *Monandromyces* studied. In all instances these were terminated by a small cluster of short, ± digitate, coenocytic branchlets, which sometimes eminated directly from a small, ± ovoid or globoid enlargement (Fig. 31, 45). In three species, *M. australis* (Fig. 3), *M. polhemorum* (Fig. 17), and *M. prostrudens* (Fig. 26), the complex of branchlets was subtended by a relatively large, medianly septate, ovoid body that was abruptly constricted basally and distally. In one species, *M. neoaalardi*, only a short, slender nonseptate stalk separated the group of trichogyanic branchlets from the tip of the perithecum (Fig. 30, 31). However, both types of trichogyynes were found in *M. longispinae* (Fig. 45 [from Madagascar], 46 [from Malawi and Tanzania]). In a juvenile of *M. longispinae* where the perithecum had reached the four Outer-wall stage and the centrum had begun to develop, the trichogyne had degenerated and only a small remnant persisted about midway from tip to base on the surface of primordial outer wall cell \(o\) derived from basal cell \(m\) (Fig. 44). Such remnants, always small and inconspicuous and often difficult to detect, were seen on mature perithecia of several species. These were located distally on the surface of the tier-four outer wall cell of the vertical row derived from basal cell \(m\) near the juncture of this cell with the adjacent tier-four outer wall cell of the row derived from basal cell \(n\) (Fig. 13).

On average, depending on the species, heights of the basal \((w^1)\), suprabasal \((w^2)\), and subterminal \((w^3)\) tiers of outer wall cells were ± equal, always, however, exceeding the height of the median tier \((w^3)\), which typically was nearly the same height as the terminal tier \((w^5)\) (Fig. 1, 4, 6, 9, 11, 15, 19, 23, 27, 32, 36, 39, 41, 47). However, in some taxa, modification of tier-five cells terminating the four vertical rows of outer wall cells resulted in consistent variation in shape or length of some cells (e.g., Fig. 7, 13, 15, 19, 23, 34, 36). Also, perithecial asymmetry or curvature affected the length of some cells relative to other cells in a given tier (e.g., Fig. 4, 15, 19). The distinctive punctae or short or ± elongate transverse striae seen in surface view of the basal cells and outer wall cells of several species of *Monandromyces*, (Fig. 4, 6, 9, 11, 15, 19, 23, 27, 32, 34, 36, 41, 47) were found to result from the formation of narrow, rounded or transverse ingrowths arising on the inner surface of the cells (Fig. 37).

DISCUSSION

Information on the three slides of *Autophagomyces microvelia* (FH 4016–4018) is written in ink or pencil on a pair of labels affixed left and right on each slide and is inscribed in Thaxter's own hand. At the top of each left-hand label Thaxter wrote, in ink, "No. 3302," i.e., his accession number. Near the top of each right-hand label he wrote, in ink, "Monandromyces." Immediately above and to the right he added "n. g." At the midpoint of each he wrote "on post. leg riparian bug." At the bottom of each he wrote, in two lines, "Fort de Kock Sumatra/Jacobson. Jan. 1925." Thus, in addition to giving data regarding where on the host the fungus grew and where, when, and by whom the host had been collected, Thaxter indicated that his first impulse was to place the fungus in a new genus. However, he subsequently drew a line through "Monandromyces" and immediately below wrote on one slide, in pencil, "Bordea hemipteralis"; on the other two slides he wrote, also in pencil, only "Bordea." Thus, he later considered assigning the fungus to the genus proposed earlier by Maire (1916). Finally, he overwrote the penciled notations, in ink, with "Autophagomyces hemipteralis." However, when he described the species in the last part of his monograph (Thaxter 1931: 96), he did not retain the epithet *hemipteralis*, using instead *microvelia* after the host genus, which by then had been identified. Because of Thaxter's practice not to prepare new slide labels after formally describing the Laboulbeniales he studied, his original, hand-written labels often reflect his changing views regarding their taxonomic disposition (see Benjamin 1995: 53).

Because it is available and suitable, I chose *Monandromyces*—tentatively coined by Thaxter when he first studied his *A. microvelia*—as the name for the genus described in this study.

My reasons for earlier removing several taxa from *Autophagomyces*, i.e., *A. sarawakensis*, *A. peyerimhoffii*, and *A. sericoderi* (to Coryphomycies), and *A. poasunii* (to Triceromyces) have been presented elsewhere (Benjamin 1986, 1995) and will not be paraphrased here.

Discovery of ten additional species—from localities ranging from eastern Africa to southwestern Australia—all having the same basic characteristics and parasitizing hosts belonging to the same family of true bugs as those of Thaxter's *Autophagomyces microvelia* firmly up my long-held opinion that the latter should be distinguished generically, an idea that, as mentioned above, crossed Thaxter's mind when he first studied the species.
Two thalloid characteristics common to all species of Monandromyces distinguish the genus from other possibly closely related genera of Stigmatomycetinae (sensu Tavares 1985) that have simple appendages lacking sterile branchlets: 1) the strongly diagonally superposed basal and suprabasal cells of the receptacle and 2) the considerably greater length of the median cell of the three-celled stalk of the appendage relative to the length of the basal and terminal cell. Also, it may be significant in that all species of Monandromyces known at present parasitize only riparian bugs of the family Veliidae (Heteroptera).

In a paper now in preparation, I will present a detailed study, based on known taxa and several to be described, that will restrict the generic limits of Autophagomyces to those taxa currently known on Anthicidae, Phalacridae, and perhaps Cryptophagidae (Coleoptera: Cucujiformia) and reinstate the genus Bordea to include taxa parasitizing Pselaphidae (Coleoptera: Staphyliniformia). Structural characteristics of the receptacle, appendage, and especially the trichogyne serve readily to separate these genera from one another and from Monandromyces.

ACKNOWLEDGMENTS

I am deeply indebted to Dr. John T. Polhemus, Englewood, Colorado, and his son Dr. Dan A. Polhemus, Department of Entomology, Smithsonian Institution, Washington, DC, for providing, from their extensive collections of semi-aquatic Heteroptera, the hosts from which all of the new taxa described in this study were taken as well as host identifications. Also, I thank Dr. Donald H. Pfister, Fairlow Herbarium, Harvard University, for arranging the loan of Thaxter’s specimens, which included the type of Autophagomyces microveilae, and Drs. John Polhemus, Isabelle Tavares, and Alex Weir for critically reviewing the manuscript.

LITERATURE CITED

———. 1990. New or interesting Laboulbeniales (Ascomycetes) from Sierra Leone. Accad. Naz. Lincei, Quaderno No. 265, pp. 5–13, Pls I, II.

