1-1-1977

An Algebraic Characterization of the Freudenthal Compactification for a Class of Rimcompact Spaces

Melvin Henriksen
Harvey Mudd College

Recommended Citation

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.
AN ALGEBRAIC CHARACTERIZATION
OF THE FREUDENTHAL
COMPACTIFICATION FOR A CLASS OF
RIMCOMPACT SPACES

by

MELVIN HENRIKSEN
1. Introduction

Throughout \(C(X) \) will denote the ring of all continuous real-valued functions on a Tychonoff space \(X \), and \(C^*(X) \) will denote the subring of bounded elements of \(C(X) \). The real line is denoted by \(R \), and \(N \) denotes the (discrete) subspace of positive integers. A subset \(S \) of \(X \) such that the map \(f \to f|_S \) is an epimorphism of \(C(X) \) (resp. \(C^*(X) \)) is said to be \(C\)-embedded (resp. \(C^*-\)embedded) in \(X \). As is well-known, every \(f \in C^*(X) \) has a unique continuous extension \(\hat{f} \) over its Stone-Cech compactification \(\beta X \) [GJ, Chapter 6]. That is, \(X \) is \(C^*-\)embedded in \(\beta X \).

In [NR], L. Nel and D. Riordan introduced the subset \(C^\#(X) \) of \(C(X) \) consisting of all \(f \) such that for every maximal ideal \(M \) of \(C(X) \), there is an \(r \in R \) such that \((f-r) \in M \), and they noted that \(C^\#(X) \) is a subalgebra and sublattice of \(C(X) \) containing the constant functions. They show how \(C^\#(X) \) determines a compactification of \(X \) in a number of cases and leave the impression that it always does. In [Cl], E. Choo notes that this is true if \(X \) is locally compact and seems to conjecture that it need not be the case otherwise. In [SZ 1], O. Stefani and A. Zanardo show that every \(f \in C^\#(R^\omega) \) is a constant function, where \(R^\omega \) denotes a countably infinite product of copies of \(R \). In [SZ 2] they show that \(C^\#(X) \)
determines a compactification of X in case X is locally compact, pseudo compact, or zero-dimensional, and they describe the compactifications so determined when X is realcompact \cite{GJ, Chapter 8}.

In this paper, I show that under certain restrictions on X, the ring $C\#(X)$ determines the Freudenthal compactification of X \cite[pp. 109-120]{Il}, I observe that, at least in disguised form, $C\#(X)$ has been considered by a number of authors other than those named above, and some conditions are given that are either necessary or sufficient for X to determine a compactification of X. In particular, it is shown that if X is realcompact, and $C\#(X)$ determines a compactification of X, then X is rimcompact and it determines the Freudenthal compactification ϕX of X. There are realcompact rimcompact spaces X for which $C\#(X)$ does not determine a compactification of X, but $C\#(X)$ does determine ϕX if every point of x has either a compact neighborhood, or a base of open and closed neighborhoods. Other sufficient conditions are given for $C\#(X)$ to determine ϕX. I close with some remarks and open problems.

2. Using $C\#(X)$ to Compactify X

We will make use of the following characterization of $C\#(X)$ due to a number of authors. Recall that $Z(f) = \{x \in X: f(x) = 0\}$ and νX denotes the Hewitt real compactification of X.

2.1 Theorem. If $f \in C(X)$, then the following are equivalent.

(a) $f \in C\#(X)$.
(b) \(f \in C^*(X) \) and \(f[D] \) is closed (and hence finite) for every \(C \)-embedded copy \(D \) of \(N \).

(c) \(f \in C^*(X) \) and \(f[Z] \) is closed for every zero-set \(Z \) in \(X \).

(d) \(f \in C^*(X) \) and for every \(r \in \mathbb{R} \), \(\text{Cl}_{\beta X} Z(f-r) = Z(\beta f-r) \).

(e) \(f \in C^*(X) \) and for every \(p \in \beta X \setminus \nu X \), there is a neighborhood of \(p \) in \(\beta X \) on which \(\beta f \) is constant.

The equivalence of (a) and (b) seems to appear first in [NR]. The equivalence of (a), (b), (c), (d) appears in [Cl], and that of (a), (b), (d), and (e) in [SZ 2]. Mappings that satisfy (d) are a special case of what are called WZ-maps by T. Isiwata, who showed that any map that sends zero-sets to closed sets in a WZ-map, and that a WZ-map on a normal space is closed [I 2], [W, p. 215]. More important for this paper is the following result. For any subset \(S \) of \(X \), let \(\text{Fr} S = \text{Cl}_S S \cap \text{Cl}(X \setminus S) \) denote the boundary (or frontier) of \(S \).

2.2 Theorem. If \(X \) is realcompact and \(f \in C^\#(X) \), then \(\text{Fr} Z(f-r) \) is compact for every \(r \in \mathbb{R} \), and \(f \) is a closed mapping.

By Theorem 2.1 (d,e) if \(r \in \mathbb{R} \), then either \(Z(f-r) \) is compact or \(\text{Fr} Z(\beta f-r) \subseteq X \). In the latter case, \(\text{Fr} Z(f-r) = \text{Fr} Z(\beta f-r) \). In either case \(\text{Fr} Z(f-r) \) is compact. In [I.2, 1.3], T. Isiwata shows that a WZ-map with this latter property is closed, so the theorem is proved.

Recall that a space \(X \) is called rimcompact if it has a base of open sets with compact boundaries. \(X \) is said to be zero-dimensional at \(x \) if \(x \) has a base of neighborhoods with
empty boundaries, and X is called zero-dimensional if it is zero-dimensional at each of its points. It is shown in [M3] that every rimcompact space has a compactification ϕX such that $\phi X \setminus X$ is zero-dimensional, and wherever γX is a compactification of X with $\gamma X \setminus X$ zero-dimensional, there is a continuous map of ϕX onto γX leaving X pointwise fixed. ϕX is called the Freudenthal compactification of X.

In [D], R. Dickman shows that if X is rimcompact, then every $f \in C^*(X)$ such that $\text{Fr } Z(f-r)$ is compact for every $r \in \mathbb{R}$ has a (unique) extension in $C(\phi X)$. Hence the following is an immediate consequence of Theorem 2.2.

2.3 Corollary. If X is rimcompact and realcompact, then every $f \in C^#(X)$ has a (unique) extension $\phi f \in C(\phi X)$.

Suppose S is a subring of $C^*(X)$ that contains the constant functions and γX is a compactification of X such that every $f \in S$ has an extension $\gamma f \in C(\gamma X)$ and $S^\gamma = \{ \gamma f: f \in S \}$ separates the points of γX. (That is if $x_1, x_2 \in \gamma X$ and $x_1 \neq x_2$, there is an $f \in S$ such that $\gamma f(x_1) = 0$ and $\gamma f(x_2) = 1$). Then by the Stone-Weierstrass Theorem, S^γ is dense in $C(\gamma X)$ in its uniform topology [GJ, 16.4], and we say that S determines the compactification γX of X. Note that S determines a compactification of X if points can be separated from disjoint closed sets by functions in S.

If $\gamma_1 X$ and $\gamma_2 X$ are compactifications of X for which there is a homeomorphism of $\gamma_1 X$ onto $\gamma_2 X$ keeping X pointwise fixed, then we write $\gamma_1 X = \gamma_2 X$.

For any space X, let $C^#(\beta X) = \{ \beta f: f \in C^#(X) \}$ and note that $C^#(\beta X)$ and $C^#(X)$ are isomorphic. Similarly, if X is
realcompact and rimcompact, then by Corollary 2.3, \(C^\#(X) \) is isomorphic to \(C^\#(\Phi X) = \{ \phi f : f \in C^\#(X) \} \).

A subring \(A \) of \(C^*(X) \) is called *algebraic* if it contains the constant functions and those members \(f \in C^*(X) \) such that \(f^2 \in A \). If, in addition, \(A \) is closed under uniform convergence, then \(A \) is called an *analytic* subring of \(C^*(X) \). The closure in the uniform topology of a subset \(B \) of \(C^*(X) \) will be denoted by \(uB \). It is noted in [GJ, 16.29], that if \(A \) is an algebraic subring of \(C^*(X) \), then \(uA \) is an analytic subring.

If \(B \subseteq C^*(X) \), then a *maximal stationary set* \(S \) of \(B \) is a subset of \(X \) maximal with respect to the property that every \(f \in B \) is constant on \(S \). In [GJ, 16.29-16.32], the following is established.

2.4 If \(X \) is compact and \(A \) is an algebraic subring of \(C^*(X) \), then every maximal stationary set of \(A \) is connected and \(uA = \{ f \in A : f \text{ is constant on every connected stationary set of } A \} \).

If \(X \) is rimcompact and realcompact, then, by the above \(C^\#(\Phi X) \) is an algebraic subring of \(C^*(\Phi X) \). Next, I make use of the above to establish:

2.5 Theorem. If \(X \) is a realcompact space and \(C^\#(X) \) determines a compactification \(\gamma X \) of \(X \), then \(X \) is rimcompact and \(\gamma X = \Phi X \).

Proof. Suppose \(x \in X \) and \(V \) is an open neighborhood of \(x \). By assumption there is an \(f \in C^\#(X) \) such that \(f(x) = 0 \) and \(f(X \setminus V) = 1 \). If \(g = (f - \frac{1}{2}) \vee 0 \), then, by Theorem 2.2 \(Z(g) \) is a neighborhood of \(x \) with compact boundary that is
contained in V. Hence X is rimcompact, and so \(A = C^\#(\mathcal{F}X) \) is an algebraic subring of \(C^*(\mathcal{F}X) \). Assume without loss of generality that X is not compact, let S denote a maximal stationary set of A, and suppose S has more than one point. Since A determines a compactification of X, it follows that \(S \subset \mathcal{F}X \setminus X \). Since the remainder of X in \(\mathcal{F}X \) is totally disconnected, S reduces to a point and Theorem 2.5 is established.

Next, I give an example to show that \(C^\#(X) \) need not determine a compactification of a realcompact and rimcompact space. For any space X, let \(R(X) \) denote the set of points of X which fail to have a compact neighborhood. Clearly \(R(X) \) is closed since \(X \setminus R(X) \) is open.

2.6 Example. A realcompact rimcompact space S for which \(R(X) \) is a compact connected maximal stationary set.

Let \(W^* \) denote the space of ordinals that do not exceed the first uncountable ordinal \(\omega_1 \), and let \(W = W^* \setminus \{\omega_1\} \). It is well known that \(W^* \) is compact and every \(f \in C(W) \) is eventually constant [GJ, 5.13]. Let \(X = [0,1] \times W^* \) with the topology obtained by adding to the product topology every subset of \([0,1] \times W\). Clearly X is rimcompact and \(R(X) = [0,1] \times \{\omega_1\} \). Moreover, X is the union of a realcompact discrete space and the compact space \(R(X) \), so X is realcompact [GJ, 8.16]. Suppose \(0 < r < s < 1 \) and \(g \in C^*(X) \) is such that \(g(r,\omega) \neq g(s,\omega) \). Since \([0,1]\) is connected, since every \(f \in C(W) \) is eventually constant, and since \(W \) has no countable cofinal subset, there is an \(\alpha > \omega_1 \), and an increasing sequence \(\{x_n\} \) of real numbers between r and s such that \(g(x_n,\alpha) \neq g(x_m,\alpha) \) if \(n \neq m \). Thus g assumes infinitely many
values on a closed discrete subspace of \(X \) and hence cannot be in \(C^\#(X) \) by Theorem 2.1(b). So \(R(X) \) is a maximal stationary set of \(C^\#(X) \).

It is clear that \(C^\#(X) \) always contains both the subring \(C_\kappa(X) \) of all functions with compact support and the subring \(C_F(X) \) of functions with finite range. Clearly any point of \(X \setminus R(X) \) can be separated from any disjoint closed set by some element of \(C_\kappa(X) \), and if \(X \) is zero-dimensional at a point \(x \), then \(x \) can be separated from any disjoint closed set by some element of \(C_F(X) \). This together with 2.4 and Theorem 2.5 proves:

2.7 Theorem. If \(X \) is a rimcompact, realcompact space that is zero-dimensional at each point of \(R(X) \), then \(C^\#(X) \) determines \(\Phi X \); that is, \(\cup C^\#(\Phi X) = C(\Phi X) \).

Along these lines we have also:

2.8 Theorem. If \(X \) is a rimcompact and realcompact space such that \(c_{\Phi X}(\Phi X \setminus X) \) is zero-dimensional, then \(\cup C^\#(\Phi X) = C(\Phi X) \).

Proof. By the remarks proceeding the proof of Theorem 2.7, if \(S \) is a maximal stationary set for \(C^\#(\Phi X) \) with more than one point, then \(S \subset c_{\Phi X}(\Phi X \setminus X) \). Since the latter set is zero-dimensional, \(S \) reduces to a point and the conclusion follows.

In [II, Theorem 36, p. 114], it is shown that if \(\Phi X \setminus X \) is a Lindelöf space, then the Lebesgue dimension of \(\Phi X \setminus X \) is zero. In [P, Corollary 5.8] it is shown that if \(F \) is a closed subset of a normal space \(Y \), then the Lebesgue dimension...
of \(Y \) does not exceed the Lebesgue dimensions of \(A \) or \((Y \setminus A) \).

It follows that if \(R(X) \) is compact and zero-dimensional, then
\[
\partial_{\phi X}(\phi X \setminus X) = (\phi X \setminus X) \cup R(X)
\]
is zero-dimensional, for these two motions of dimensionality coincide at 0 if \(X \) is compact; see [P, pp. 156-157]. Note also that \(\phi X \setminus X \) is a Lindelöf space if and only if every compact subset of \(X \) is contained in a compact subset with a countable base of neighborhoods; in which case we will say that \(X \) is of countable type. [II, p. 119]. Thus we have established:

2.8 Corollary. If \(X \) is a rimcompact, realcompact space of countable type, and \(R(X) \) is compact and zero-dimensional, then
\[
\mathfrak{u} \subset \mathfrak{c}(\phi X) = \mathfrak{c}(\phi X)
\]

3. Remarks and Open Problems

A. In [N], the ring of all closed \(f \in C(X) \) is considered for \(X \) locally compact and weakly paracompact (= metacompact). For \(X \) realcompact this latter ring coincides with \(C^\#(X) \) by Theorem 2.2. Recall also that W. Moran showed in [M3] that if every closed discrete subspace of a normal metacompact space \(X \) is realcompact, then so is \(X \). Also, examination of Example 3 of [N] shows that this latter need not hold if \(X \) fails to be normal.

B. In a private communication S. Willard notes that if \(f \in C^*(X) \) and \(f \) is a closed mapping, then \(Z(f) \) has a countable base of neighborhoods in \(X \). (I.e., \(Z(f) = \bigcap_{i=1}^\infty f^{-1}(-1/i,1/i) \)). It would be of great interest to characterize the zero-sets of elements of \(C^\#(X) \) at least in case \(X \) is rimcompact and realcompact. To determine which such spaces determine \(X \), it would probably be
enough to characterize zero-sets of restrictions to X of $u \mathcal{C}^\#(\mathcal{F}X)$.

C. Willard notes also that if S is a countable subset of X and $\overline{S}_{\mathcal{F}X}$ is connected, then S is a stationary set for $\mathcal{C}^\#(X)$. It follows from a theorem of McCartney [M1, Proposition 3.12] that if $Y = [0,1] \times (0,1] \cup Z$, where $Z = \{(q,0): 0 < q < 1 \text{ and } q \text{ is rational}\}$, then $\mathcal{F}Y = [0,1] \times [0,1]$. Hence, by the latter remark of Willard cited above, Z is a stationary set for $\mathcal{C}^\#(Y)$, so Y is a separable, metrizable rimcompact space such that $\mathcal{C}^\#(Y)$ does not determine a compactification of Y.

D. Suppose $X = [0,1] \times Q \cap [0,1]$, where the open sets of X and those in the product topology together with any subset of $\{(a,b) \in X: b > 0\}$. Then $R(X) = \{(a,b) \in X: b = 0\}$ is compact and connected, X is rimcompact, realcompact, and determines $\mathcal{F}X$. So the hypotheses of Theorem 2.7 or 2.8 are not necessary for X to determine $\mathcal{F}X$.

References

Harvey Mudd College

Claremont, California 91711