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WHEN IS |C(X × Y )| = |C(X)| |C(Y )|?

O. T. ALAS, W. W. COMFORT, S. GARCIA-FERREIRA, M. HENRIKSEN,

R. G. WILSON AND R. G. WOODS

Communicated by Jun-iti Nagata

Abstract. Sufficient conditions on the Tychonoff spaces X and Y are found

that imply that the equation in the title holds. Sufficient conditions on the

Tychonoff space X are found that ensure that the equation holds for every

Tychonoff space Y . A series of examples (some using rather sophisticated

cardinal arithmetic) are given that witness that these results cannot be gen-

eralized much.

1. Introduction

Throughout, all topological spaces considered will be assumed to be Tychonoff
spaces (i.e., subspaces of compact Hausdorff spaces) unless the contrary is stated
explicitly. The cardinal number of a set S will be denoted by |S|. The set of
continuous real-valued functions on a space X is denoted by C(X). In this paper,
we try to determine for which pairs (X,Y ) it is true that:

|C(X × Y )| = |C(X)| |C(Y )|.

Such a pair will be said to be functionally conservative. If f ∈ C(X) and
g ∈ C(Y ), then fg ∈ C(X × Y ) is defined by letting (fg)(x, y) = f(x)g(y) if
(x, y) ∈ X × Y . So it is always true that |C(X × Y )| ≥ |C(X)| |C(Y )|. Our
problem is to determine when this inequality can be reversed.

We begin by recalling the definitions of some familiar cardinal functions. The
symbols used in the literature are not standardized. We follow [Hod] most, but
not all of the time.
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In Section 2, we recall the definitions of some cardinal functions and some facts
from [CH]. We use them to obtain some sufficient conditions for the existence
of functionally conservative pairs of topological spaces. Section 3 is devoted to
showing how certain kinds of singular cardinals (e.g., beth cardinals) can be used
to create pairs of spaces that are not functionally conservative. These involve
the use of cardinals that are “large” and not particularly familiar. In Section 4,
topological techniques are used to create pairs of spaces each of cardinality 2ω that
fail to be functionally conservative. Use is made of the Alexandroff double (see [E]
or [Wa]) to create larger closed C-embedded subspaces in a product of two spaces
than exist in either factor. In Section 5, the techniques developed in Section 4
are used to construct infinite families of spaces such that, for n < ω specified in
advance, any n-tuple (X0,X1, · · · , Xn−1) satisfies |C(

∏n−1
i=0 Xi)| > |C(

∏

i∈F Xi)|,
for every proper subset F of {0, 1, · · · , n− 1}. It then follows that for each n < ω

there are spaces Z such that |C(Zn+1)| > |C(Zn)|. Our problem is studied in the
context of linearly ordered spaces and products of discrete spaces in Section 6.
Use is made of pseudocompactness numbers and of functions on product spaces
determined by countably many coordinates.

A (Tychonoff) space X is said to be functionally conservative if (X,Y ) is a
functionally conservative whenever Y is a Tychonoff space. Section 7 is devoted
to studying this class of spaces. Separable spaces and σ-compact spaces of weight
no larger than c are functionally conservative. The class of functionally conser-
vative spaces is countably productive but is not productive. If X is functionally
conservative, then so is its Stone-Čech compactification. The converse holds if X
is locally compact and σ-compact, but does not hold in general. Other ways of
creating new functionally conservative spaces from old ones are studied and some
unsolved problems are posed.

2. Background and some positive results

Definitions 2.1. Suppose X is a topological space and κ ≥ ω is a cardinal
number.

(a) Let w(X) = min{|B| : B is a base for the topology of X}+ ω.
(b) Let d(X) = min{|S| : S is a dense subspace of X}+ ω.
(c) A family of pairwise disjoint nonempty open subsets is called a cellular

family, and the cellularity cX of X is defined to be sup{|K| : K is a cellular
family in X}+ω. If c(X) = ω, then X is called a c.c.c.-space, or is said to satisfy
the countable chain condition. If X × Y is a c.c.c.-space for every c.c.c.-space Y ,
then X is said to be productively c.c.c.; see p. 35 of [CN2].
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(d) The Lindelöf number `(X) of X is defined to be min{κ : every open cover
of X has a subcover of cardinality κ} + ω. The weak Lindelöf number wl(X) of
X is defined to be min{κ : every open cover of X has a subfamily of cardinality
κ whose union is dense in X} + ω. If `(X) = ω (resp. wl(X) = ω), then X is
called a Lindelöf (resp. weak Lindelöf ) space. It is noted in 3P of [PW] that
every c.c.c.-space is weakly Lindelöf.

(e) The extent e(X) is defined to be sup{|D| : D is closed and discrete}+ ω.
(f) Let e#(X) = min{κ : D closed and discrete ⇒ |D| < κ}, and let `#(X) =

min{κ : every open cover of X has a subcover of cardinality ≤ µ⇒ µ < κ}.
(g) Let 2<κ denote sup{2α : α < κ}.
(h) Denote the set of bounded elements of C(X) by C∗(X). If C(X) = C∗(X),

then X is said to be pseudocompact.
(i) If the map f → f |S from C(X) (resp. C∗(X)) into C(S) (resp. C∗(S)) is

a surjection, then S ⊂ X is said to be C-embedded (resp. C∗-embedded) in X.
The essentially unique compact space in which X is dense and C∗-embedded is
denoted by βX. (See Chapter 6 of [GJ]).

(In [CH], our d(X) is denoted by δ(X), our c(X) by o(X), and our wl(X) by
wc(X).)

Remark. The convention that each of these cardinal functions take on values no
smaller than ω is not always followed by Engelking in [E]. It turns out, however,
that if one uses the definitions given above, the pertinent theorems in [E] remain
correct unless they involve finite topological products of finite topological spaces.
The reader will be reminded of this where appropriate.

Most parts of the following proposition are known, and are needed below.

Proposition 2.2. Suppose X is a (Tychonoff) space.

(a) |C(X)| = |C(X)|ω = |C∗(X)|.
(b) |C(X)| =

(

w(βX)
)ω.

(c) |C(X)| ≤
(

w(X)
)wl(X) ≤ 2d(X).

(d) If X is weakly Lindelöf, in particular if X is a c.c.c.-space, then |C(X)| =
(

w(X)
)ω.

(e) If X is metrizable, then |C(X)| = 2d(X) = 2w(X).
(f) For any space Y , |C(X × Y )| ≤ min{|C(X)|d(Y ), |C(Y )|d(X)}.
(g) For any space Y , if Z = X ⊕ Y is the free union of X and Y , then

|C(Z × Z)| = max{|C(X ×X)|, |C(X × Y )|, |C(Y × Y )|}.
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Proof. (a) The first equality is shown in 10.10 in [Hod]. (See also [Kr] for a
more general result.) By corresponding to each element f of C(X) the sequence
{(−n) ∨ (f ∧ n) : n < ω} in C∗(X), we get |C(X)| ≤ |C∗(X)|ω. Because C∗(X)
and C(βX) are isomorphic, this yields

|C(X)| = |C(βX)|ω = |C(βX)| = |C∗(X)|.

Proofs of (b), (c), (d), and (e) may be found in Sections 2, 6, and 7 of [CH].
(f) By symmetry, it suffices to show that |C(X × Y )| ≤ |C(X)|d(Y ). If K

is a dense subspace of Y of cardinality d(Y ), then any element of C(X × Y )
is determined by its values on X × K, and there are at most |C(X)||K| such
functions. So (f) holds.

(g) Because Z is the free union of X and Y , we have

|C(Z × Z)| = |C(X ×X)| |C(X × Y )| |C(Y × Y )|
= max{|C(X ×X)|, |C(X × Y )|, |C(Y × Y )|}.

The next theorem summarizes our main positive results. For any ordinals α,
β the sets [α, β) and [α, β] are assumed to carry the interval topology.

Theorem 2.3. (X,Y ) is functionally conservative provided that any of the fol-
lowing hold.

(a) X is separable.
(b) X × Y is pseudocompact; in particular if one of X and Y is compact and

the other is pseudocompact.
(c) X × Y is metrizable.
(d) X×Y is weakly Lindelöf, in particular if X is σ-compact and Y is Lindelöf,

or X is productively c.c.c. and Y is a c.c.c. space.

Proof. (a) By 2.2(a,f), |C(X × Y )| ≤ |C(Y )|ω = |C(Y )| ≤ |C(X × Y )|, while
|C(X)| |C(Y )| = |C(Y )| because |C(X)| = 2ω ≤ |C(Y )|, so (X,Y ) is functionally
conservative.

(b) By a well-known theorem of I. Glicksberg, X × Y is pseudocompact if
and only if there is a homeomorphism of β(X × Y ) onto βX × βY keeping X ×
Y pointwise fixed. (See 3.12.20 in [E].) So, if X × Y is pseudocompact, then
∣

∣w
(

β(X × Y )
)∣

∣ = |w(βX × βY )| = |w(βX)| |w(βY )|. So (b) follows immediately
from 2.2(b) followed by 2.2(a).

(c) follows immediately from 2.2(e) and the fact that the weight of a product
of two spaces is the product of their weights.
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(d) Because a continuous image of a weakly Lindelöf space is weakly Lindelöf,
if X×Y weakly Lindelöf, then both X and Y are weakly Lindelöf. So (d) follows
from 2.2(d) and the fact that the weight of a product of two spaces is the product
of their weights.

Examining Example 4.7 below will show the reader that it will be difficult to
improve the result of 2.3(d).

To improve on the result of 2.3(c), we introduce the following definition.

Definition 2.4. A Tychonoff space Z such that |C(Z)| = 2d(Z) is said to be
functionally metrizable.

Because d(X × Y ) = d(X)d(Y ), it is clear that if X and Y are functionally
metrizable, then (X,Y ) is functionally conservative.

By 6.1 of [CH], every metrizable space is functionally metrizable, and the
separable space βω witnesses the fact that the converse need not hold. The next
result is a consequence of 2.2(f).

Theorem 2.5. If X is functionally metrizable, and either

(a) |C(Y )| = 2β for some β ≥ ω, or
(b) |C(Y )| ≤ |C(X)|,

then (X,Y ) is functionally conservative.

Proof. (a) By the definition of functionally metrizable and 2.2(f), 2d(X)2β =
|C(X)| |C(Y )| ≤ |C(X × Y )| ≤ |C(Y )|d(X) = 2βd(X). So the pair (X,Y ) is
functionally conservative since |C(X)| |C(Y )| = 2d(X)2β = max{2d(X), 2β} =
2βd(X).

(b) By assumption and 2.2(f), 2d(X) = |C(X)| = |C(X)| |C(Y )| ≤
|C(X × Y )| ≤ |C(Y )|d(X) ≤ |C(X)|d(X) = 2d(X). So (X,Y ) is functionally con-
servative.

Recall that a collection of nonempty subsets of a topological space X is called
discrete if each point of the space has a neighborhood meeting at most one of
its members. X is said to be collectionwise normal if for each (closed) discrete
collection {Aξ : ξ ∈ Λ} of closed subsets of X, there is a discrete collection
{Uξ : ξ ∈ Λ} of open subsets of X such that Aξ ⊂ Uξ for each ξ ∈ Λ. X is called
paracompact if each of its open covers has an open locally finite refinement. It is
well-known that paracompact spaces are collectionwise normal and collectionwise
normal spaces are normal. Neither of these last two implication can be reversed;
see Chapter 5 of [E].
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Proposition 2.6. If X is a paracompact space with an open cover U of infinite
cardinality λ that has no subcover of cardinality less than λ, then there is a closed
discrete subspace D of cardinality λ.

Proof. Let U = {Ui : i ∈ I} with |I| = λ and let V = {Vj : j ∈ J} be a locally
finite open refinement of U . From the minimality condition on U we may assume
that |J | = λ. For j ∈ J , choose xj ∈ Vj . The locally finite cover V is point finite,
so the map that sends Vj ∈ V to xj is finite to one. Hence with D = {xj : j ∈ J},
we have |D| = λ. Each point of X has a neighborhood meeting only finitely many
Vj , and hence has a neighborhood containing at most one of the points xj . This
shows that D is closed and discrete.

Let p(X) denote the least cardinal number κ such that no discrete collection
of nonempty open subsets of X has cardinality κ. Note that a Tychonoff space is
pseudocompact if and only if p(X) = ω. The lemma that follows is well-known.
A proof is included because we cannot cite an explicit source for it.

Lemma 2.7.

(i) p(X) is the least infinite cardinal κ such that every locally finite family of
nonempty open sets of X has cardinality < κ.

(ii) If each family of κ nonempty open subsets of X fails to be locally finite, then
p(X) ≤ κ.

Proof. To see (i), it is enough to show that if X has a faithfully indexed locally
finite family U = {Uξ : ξ < κ} of nonempty open sets, then it has such a discrete
family. Choose xξ ∈ Uξ. Because U is point-finite, the map ξ → xξ is finite to one;
then since κ ≥ ω, we may assume, passing to a subfamily if necessary, that this
map is one-one. Since U is locally finite, every subset of {xξ : ξ < κ} is closed, so
there is an open set Vξ such that xξ ∈ Vξ ⊂ clVξ ⊂ Uξ and xη /∈ Vξ if η 6= ξ. Now
define Wξ = Vξ \ ∪{clVη : η 6= ξ}. Because {Vξ : ξ < κ} is locally finite, Wξ is an
open neighborhood of xξ. Finally, for each ξ, choose a neighborhood Yξ of xξ such
that clYξ ⊂ Wξ. Then Y = {Yξ : ξ < κ} is a faithfully indexed discrete family of
open subsets of X. In fact, for any x ∈ X, if Ox = X \ ∪{clYξ : x /∈ clYξ}, then
Ox is an open neighborhood of x meeting at most one member of Y.

(ii) This follows immediately from (i).

The cardinal p(X) is often called the pseudocompactness number of X, and if
p(X) ≤ ℵ, then X is said to be pseudo-ℵ-compact. For background discussion,
see [A], Chapter 9 of [CN2], p.135 of [I], and [NU]. As will be noted again in
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Definition 3.3(a) below, the cofinality cf(α) of cardinal α is the least cardinal
number ξ such that [0, α) has a cofinal subset of power ξ.

Theorem 2.8. For every Tychonoff space X:

(i) 2<p(X) ≤ |C(X)|, and
(ii) 2p(X) ≤ |C(X)|cf(p(X)).

Proof. (i) By the definition of p(X), if ω ≤ κ < p(X), then there is a discrete
collection of nonempty open subsets of X of cardinality κ, so 2κ ≤ |C(X)| by 3L
in [GJ]. Hence 2<p(x) = sup{2κ : κ < p(X)} ≤ |C(X)|.

(ii) Suppose {κξ}ξ<cf(p(X)) is an increasing sequence of infinite cardinals whose
supremum is p(X). Then 2p(X) = 2sup{κξ:ξ<cf(p(X)} = 2Σ{kξ:ξ<cf(p(X)} =

∏

{2κξ :
ξ < cf(p(X))} ≤ |C(X)|cf(p(X)) by (i).

Corollary 2.9. If cf
(

p(X)
)

= ω or if X is pseudocompact, then 2p(X) ≤ |C(X)|.

It is clear from the definitions of these concepts that p(X) = e#(X) if X is
collectionwise normal. We can do a bit better than just combining this latter
with 2.8 if we recall from 10.2 of [Hod] that if D is an infinite (closed) discrete
subspace of a normal space X, then 2|D| ≤ |C(X)|. This coupled with 2.2(c) and
2.6 yields the following corollaries.

Corollary 2.10. If X is normal, then 2<e
#(X) ≤ |C(X)| ≤ 2d(X).

Corollary 2.11. If X is infinite and paracompact, then e#(X) = `#(X). (See
2.1(g).)

Corollary 2.12. If 2<p(X) = 2d(X), then X is functionally metrizable.

Corollary 2.13. If X and Y are infinite, paracompact spaces such that 2<`
#(X) =

2d(X) and 2<`
#(Y ) = 2d(Y ), then (X,Y ) is functionally conservative.

Proof. By corollaries 2.10, 2.11, and 2.5, |C(X)| = 2d(X) and |C(Y )| = 2d(Y ).
The conclusion follows from the fact that |d(X × Y )| = |d(X)| |d(Y )|.

Remark. The space of countable ordinals witnesses the fact that the hypothesis
that X is paracompact in Proposition 2.6 may not be replaced by the assumption
that X is hereditary normal, and Example 4.7 below witnesses that “2<`

#(X)”
cannot be replaced by “2`

#(X)” in 2.13.

We conclude this section with the following analogues of Corollary 2.9.

Proposition 2.14. If 2<p(X) = 2d(X) or cf
(

p(X)
)

is countable while 2p(X) =
2d(X), and if 2<p(Y ) = 2d(Y ) or cf

(

p(Y )
)

is countable while 2p(Y ) = 2d(Y ), then
(X,Y ) is functionally conservative.
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In the next two sections, ways to create pairs that are not functionally conser-
vative will be described.

3. Using singular cardinals to create pairs that are not

functionally conservative; paracompact spaces

In this section, we determine when a pair of spaces, one entry of which is
infinite and discrete, is functionally conservative.

Definition 3.1. An ordered pair (m, t) of infinite cardinal numbers such that

mt > mω = m ≥ 2t

is called a bad cardinal pair.

Remarks. (i) It is clear that if m = 2α for some infinite cardinal α, then there is
no cardinal t such that (m, t) is a bad cardinal pair.

(ii) It is an exercise to verify that if (m, t) is a bad cardinal pair, then so is
(mω, t).

Theorem 3.2. Suppose X is a Tychonoff space, D is an infinite discrete space,
and α is an infinite cardinal.

(a) If m = |C(X)|, and t = |D|, then (X,D) fails to be functionally conservative
if and only if (m, t) is a bad cardinal pair.

(b) If X is weakly Lindelöf; in particular, if X is a c.c.c.-space, and if
(

w(X), |D|
)

is a bad cardinal pair, then (X,D) fails to be functionally con-
servative.

(c) If (m, t) is a bad cardinal pair, and t = |D|, then (X,D) is not functionally
conservative if either
(i) X is the one-point compactification of an (uncountable) discrete space

K of cardinal m, or
(ii) X is the product of m separable metric spaces each of cardinality at

least 2, or
(iii) X is the first countable subspace obtained from the space [0,m] (with the

interval topology) by deleting all limit ordinals of uncountable cofinality.
(d) If |C(X)| = 2α for some cardinal α, then (X,D) is functionally conserva-

tive.

Proof. (a) Because C(X ×D) is the free union of |D| copies of C(X), |C(X ×
D)| = mt. Clearly |C(D)| = (2ω)t = 2t, so it follows that

(↑) |C(X ×D)| = mt ≥ |C(X)| |C(D)| = m|C(D)| = m2t = max{m, 2t}.
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In particular, if (X,D) fails to be functionally conservative, then mt > m, and
since mt > 2t, it follows that m > 2t. Because m is the cardinal number of C(X),
mω = m by 2.2(a), so (m, t) is a bad cardinal pair.

If conversely, (m, t) is a bad cardinal pair, then by (↑) and 2.2(a), mt = C(X×
D) > m2t = |C(X)| |C(D)|. So (X,D) is not functionally conservative.

(b) Remark (ii) following 3.1 coupled with 2.2(d) shows that
(

|C(X)|, |D|
)

is
a bad cardinal pair. So the conclusion follows from (a).

(c) The space of (i) is compact and the space of (ii) is c.c.c. by 11.3 of [Hod],
so both are weakly Lindelöf. In case (i), the weight of X is m because the base
for it is the family of singletons of K together with the sets consisting of the point
at ∞ together with a cofinite subset of K. In case (ii), because by 4.1.16 of [E],
a separable metric space has weight ω, the product space X has weight m by
2.3.13 of [E]. (See the remark following 2.1.) Thus the conclusion in these two
cases follows from (b).

Clearly the space X of (iii) satisfies the first axiom of countability and has
weight m because it has the set of open intervals as a base. Moreover, X is
C∗-embedded in Y = [0,m]. To see this, note that for any uncountable α ∈ Y
of uncountable cofinality, each f ∈ C∗

(

[0, α) ∩X
)

has an extension to C∗([0, α])
because cf(α) > ω. Inducting over these uncountable ordinals yields the desired
result. Thus βX = Y , so |C(X)| = |C(Y )| =

(

w(Y )
)ω by 2.2(b) since the

weight of the totally ordered space Y is m. So the conclusion of (iii) follows from
Remark (ii) following 3.1 and (b).

(d) follows immediately from (a) and Remark (i) following Definition 3.1.

Next, after giving some pertinent definitions, we turn our attention to the
existence of bad cardinal pairs. For background, see Chapter 1 of [CN1] and [L].
We continue to identify cardinals with their initial ordinals. We assume the axiom
of choice throughout, in which case the set of cardinals less than any given cardinal
is well-ordered and every cardinal α has an immediate cardinal successor α+.

Definitions 3.3. Suppose α is a cardinal number.
(a) The cofinality cf(α) of α is the least cardinal number ξ such that [0, α) has

a cofinal subset of power ξ.
(b) α is called singular if it is the sum of fewer cardinals of smaller power; that

is, if cf(α) < α. Otherwise it is called regular.
(c) For any ordinal ξ and infinite cardinal α, the beth cardinal iξ(α) is defined

inductively as follows:

i0(α) = α
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if ξ is a nonzero limit ordinal, then iξ(α) =
∑

η<ξ

iη(α), and

if ξ is an ordinal, then iξ+1(α) = 2iξ(α) .

If α = ω, we abbreviate iξ(α) by iξ.
(d) The continuum hypothesis CH asserts that 2ω = ω+, and the generalized

continuum hypothesis GCH asserts that 2α = α+ for every infinite cardinal α.

Theorem 3.4.

(a) If λ is a cardinal of uncountable cofinality and λ < iλ, then (iλ,λ) is a bad
cardinal pair. In particular, (iω1 , ω1) is a bad cardinal pair.

(b) If (m, t) is a bad cardinal pair, then t ≥ ω1. If in addition, 2α = α+

whenever α < iω1 (in particular if GCH holds), then m ≥ iω1 = ℵω1 .

Proof. (a) It is noted in the proof of 1.25 in [CN1] that iωλ = iλ. The map
from λ into iλ given by ξ → iξ carries each cofinal subset of λ into a cofinal
subset of iλ, so using the familiar relation α < αcf(α) (see 1.20 of [CN1]), we
have iλλ ≥ i

cf(iλ)
λ > iλ > λ. Because λ < iλ = sup{iξ : ξ < λ}, there is an η

such that λ < iη < iλ. So, 2λ ≤ iη+1 < iλ, and the proof of (a) is complete.
(b) That t ≥ ω1 is obvious from 2.3(a). If we assume that 2α = α+ whenever

α < iω1 , it is clear from its definition that iω1 = ℵω1 . To complete the proof, it
is enough to show that

(z) ℵω1 = min{α : αω1 > αω and α ≥ 2ω1}.

To verify (z), let α < ℵω1 ; then either α is a successor cardinal or cf(α) = ω.
In the first case, α = β+ = 2β for some β ≥ ω1, so αω1 = 2βω1 = 2β = α, and
hence αω1 = αω = α. In the second case, when α is singular, α < αω ≤ αω1 ≤
2αω1 = 2α = α+. Therefore, αω = αω1 = α+.

Remarks 3.5. It is clear that iω1 is a singular cardinal, but the answer to the
question:

(∗) If (m, t) is a bad cardinal pair, must m be singular?

seems to depend on which set-theoretic assumptions are made. We elaborate
briefly.

(a) Recall from A.4 of [CN2] that if κ ≥ ω, then κcf(κ) > κ. Moreover by A.8
of [CN2], GCH implies that cf(κ) is the least cardinal λ such that κλ > κ. So
GCH and mt > m ≥ 2t > t imply t ≥ cf(m) and hence that m is singular. So
the answer to (∗) is yes if GCH holds.
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(b) Abbreviate iω1 by κ and consider the assumption:

(∇) κω1 ≥ (κ+)+.

It follows from the discussion on p. 181 of [L] that (∇) is consistent with ZFC.
Then (∇) implies that (κ+, ω1) is a bad cardinal pair. For (κ+)ω1 ≥ (κ+)+ >

κ+ = max{κ+, κω} = (κ+)ω, and it is clear that (κ+)ω1 ≥ κω12ω1 . Because
successor cardinals are regular, if (∇) holds, then question (∗) has a negative
answer.

(c) Since the hypothesis of 3.4(a) requires that λ < iλ, it seems natural to ask
if, in ZFC, there are cardinals λ such that λ = iλ. Examining 3.27 and 4.24 in
[L] will convince the reader that indeed there are in ZFC cardinals λ such that
λ = iλ and also cardinals µ such that µ = ℵµ; in each case the smallest such
cardinal has countable cofinality.

The following proposition will be used below. It follows immediately from
3.2(c) and 3.4.

Proposition 3.6. If D is a discrete space of cardinality ω1, then (X,D) is not
functionally conservative if either:

(a) X is the first countable space obtained from [0,iω1) by deleting all uncount-
able limit ordinals, or

(b) X is the compact c.c.c.-space {0, 1}iω1 . (More generally, if X is the product
of iω1 separable metric spaces each of cardinality at least 2.)

Proposition 3.7. There are locally compact spaces Z of arbitrarily large cardi-
nality such that |C(Z × Z)| > |C(Z)|.

Proof. Suppose (m, t) is a bad cardinal pair. By the proof of 3.2(a), there is
a compact space X and a discrete space D such that |C(X × D)| = mt > 2t =
|C(X)| |C(D)|, |X| = m, |D| = t, |C(X)| = m, and |C(D)| = 2t. If Z = X ⊕D,
then Z is locally compact, and by 2.2(g), |C(Z × Z)| = mt > m = |C(Z)|. By
3.4(a), there are bad cardinal pairs (m, t) with t arbitrarily large.

Theorem 3.8. Suppose (X,Y ) is not functionally conservative. If Y contains
a dense C∗-embedded functionally metrizable subspace Z with d(Z) = t, and
|C(X)| = m = mω, then (m, t) is a bad cardinal pair.

Proof. By assumption, |C(Y )| = |C(Z)| = 2t, and by 2.2(f), |C(X × Y )| ≤
|C(X)|d(Y ) = mt. As (X,Y ) is not functionally conservative, it follows that
mt > max{mω, 2t}. Moreover, m > 2t since if m ≤ 2t, then mt ≤ (2t)t = 2t. So
the relation |C(X)| |C(Y )| < |C(X×Y )| becomesm2t = mω2t < (mω)t = mt.
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Corollary 3.9. If (X,Y ) is not functionally conservative and Y contains a dense
C∗-embedded functionally metrizable subspace Z, then:

(a) |C(X)| > |C(Y )|, and
(b) d(X) > d(Y ).

Proof. (a) Let d(Z) = t. If |C(X)| ≤ |C(Y )| then |C(X)| |C(Y )| = 2t =
|C(Y )| < |C(X × Y )| ≤ |C(X)|d(Y ) ≤ (2t)t = 2t, a contradiction.

(b) Using 2.2(c), if (b) fails, then |C(X × Y )| ≤ 2d(X×Y ) = 2d(Y ) ≤ 2d(Z) =
|C(Z)| = |C(Y )| = |C(X)| |C(Y )|, contrary to assumption.

An immediate consequence of 3.9 follows.

Corollary 3.10. If Z is a space such that |C(Z × Z)| > |C(Z)|, then Z cannot
contain a dense C∗-embedded functionally metrizable subspace.

Remarks 3.11. (a) Because (iω1 , ω1) is a bad cardinal pair, 3.2 and 3.4 show that
2.3(a) is a best possible result in the sense that a pair of spaces can fail to be
functionally conservative if either of the members has density larger than ω. Nor
is it enough in 2.3(b), 2.3(c), or 2.3(d) to assume that only one of the members
is either pseudocompact, metrizable, or weakly Lindelöf; this follows from 3.2
and 3.4.

(b) In 2.2(f), density may not be replaced by cellularity. To see this, let
X = {0, 1}iω1 , and let D denote a discrete space of cardinality ω1. As in the proof
of 3.4(b), X is compact, satisfies the countable chain condition, and has weight
iω1 . Then |C(X)| = iω1 and we have |C(X ×D)| = iω1

ω1
> iω1 = |C(X)|c(X) =

|C(X)|ω = |C(X)| |C(D)|.
(c) It cannot be shown in ZFC that if |C(Y )| = 2ω, then (X,Y ) is a functionally

conservative pair for every compact space X. To see this, assume 2ω1 = 2ω,
suppose (m,ω1) is a bad cardinal pair, let Y denote the discrete space of power
ω1 and let X denote the one-point compactification of a discrete space of power
m. Now, |C(Y )| = 2ω = 2ω1 by assumption, and by 3.2(b) |C(X × Y )| >
|C(X)| |C(Y )|.

Another method for creating pairs of spaces that fail to be functionally con-
servative follows.

Theorem 3.12. If κ is a singular cardinal of uncountable cofinality such that
2<κ = κ (in particular if κ is a cardinal of the form iα where α is an ordinal of
uncountable cofinality), then there is a paracompact space X of cardinality κ and
character cf(κ) such that |C(X)| = 2<κ < |C(X ×X)| = 2κ.
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Proof. Let λ = cf(κ) and let {κ(α) : α < λ} denote a strictly increasing
sequence of regular cardinals such that λ < κ(α) < κ and κ = sup{κ(α) : α < λ}.
Define X = κ ∪ {∞}, and define a topology on X by letting each subset of κ
be open and by letting V be a neighborhood of ∞ if ∞ ∈ V and there is an
β < λ such that V contains {α ∈ κ : α > κ(β)}. It is clear that |X| = κ and
that the character of X is cf(κ). Since X is a Hausdorff space with exactly
one nonisolated point, it is paracompact. (Indeed, each open cover of such a
space has a disjoint open refinement.) Because κ has uncountable cofinality, each
f ∈ C(X) is constant on some set {α ∈ κ : α > κ(β)}, so |C(X)| = 2<κ. Now,
{

{(α+1, τ)} : α < λ, κ(α) < τ ≤ κ(α+1)
}

is a discrete collection of open subsets
of X ×X of cardinality κ, so |C(X ×X)| = 2κ.

Theorem 3.13. If X has an uncountable discrete family of nonempty open sub-
sets (that is, if p(X) ≥ ω2), then there is a paracompact space Y such that (X,Y )
is not functionally conservative.

Proof. Let A = {U(ξ + 1) : ξ < ω1} denote a discrete family of nonempty
open subsets of X of cardinality ω1. Choose κ(0) > |C(X)|, let κ = iω1

(

κ(0)
)

,
and let Y = κ ∪ {∞}. Define a topology on Y by letting each subset of Y be
open, and by letting neighborhoods of ∞ consist of ∞ together with subsets
of κ that contain

{

ξ ∈ κ : ξ > iη
(

κ(0)
)}

for some η < ω1. Arguing as in
Theorem 3.12 shows that Y is paracompact. Moreover,

{

U(ξ + 1) × {τ} : ξ <
ω1,iξ

(

κ(0)
)

< τ ≤ iξ+1

(

κ(0)
)}

is a discrete collection of nonempty open subsets
of X × Y of cardinality κ. Hence |C(X × Y )| ≥ 2κ. Clearly |C(X)| ≤ |C(Y )|,
so |C(X)| |C(Y )| = |C(Y )|. Clearly κ = 2<κ is uncountable, so we may argue
as in Theorem 3.12 that |C(Y )| ≤ κ < 2κ. Hence (X,Y ) is not functionally
conservative.

Corollary 3.14. If X is paracompact and (X,Y ) is functionally conservative for
every paracompact space Y , then X is a Lindelöf space. If, in addition, X is
metrizable, then X is separable.

Proof. By Proposition 2.6, if the paracompact space X fails to be Lindelöf, it
has an uncountable closed discrete subspace, and since paracompact spaces are
collectionwise normal, it also has an uncountable discrete family of nonempty
open subsets. By Theorem 3.13, because (X,Y ) is functionally conservative for
every paracompact space Y , every discrete family of nonempty open subsets of X
is countable. Hence X is a Lindelöf space, and the second assertion is clear.
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Examples 3.15. The requirement in 3.14 that X be paracompact may not be
dropped. For, if X is separable, then (X,Y ) is functionally conservative for every
Tychonoff space Y by 2.3(a). Also, every countably compact Lindelöf space is
compact as noted in Chapter 8 of [GJ]. Thus for any point x ∈ βω \ ω, the space
βω \ {x} is not Lindelöf, even though (βω \ {x}, Y ) is functionally conservative
for all Y .

Theorem 3.16. If X is a Tychonoff space that contains a cellular family A,
where λ = |A| is an uncountable regular cardinal, and each point of X has a
neighborhood meeting fewer than λ members of A, then there is a paracompact
space Y such that (X,Y ) is not a functionally conservative pair.

Proof. Let {κξ : ξ < λ} denote a strictly increasing sequence of cardinals such
that κ0 > |C(X)| and κ = sup{κξ : ξ < λ} = 2<κ. (To achieve this, we could
take, for example, κξ = 2sup{κη:η<ξ} whenever 0 ≤ ξ ≤ λ.) Note that κ = ∪{κξ :
ξ < λ}, and let Y = κ ∪ {∞}. Make Y into a topological space by letting each
subset of κ be open, and by letting neighborhoods of ∞ contain ∞ together with
the complement in κ of κξ for some ξ < λ. As in Theorem 3.13, Y is paracompact
and |C(Y )| = 2<κ. It will be shown next that X × Y contains a discrete cellular
family M of cardinality κ, and hence |C(X × Y )| ≥ 2κ. To see this, write
A = {Uξ : ξ < λ}, and let M =

{

Uξ+1 × {t} : ξ < λ, t ∈ κξ+1 \ κξ
}

. Clearly M
is a cellular family. To see that this family is discrete, suppose (x, y) ∈ X × Y .
If y ∈ κ, then X × {y} is open and meets at most one member of M. If y =∞,
choose an open neighborhood W of x that meets fewer than λ members of A.
There must be an ξ∗ < λ such that W ∩ Uξ = ∅ whenever ξ ≥ ξ∗. Consider
the neighborhood W ×

(

(κ \ κξ) ∪ {∞}
)

of (x,∞). If it meets some member
Uη+1 × {t} of M, then W ∩ Uη+1 6= ∅, so η + 1 < ξ∗. But t ∈ κη+1 \ κη ⊂ κξ∗ ;
a contradiction. Hence M is discrete. Because {κξ : ξ < λ} is strictly increasing,
|κξ+1 \ κξ| = |κξ∗ |, so |M| = κ.

Corollary 3.17. There is a paracompact space Y such that
(

[0, ω1), Y
)

fails to
be functionally conservative. (Here [0, ω1) denotes the space of countable ordinals
in the interval topology.)

Each of the examples given above of pairs of spaces that fail to be functionally
conservative has at least one factor of “large” cardinality (usually at least iω1).
In the next section, topological techniques are used to create pairs that fail to
be functionally conservative where each factor has reasonable small cardinality;
often 2ω.
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4. Using the Alexandroff double to create pairs that are not

functionally conservative

By the Alexandroff double (or Alexandroff duplicate) ad(X) of a topological
space X is meant the free union X×{0, 1} = X(0)⊕X(1) topologized as follows:

Let B denote a base for the topology of X. Let {(x, 1)} be open in ad(X) for
each x ∈ X, and for each (x, 0) ∈ X(0) and open neighborhood Bx ∈ B of x, let
ad(x,Bx) = Bx × {0, 1} \ {(x, 1)} denote a basic neighborhood of (x, 0). Then
ad(B) =

{

{(x, 1)} : x ∈ X
}

∪ {ad(x,Bx) : x ∈ Bx ∈ B} is a base for a topology
on ad(X). Note that X and X(0) are homeomorphic, X(1) is a dense discrete
subspace of ad(X) each point of which is isolated, and that ad(X) is a Hausdorff
space if X is.

This construction appeared first in a paper of Alexandroff and Urysohn pub-
lished (after Urysohn’s death) in 1929 in the special case when X is the unit
circle. It is used often, but few systematic developments of it have been written.
We rely on one given by S. Watson in Section 3 of [Wa] while departing from his
notation for technical reasons. See also 3.1.26 in [E].

It is shown in 3.1.2 of [Wa] that:

Lemma 4.1. If X is a compact Hausdorff space, then so is ad(X).

Next, with the aid of the Alexandroff double a method is described for creating
a large number of examples of pairs of spaces that fail to be functionally conser-
vative. We begin by proving three lemmas stated using the following notation:

K will denote a Tychonoff space, ad(K) = K × {0, 1} = K(0)⊕K(1)
denotes its Alexandroff double, and we abbreviate K(1) by D.

Lemma 4.2. If M and L are disjoint subspaces of K(0), X = D ∪ M , and
Y = D ∪ L, then |C(X × Y )| = 2|K|.

Proof. Let ∆ = {(d, d) ∈ X ×Y : d ∈ D}. Then ∆ is an open discrete subspace
of X×Y of cardinality |D| = |K|. It will be shown next that ∆ is closed in X×Y .
For, let (p, q) ∈ (X × Y ) \∆. If p ∈ D, then {p}× (Y \{p}) is open in X × Y and
disjoint from ∆. If q ∈ D, then (X \{q})×{q} is open in X×Y and disjoint from
∆. If (p, q) ∈M×L, then p 6= q since M ∩L = ∅ and because ad(K) is Hausdorff,
there are disjoint open sets U , W in ad(K) such that p ∈ U and q ∈ W . Then
(p, q) ∈ (U ×W ) ∩ (X × Y ) ⊂ (X × Y ) \∆. Thus ∆ is a clopen discrete subset
of X × Y of cardinality |K|, and so |C(X × Y )| ≥ 2|K|. Since D ×D is dense in
X × Y , it follows immediately that |C(X × Y )| ≤ |C(D ×D)| = 2|D×D| = 2|K|.
Hence |C(X × Y )| = 2|K|.
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Lemma 4.3. If 2w(K) = |K|, then there are disjoint subsets M , L of K(0) that
meet each closed subspace F of K(0) such that |F | > w(K).

Proof. K has at most 2w(K) = |K| closed sets F for which |F | > w(K). Enu-
merate them as (Fα)α<|K|. The sets M and L are constructed inductively.

Choose p0, q0 to be distinct points of F0. Now assume 0 < α < |K| and that
for all β < α, (pβ)β<α and (qβ)β<α have been chosen such that:

(a) (pβ)β<α ∩ (qβ)β<α = ∅, and
(b) {pβ , qβ} ⊂ Fβ .

Because |(xβ)β<α ∪ (yβ)β<α| < |K|, there are distinct points pα, qα in Fα \
[(pβ)β<α ∪ (qβ)β<α]. This completes the induction, and M = (pα)α<|K| and
L = (qα)α<|K| are as required.

Lemma 4.4. If K, M and L are chosen as in Lemma 4.3, X = D ∪M , and
Y = D ∪ L, then:

(i) w(X) = w(Y ) = |K|, and
(ii) |C(X)| = |C(Y )| = 2w(K) = |K|.

Proof. It is enough to establish this result for the space X. Because M is a
subspace of K(0), w(M) ≤ w(K), and because

{

{d}
}

is a neighborhood base in
X for each d ∈ D, it is clear that w(X) = |D| + w(K) = |K| + w(K) = |K|. It
will be shown next that `(X) ≤ w(K).

Let U denote an open cover of X. Since `(M) ≤ w(M) ≤ w(K), there is a
subfamily V of U of cardinality no larger than w(K) whose union V contains M .
Because M meets each closed subset of K(0) whose cardinality exceeds w(K),
it follows that |K(0) \ V | ≤ w(K). Now, each element of U contains a member
of the basis ad(B) for ad(X). So by selecting from U one member that contains
each element of K(0) \ V and one member that contains (x, 1) for each (x, 0) ∈
K(0) \ V , a subcover of U of cardinality no larger than w(K) is obtained. Thus
`(X) ≤ w(K).

By 2.2(d), |C(X)| ≤ w(X)wl(X) ≤ w(X)`(X) ≤ |K|`(X) ≤ (2w(X))w(X) =
2w(X) = |K|. Clearly |C(X)| ≥ |K| as X has |K| isolated points. Hence |C(X)| =
|K|.

From these three lemmas we obtain:

Theorem 4.5. Suppose that K is a Tychonoff space such that:

(i) |K| = 2w(K), and
(ii) if F ⊂ K is closed and |F | > w(K) then |F | = 2w(K).
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Then there are Tychonoff spaces X, Y with |C(X)| = |C(Y )| = 2w(K) = |K|
and |C(X × Y )| = 2|K|.

(Note that (i) implies (ii) if GCH holds.)

Proof. Apply Lemmas 4.2, 4.3, and 4.4.

Corollary 4.6. If GCH holds, then for any infinite cardinal t, there are spaces
X, Y for which |C(X)| = |C(Y )| = 2t and |C(X × Y )| = 22t .

Proof. Letting K = {0, 1}t, this is immediate from Theorem 4.5 and the fact
that w(K) = t, while |K| = 2t.

Next, some more explicit examples of pairs of spaces of “small” cardinality that
are not functionally conservative are given. In what follows, 2ω is abbreviated
by c.

Example 4.7. A pair (X,Y ) of first countable Lindelöf spaces such that:
|C(X)| = |C(Y )| = c, while |C(X × Y )| = 2c.

Let K = [0, 1] and construct spaces X, Y using 4.5. Then w(K) = ω and
|K| = 2ω. Clearly X = D ∪M and Y = D ∪ L are first countable since [0, 1] is
first countable. By the proof of 4.4, `(X) ≤ w([0, 1]), so X (and Y ) are Lindelöf.
By 4.5, the various cardinalities are as indicated.

This example should be contrasted with 2.3(d).

Example 4.8. A pair (X,Y ) of countably compact spaces such that |C(X)| =
|C(Y )| = 2c, while |C(X × Y )| = 22c

.

Proof. It is well-known that every infinite closed subspace of ω∗ has cardinality
2c = |ω∗|, and that w(ω∗) = c. (See 9H.2 and 6S3 in [GJ].) So, if we let K = ω∗,
Theorem 4.5 supplies us with a pair of Tychonoff spaces satisfying the advertised
cardinality conditions. It remains only to prove that these spaces are countably
compact. We do this for X = D ∪M .

Note first that M is countably compact because by 4.3, every infinite closed
subset of K(0) meets M . If UX is a countable open cover of X, there is a
countable family U of open subsets of ad(K) whose union contains M such that
UX = {U ∩ X : U ∈ U}. Then {U ∩ K(0) : U ∈ U} is a countable family of
open subsets of X(0) containing the countably compact subspace M , so there is
a finite set F and a subfamily UF = {Ui : i ∈ F} of U whose union V contains
M . So, K(0) \ V is a closed subset of K(0) disjoint from M , and hence is a finite
set G. For each (xj , 0) ∈ G, there is Uj ∈ U containing it. If UG = {Uj : j ∈ G},
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then by definition of the topology ad(B), UF ∪ UG covers M and all but finitely
many points of D = K(1). So, only finitely many more elements of U are needed
to provide for a finite subcover of UX , and (i) holds.

Example 4.9. Yet another way of creating pairs of spaces of small car-
dinality that are not functionally conservative. Let Xω1 denote the
one-point Lindelöfication of D(ω1); that is, let Xω1 = D(ω1) ∪ {∞}, where each
point of D(ω1) is isolated and neighborhoods of ∞ consist of ∞ together with
a co-countable subset of D(ω1). Because the interval [0, ω1) has no countable
cofinal subset, |C(Xω1)| = 2ω =

∣

∣C
(

[0, ω1)
)∣

∣. Clearly also {(α, α + 1) : α < ω1}
is a clopen discrete subspace of Xω1 × [0, ω1), so

∣

∣C
(

Xω1 × [0, ω1)
)∣

∣ ≥ 2ω1 . We
conclude that

(

Xω1 , [0, ω1)
)

is not a functionally conservative pair if 2ω < 2ω1 .

Remark 4.10. By replacing the spaces X, Y by Z = X ⊕ Y in 4.5, 4.6, 4.7,
and 4.8, we can produce a single space Z with the appropriate properties such
that (Z,Z) is not functionally conservative.

Remark 4.11. It is not difficult to see that 4.4 can be reworked to find three
pairwise disjoint subsets Mi (1 ≤ i ≤ 3) of K(0), each meeting each uncountable
closed subset of K(0). Then, writing Yj = D∪(∪{Mi : 1 ≤ i ≤ 3, j 6= i}) it follows
much as in the verification of Example 4.5 that |C(Yj×Yk)| = 2ω for 1 ≤ j, k ≤ 3,
while |C(Y1 × Y2 × Y3)| = 22ω ; further, the free union Z = ⊕1≤i≤3Yi satisfies
|C(Z2)| = 2ω < 22ω = |C(Z3)|. In the next section we extend the construction of
the present section, proving these remarks and a bit more.

5. Spaces Z such that |C(Zn)| < |C(Zn+1)|

In this section for X a set and λ a (finite or infinite) cardinal we write [X]λ =
{A ⊆ X : |A| = λ}.

As usual, we equate each ordinal with its set of ordinal predecessors. In par-
ticular for n < ω we write n = {0, 1, . . . , n− 1}.

Given a family {Xi : i ∈ I} of sets and ∅ 6= F ⊆ I, we write XF = Πi∈FXi.
In light of the results of Section 4, it is reasonable to inquire whether for

n > 1 one can find spaces Y0, Y1, . . . , Yn−1 such that every proper subset F of
{0, 1, . . . , n− 1} satisfies

|C(Πn−1
i=0 Yi)| > |C(YF )|.

In Theorem 5.6 for fixed n > 1 and for κ < c we find κ-many spaces, every n

of which satisfy this inequality. Indeed we arrange that |C(YF )| = c for each
F ∈ [κ]n−1, while |C(YF )| = 2c for each F ∈ [κ]n.
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Definition 5.1. An uncountable, closed subset B of [0, 1]H is diagonal-like if for
each i ∈ H and x ∈ [0, 1]i the set π−1

i ({x}) ∩B is countable.

Lemma 5.2. Suppose 0 < n < ω and let A be an uncountable, closed subset of
[0, 1]n. Either A is diagonal-like in [0, 1]n or there is a nonempty subset F of
n and p ∈ [0, 1]F such that A contains an uncountable closed subset of the form
{p} ×B with B diagonal-like in [0, 1]n\F .

Proof. Among all subsets F of n such that some p ∈ [0, 1]F has |π−1
F ({p})∩A| =

c, fix F of maximal cardinality. Then the set

B = {x ∈ [0, 1]n\F : (p, x) ∈ A}

is as required.

Theorem 5.3. Suppose κ < c. Then there is a family {M(η) : η < κ} of pairwise
disjoint subsets of [0, 1] such that for each k < ω each set

(

M(η)
)k meets each

uncountable, closed diagonal-like subset of [0, 1]k.

Proof. Each space [0, 1]k with k < ω has c-many uncountable closed subsets,
hence only c-many diagonal-like uncountable closed subsets (each of cardinality
c). Let {Bξ : ξ < c} be a listing of all sets which, for some k < ω, are diagonal-like,
closed and uncountable in [0, 1]k.

Let B0 ⊆ [0, 1]k(0). Since |πi[B0]| = c for i < k(0) and κ < c, there is a
κ-sequence {x(0, η) : η < κ} in B0 such that if η and η′ are distinct predecessors
of κ and if i and j are not necessarily distinct predecessors of k(0) then x(0, η)i 6=
x(0, η′)j .

Now let ξ < c and suppose that points x(ζ, η) in B(ζ) ⊆ [0, 1]k(ζ) have been
chosen for all ζ < ξ, η < κ, and define S(ξ) = {x(ζ, η)i : ζ < ξ, η < κ, i < k(ξ)}.
Since |S(ξ)| ≤ |ξ|·κ·ω < c and Bξ ⊆ [0, 1]k(ξ) is diagonal-like, there is a κ-sequence
{x(ξ, η) : η < κ} in Bξ such that

(i) {x(ξ, η)i : i < k(ξ)} ∩ S(ξ) = ∅, and
(ii) if η and η′ are distinct predecessors of κ and if i and j are not necessarily

distinct predecessors of k(ξ) then x(ξ, η)i 6= x(ξ, η′)j .

It is then clear that the sets

M(η) = {x(ξ, η)i : ξ < c, i < κ(ξ)}

are as required. Indeed M(η) ∩M(η′) = ∅ when η 6= η′, and for each set B(ξ) ⊆
[0, 1]k(ξ) (ξ < c) and η < κ we have x(ξ, η) ∈ Bξ and x(ξ, η)i ∈ M(η), so that
x(ξ, η) ∈M(η)k(ξ) ∩Bξ.



102 ALAS, COMFORT, GARCIA-FERREIRA, HENRIKSEN, WILSON AND WOODS

[The restriction to diagonal-like subsets in the above is necessary, in order that
disjoint sets M(η) as asserted can be found. For example, consider the non-
diagonal-like subset B = { 1

2} × [0, 1] of [0, 1]2; clearly every M ⊆ [0, 1] such that
M2 ×B 6= ∅ must satisfy 1

2 ∈M .]

Theorem 5.4. Let M be a subset of [0, 1] such that, for 0 < k < ω, Mk meets
each closed, uncountable, diagonal-like subset of [0, 1]k, and let X = D ∪M as
in 4.5 (with D = K(1), K = [0, 1]). Then |C(Xn)| = c for each integer n > 0.

Proof. We proceed by induction on n. Since by Lemma 5.2 M meets each
uncountable, closed subset of [0, 1], we have |C(X)| = c by 4.5.

Suppose the statement true for n = k, and for i < k + 1 write Xk+1 in the
form

Xk+1 = (D ∪M)k+1 = ̂Xi × (Di ∪Mi) = (̂Xi ×Di) ∪ (̂Xi ×Mi)

with ̂Xi = Π{Xj : 0 ≤ j < k + 1, j 6= i}. Since ̂Xi is homeomorphic to Xk and
Mi is separable we have

|C(̂Xi ×Mi)| ≤ |C(̂Xi)|ω = cω = c

by the inductive hypothesis and Proposition 2.2(d). It then follows, since Xk+1 \
Dk+1 = ∪ki=0(̂Xi×Mi), that |C(Xk+1 \Dk+1)| = c. To prove that |C(Xk+1)| = c

it is therefore enough to show that the map from C(Xk+1) onto C(Xk+1 \Dk+1)
given by f → f | (Xk+1 \ Dk+1) is at most c-to-one, and for that it suffices to
show that at most c-many functions f ∈ C(Xk+1) satisfy f ≡ 0 on Xk+1 \Dk+1.

We claim: If f ∈ C(Xk+1) with coz(f) ⊆ Dk+1, then | coz(f)| ≤ ω. If the claim
fails then, replacing if necessary f by −f , we have for some integer m > 0 that
the set A = {x ∈ Dk+1 : f(x) ≥ 1

m} satisfies |A| > ω. Identifying A ⊆ Dk+1 =
K(1)k+1 with its natural copy (also denoted A) in [0, 1]k+1, and denoting by A

the closure of A in [0, 1]k+1, we have from Lemma 5.2 that either A is diagonal-
like in [0, 1]k+1 or there is a non-empty subset F of k + 1 = {0, 1, · · · , k} and
p ∈ [0, 1]F and an uncountable, closed, diagonal-like subset B of [0, 1](k+1)\F such
that A ⊇ {p}×B. Then, choosing x ∈M (k+1)\F ∩B we have (p, x) ∈ Xk+1\Dk+1

and (p, x) ∈ A, so that f(p, x) ≥ 1
m , contrary to the condition coz(f) ⊆ Dk+1.

The claim is established.
Since Dk+1 has just c-many countable subsets, and each of these can be

coz(f) for at most |R|ω-many (that is, c-many) continuous functions f , we have
|C(Xk+1)| ≤ |C(Xk+1 \Dk+1)| · c = c2 = c, as desired.
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It follows from Theorems 5.3 and 5.4 that with Xη = D ∪M(η) (η < κ) as
in 5.4, each integer n > 0 satisfies

∣

∣C
(

(Xη)n
)∣

∣ = c. Now for fixed n < ω we want
to use the spaces Xη (η < κ) to build new spaces Yξ(ξ < κ) with the properties
suggested in Remark 4.10. The following combinatorial lemma will be useful.

Lemma 5.5. Suppose κ ≥ ω and 0 < n < ω. Then there is a faithfully indexed
family {Sξ : ξ < κ} of subsets of κ such that

(i) F ∈ [κ]n ⇒ ∩ξ∈FSξ 6= ∅, and
(ii) F ∈ [κ]n+1 ⇒ ∩ξ∈FSξ = ∅.

Proof. We proceed by induction. For n = 1, choose any family of κ-many
pairwise disjoint, nonempty subsets of κ.

Suppose the lemma holds for n = k < ω. Write κ in the form κ = X0 ∪ X1

with |Xi| = κ and X0 ∩ X1 = ∅, and (using the inductive hypothesis) choose a
faithfully indexed family {Tξ : ξ < κ} of subsets of X0 such that

F ∈ [X0]k ⇒ ∩ξ∈FTξ 6= ∅,

and
F ∈ [X0]k+1 ⇒ ∩ξ∈FTξ = ∅.

Let f : [X0]k+1 → X1 be a one-to-one function, and for ξ ∈ X0 define

Sξ = Tξ ∪ {f [F ] : F ∈ [X0]k+1, ξ ∈ F}.

The family {Sξ : ξ ∈ X0} is faithfully indexed, since Sξ ∩X0 = Tξ.
For F ∈ [X0]k+1 we have f [F ] ∈ ∩ξ∈FSξ, so (i) holds for n = k + 1. To

prove (ii) for n = k + 1 it is enough to note that since the function f is one-
to-one, each point p ∈ X1 ∩ (∪ξ<κSξ) satisfies p ∈ Sξ for exactly (k + 1)-many
ξ < κ, namely for ξ ∈ F ∈ [X0]k+1 with p = f [F ]; thus for F ∈ [X0]k+2 we have
∩ξ∈FSξ = ∩ξ∈FTξ = ∅.

Theorem 5.6. Suppose ω ≤ κ < c and 0 < n < ω. There is a set {Yξ : ξ < κ}
of spaces such that

(i) F ∈ [κ]n ⇒ |C(YF )| = c, and
(ii) F ∈ [κ]n+1 ⇒ |C(YF )| = 2c.

Proof. Using {M(η) : η < κ} as in Theorem 5.3, define X(η) = D ∪ M(η)
(η < κ). Then with {Sξ : ξ < κ} defined as in Lemma 5.5, set

Yξ = ∪{X(η) : η ∈ Sξ}.

We verify (i) and (ii).
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(i) Given F ∈ [κ]n there is η ∈ ∩ξ∈FSξ. For this η we have X(η) ⊆ ∩ξ∈FYξ,
so
(

X(η)
)F is a (dense) subspace of Πξ∈FYξ = YF . From Theorem 6.4 we have

∣

∣C
(

X(η)F
)∣

∣ = c, from which (i) follows.
(ii) Let f ∈ [κ]n+1, let ∆ be the diagonal in (D ∪ [0, 1])F , and let ∆ = ∆∩ YF .

Since ∆ is closed in (D ∪ [0, 1])F the set ∆ is closed in YF . Thus ∆ is a closed,
discrete subset of YF of cardinality c, and |C(YF )| ≥ |C(∆)| = 2c follows.

Remark 5.7. A more delicate selection of the points x(ξ, η) ∈ Bξ in Theorem 5.3
allows the construction of c-many sets {M(η) : η < c} rather than of (only)
κ-many for fixed κ < c. This yields a family {Yξ : ξ < c} with properties (i)
and (ii) of Theorem 5.6. We leave the details to the interested reader.

Theorem 5.8. Let 0 < n < ω. There are spaces Z such that |C(Zk)| = c for
1 ≤ k ≤ n, and |C(Zk)| = 2c for n < k < ω.

Proof. Choose {Yξ : ξ < κ} as in Theorem 5.6, fix arbitrary F ∈ [κ]n+1, and
let Z be the free union of the spaces Yξ for ξ ∈ F . It is enough to show that
|C(Zn)| = c and |C(Zn+1)| = 2c. The space Zn is the free union of (n + 1)n-
many spaces of the form Yξ0 × Yξ1 × · · · × Yξn−1 (repetitions allowed). With
η ∈ ∩i<nSξi this space contains densely the space

(

X(η)
)n. Since

∣

∣C
(

X(η)
)n∣
∣ = c

by Theorem 5.4 we have |C(Zn)| ≤ c · (n + 1)n = c. Since Zn+1 contains an
open-and-closed copy of the space YF = Πξ∈FYξ, we have from Theorem 5.6(ii)
that |C(Zn+1)| ≥ |C(YF )| = 2c.

6. Products involving spaces of ordinals

For any cardinal α > 0, D(α) will denote the interval [0, α) with the discrete
topology, while [0, α) will denote this set with the interval topology. Let log(α)
denote min{β : 2β ≥ α}. (Thus, log(c) = ω = log(ω1).) Finally, for any space,
βα will abbreviate the space D(α)β .

Theorem 6.1. For any cardinal α and Tychonoff space X, |C(ωα × X)| ≥
|C(X)|α.

Proof. Because ωα = D(α)ω = D(α)×D(α)ω, it follows that D(α)ω is the free
union of α copies of itself; say D(α)ω =

⋃

{Dω
ξ : ξ < α}, where each Dξ = D(α).

For each ξ < α, choose dξ ∈ Dω
ξ . Then T = {dξ : ξ < α} × X is C-embedded

in D(α)ω × X. For, if f ∈ C(T ), the function F such that F (d, x) = f(dξ, x)
whenever d ∈ Dξ and x ∈ X is a continuous extension of f over D(α)ω × X.
Hence |C(ωα×X)| ≥ |C(T )| = |C(X)|α.
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The following lemma may be found in 7.5 of [vDZ].

Lemma 6.2. If α is an infinite cardinal, then:

(i) w
(

[0, α)
)

= α,
(ii) wl

(

[0, α)
)

= `
(

[0, α)
)

= ω + cf(α),
(iii)

∣

∣C
(

[0, α)
)∣

∣ = αω.

Use will also be made of the Hewitt-Pondiczery-Marzewski theorem; namely:

Theorem 6.3 ([E, 2.3.15]). If α is an infinite cardinal, and (Xi)i∈I is a family
of no more than 2α spaces with d(Xi) ≤ α, then d(Πi∈IXi) ≤ α.

See the remark following 2.1.
The next example supplies an alternate way of using a bad cardinal pair to

produce a pair of spaces that fails to be functionally conservative.

Example 6.4. If (m, t) is a bad cardinal pair, then
(ω
t, [0,m)

)

fails to be a
functionally conservative pair.

Proof. By Theorems 6.1 and 6.2,
∣

∣C
(ω
t× [0,m)

)∣

∣ ≥
∣

∣C
(

[0,m)
)∣

∣

t = mt. By 6.3
and 2.2, d(ωt) = t. So |C(ωt)| ≤ 2t. By 2.2 and 6.3,

∣

∣C
(

[0,m)
)∣

∣ = m. Because
mt > m ≥ 2t, the conclusion follows.

We also use 6.3 to show:

Lemma 6.5. If ω ≤ γ ≤ 2α, then γα is functionally metrizable.

Proof. By 2.2 and 6.3, |C(γα)| ≤ 2d(γα) = 2α. As in the proof of 6.1, γα has
a C-embedded discrete subspace D of cardinality α, so |C(γα)| ≥ 2α and the
conclusion follows.

Theorem 6.6. Suppose Y is a Tychonoff space. If ω ≤ γ ≤ 2α and either
log |C(Y )| ≤ α or d(Y ) ≤ α, then (γα, Y ) is functionally conservative.

Proof. Under either assumption on Y , 2.2 implies that |C(Y )| ≤ 2α = |C(γα)|.
So this pair is functionally conservative by 2.5.

Stronger results may be obtained if GCH is assumed. First, we prove:

Theorem 6.7. For all α ≥ ω the following assertions are equivalent:

(a) If ω ≤ λ < cf(α), then αλ = αω2λ.
(b) If Y is a Tychonoff space such that ω ≤ d(Y ) < cf(α), then

αω|C(Y )| ≤
∣

∣C
(

[0, α)× Y
)∣

∣ ≤ αω2d(Y ).
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Proof. Suppose (a) holds and Y satisfies ω ≤ d(Y ) = λ < cf(α). Then by 6.2
and the hypothesis,

αω|C(Y )| =
∣

∣C
(

[0, α)
)∣

∣ |C(Y )| ≤
∣

∣C
(

[0, α)× Y
)∣

∣ ≤
∣

∣C
(

[0, α)×D(λ)
∣

∣

= (αω)λ = αλ = αω2λ = αω2d(Y ).

So (b) holds.
Conversely, if (b) holds, suppose ω ≤ λ < cf(α), and let Y = D(λ). Then

(b) implies αω2λ ≤
∣

∣C
(

[0, α)
)

× D(λ)
∣

∣ ≤ αω2λ. Because
∣

∣C
(

[0, α)
)

× D(λ)
∣

∣ =
(αω)λ = αλ, (a) holds.

Corollary 6.8. Suppose GCH holds. If Y is a Tychonoff space for which ω ≤
d(Y ) < cf(α), then

(

[0, α), Y
)

is functionally conservative.

Proof. GCH implies αω = α and 2λ ≤ α = αλ whenever ω ≤ λ < cf(α), so the
conclusion follows from 6.7.

We close this section by exhibiting some additional kinds of functionally con-
servative pairs. First, we recall a definition and a result from [CN2]. Let Γ
denote an infinite set, and suppose that XΓ =

∏

γ∈ΓXγ is a topological prod-
uct of Tychonoff spaces indexed by Γ. If ℵ is a cardinal and ℵ ≤ |Γ|, then an
element f ∈ C(XΓ) is said to be determined by < ℵ coordinates if there is a
subset Γ(f) of Γ of cardinality no greater than ℵ such that f = f0 ◦ πΓ,Γ(f) for
some f0 ∈ C(XΓ(f)), where πΓ,Γ(f) denotes the projection of XΓ onto XΓ(f). It
is shown in Lemma 10.2 of [CN2], citing earlier results, that for any infinite set Γ
and regular cardinal ℵ, every f ∈ C(XΓ) is determined by < ℵ coordinates if XΓ

is pseudo-ℵ-compact.

Lemma 6.9. If X is compact and Y is pseudo-ℵ-compact, then X×Y is pseudo-
ℵ-compact.

Proof. Suppose there were a faithfully indexed locally finite family {Sξ : ξ < ℵ}
of nonempty open subsets of X × Y . Because X is compact, the projection map
pY : X×Y → Y is perfect as well as open by 3.7.1 in [E]. (Recall that a continuous
surjection is perfect if it is closed and inverse images of points are compact.) By
3.10.11 in [E], {pY (Sξ) : ξ < ℵ} is locally finite as well as being open, and it
follows from 2.7(ii) that Y fails to be pseudo-ℵ-compact.

This enables us to prove:
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Theorem 6.10. If {Xα : α < ω2} is a family of separable metric spaces each
having at least two points, and ω1 ≤ p(Y ) ≤ ω2, then (

∏

{Xα : α < ω2}, Y ) is a
functionally conservative pair.

Proof. Suppose first that p(Y ) = ω1. Let X =
∏

{Xα : α < ω2}. As noted
in the proof of 3.2(c)(ii), w(X) = ω2, so |C(X)| = ωω2 . If f ∈ C(X × Y ),
then by 2.3(a) and 6.9 and [10.2] of [CN2], f depends on only countably many
coordinates; that is, there is a countable subset Γ(f) of ω2 such that f coincides
with any function that agrees with it on XΓ(f)×Y . It follows from 6.3 and the
above that

|C(X × Y )| ≤
∑

{|C(XA × Y )| : |A| = ω} =
∑

{|C(XA)| |C(Y )| : |A| = ω}

≤ ω2c|C(Y )| ≤ ωω2 |C(Y )| = |C(X)| |C(Y )|.

This completes the proof in case p(X) = ω1. If p(X) = ω2, then 6.9 implies
that each f ∈ C(X × Y ) depends on < ω2 coordinates, and the rest of the proof
is similar.

Remark 6.11. It seems natural to ask if the conclusion of 6.10 holds when p(X) >
ω2; say if p(X) = ωn+1 for some n such that 1 < n < ω. In a model for set theory
in which ωn ≤ c, in which case 2.3(a) and 6.9 imply that (XA, Y ) is functionally
conservative, then the proof of 6.10 will yield an affirmative answer in this case.
So, a negative answer cannot be established in ZFC.

7. Spaces X such that (X,Y ) is functionally conservative

for every Y

Definition 7.1. If (X,Y ) is functionally conservative for every Y in a class P of
Tychonoff spaces, then X is said to be functionally conservative for P. If (X,Y )
is functionally conservative for every Tychonoff space Y , then X is said to be
functionally conservative.

The purpose of this final section is to describe what we know about spaces
functionally conservative for various classes of space. Many of our earlier results
may be rephrased in terms of this new terminology; e.g., 2.3, 2.5, 3.13, 3.14,
and 3.15. This task is largely left to the reader, but the following immediate
consequences of 2.3(a), 3.13, and 3.15 are worth restating explicitly.

Theorem 7.2.

(a) Every separable space is functionally conservative.
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(b) If a space is functionally conservative for paracompact spaces, then each of
its discrete families of nonempty open sets is countable.

(c) If a paracompact space is functionally conservative for paracompact spaces,
then it is a Lindelöf space.

(However, not all Lindelöf spaces are functionally conservative for Lindelöf spaces;
see 4.7.)

Let Z(X) denote the family of zerosets of X, let CZ(X) denote its family
of cozerosets, let RCZ(X) denote the family of closures of its cozerosets, and
let Z#(X) the family of closures of interiors of its zerosets. Because the map
Z → X \ Z is a bijection of Z(X) onto CZ(X), these families have the same
cardinality. Similarly, |Z#(X)| = |RCZ(X)|. The main results of [vDZ] are that
if X is an infinite Tychonoff space, then |C(X)| = |CZ(X)| = |RCZ(X)|. (These
authors use the notation R(X) for our RCZ(X).) Recall from Section 10 of [We]
that a subspace S of X is said to be z-embedded in X if the map Z → Z ∩ S
is a surjection of Z(X) onto Z(S), and from [HVW] that a dense subspace S
is z#-embedded in X if this map is a surjection of Z#(X) onto Z#(S). If S is
C∗-embedded in X, then it is z-embedded in X, and the latter implies that it
is z#-embedded in X if S is dense in X. (Neither of these implications can be
reversed.) It is shown in [We] that every cozeroset, every C∗-embedded subspace,
and every Lindelöf subspace of a Tychonoff space is z-embedded, and in [HVW]
that a dense weakly Lindelöf subspace of a Tychonoff space S is z#-embedded in
S. The next theorem will be used below to construct new functionally conservative
spaces from old ones. We will make use of the following lemma pointed out to us
by A. Hager.

Lemma 7.3 (Hager). If S is (dense and) z#-embedded in X, then |C(S)| =
|C(X)|.

Proof. Because for any f ∈ C(X), the map cl
(

intZ(f)
)

→ cl
(

coz(f)
)

is a
bijection of Z#(X) onto RCZ(X), by the result in [vDZ] cited above |C(S)| =
|RCZ(S)| = |Z#(S)| ≤ |Z#(X)| = |RCZ(X)| = |C(X)|. So |C(S)| ≤ |C(X)|,
and the reverse inequality holds because S is dense in X.

Theorem 7.4. If X contains a dense subspace D =
⋃

n<ω Fn, where each Fn is
functionally conservative and z-embedded in X, then X is functionally conserva-
tive.

Proof. Given Y and f ∈ C(X × Y ) we associate the sequence {fn}, where
fn = f | (Fn × Y ) ∈ C(Fn × Y ) for each n < ω. Because D is dense, it is
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routine to verify that the map f → {fn} from C(X × Y ) into
∏

n C(Fn × Y ) is
an injection, and since each Fn is z-embedded, |C(Fn)| ≤ |C(X)|. Because each
Fn is functionally conservative, it follows that

|C(X × Y )| ≤
∣

∣

∏

n

C(Fn × Y )
∣

∣ =
∏

n

|C(Fn × Y )| =
∏

n

|C(Fn)| |C(Y )|

≤
∏

n

|C(X)| |C(Y )| = |C(X)|ω|C(Y )|ω = |C(X)| |C(Y )|.

Corollary 7.5.

(a) If X is functionally conservative, and X ⊂ T ⊂ βX, then T is functionally
conservative.

(b) A space containing a dense functionally conservative weakly Lindelöf sub-
space or a dense functionally conservative cozeroset is functionally conser-
vative.

(c) A countable product of nonempty functionally conservative spaces is func-
tionally conservative. That is, the property of being functionally conserva-
tive is countably productive.

Proof. Parts (a) and (b) follow immediately from the theorem and the remarks
preceding 7.3.

(c) Let {Xn}n<ω denote a sequence of functionally conservative spaces and
let X denote their product. Pick (x0, x1, . . . , xn, . . . ) in X, and let Fn = X0 ×
· · · ×Xn × {xn+1} × {xn+2} × · · · if n < ω. A routine induction shows that any
finite product of functionally conservative spaces is functionally conservative, so
each Fn is functionally conservative. Moreover {Fn} is an increasing sequence of
C∗-embedded subspaces whose union is dense in X. Thus the conclusion follows
from the theorem.

We turn next to try to determine when various kinds of subspaces of func-
tionally conservative spaces are functionally conservative. The following technical
lemma will prove useful for what follows.

Lemma 7.6. If (X,Y ) is a functionally conservative pair and K is a subspace of
X such that |C(X)| ≤ |C(K)| (e.g., if K is dense in X), and K×Y is z-embedded
in X × Y , then (K,Y ) is a functionally conservative pair.

Proof. By the remarks preceding 7.3 and the hypothesis, |C(K×Y )| ≤ |C(X×
Y )| = |C(X)| |C(Y )| = |C(K)| |C(Y )|.
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Theorem 7.7. If X is a (Tychonoff) space, then the following are equivalent:

(a) X is functionally conservative.
(b) One of its dense cozerosets is functionally conservative.
(c) Each of its dense cozerosets is functionally conservative.

Proof. If a dense cozeroset K of a space X is functionally conservative, then so
is X by 7.5(b). So (b) implies (a).

If K = coz(f) is a cozeroset of a functionally conservative space X, then for
any space Y , K × Y is the cozeroset of the function F ∈ C(X × Y ) such that
F (x, y) = f(x) for all (x, y) ∈ X × Y , and is dense in X × Y if K is dense in X.
So, K is functionally conservative by 7.6. Hence (a) implies (c), and obviously,
(c) implies (b).

The next corollary follows immediately from the theorem and the fact that
every locally compact and σ-compact space is a dense cozeroset in each of its
compactifications.

Corollary 7.8. If X is locally compact and σ-compact, then the following are
equivalent:

(a) X is functionally conservative.
(b) Some compactification of X is functionally conservative.
(c) Every compactification of X is functionally conservative.

Next, we show that every compact space of weight no larger than 2ω is func-
tionally conservative. This will enable us to show that the converse of 7.5(a) need
not hold (that is, to exhibit a space X that is not functionally conservative such
that βX is functionally conservative) and that the hypothesis that X is locally
compact and σ-compact in Theorem 7.8 may not be omitted. To do so, use will
be made of the following theorem of M. Starbird given in Theorem 3 of [S1] in
different wording. See also, [S2] and [Hos].

Theorem 7.9. If X and Y are Tychonoff spaces, and K is a compact subspace
of X, then K × Y is C∗-embedded in X × Y .

Theorem 7.10. If K is a σ-compact space of weight no larger than 2ω, or equiv-
alently if |C(K)| = 2ω, then K is functionally conservative.

Proof. The equivalence of the two properties in the hypothesis follows from
2.2(b), (c), (d).

Assume first that K is compact. By 3.2.5 in [E], the compact space K of weight
2ω embeds in [0, 1]2

ω

, and hence is C∗-embedded in [0, 1]2
ω

. This latter space is
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separable by 6.3, and hence is functionally conservative by 2.3. So, by 7.9, for
any space Y,K × Y is C∗-embedded in [0, 1]2

ω × Y , and the conclusion follows
from 7.6 in case K is compact. The general case then follows from 7.4.

In the special case when K is the one-point compactification of a discrete space
of cardinality no larger than 2ω, this result was communicated orally by S. Watson
to M. Henriksen using a different argument.

If X is a topological space, λ is an infinite cardinal, and p ∈ Xλ, we call the
subspace of points in Xλ that differ from p in at most finitely (resp. at most
countably) many coordinates the σ- (resp. Σ-) product of Xλ based at p.

Corollary 7.11. Let X be a compact space such that |C(X)| = 2ω, let ω ≤ λ ≤
2ω, let S = S(p) be the σ-product in Xλ based at p ∈ Xλ, and let S ⊆ Z ⊆ Xλ.
Then Z is functionally conservative.

Proof. For each n < ω, the set σn of elements in the σ-product that differ from
p at no more than n coordinates is compact, and the σ-product is the union of
the σn for n < ω. So the σ-product is functionally conservative by 7.10. The
σ-product is a dense Lindelöf subspace of Xλ and hence z-embedded in Xλ, so
the conclusion follows from 7.4.

We note that it follows in particular, given X, λ and p as in 7.11, that the
Σ-product in Xλ based at p is functionally conservative.

Examples and Comments 7.12. (1) There are functionally conservative
spaces that are neither separable nor compact. Such a space may be obtained by
taking the topological sum of a space satisfying the hypotheses of Theorem 7.9
that fails to be separable (e.g., the one point compactification of a discrete space
of power ≤ 2ω or βω \ ω) and a separable space that fails to be compact. This
also supplies us with nonseparable compact functionally conservative spaces of
cardinality 2c.

(2) By 3.17, [0, ω1) fails to be functionally conservative for paracompact spaces,
while [0, ω1] = β

(

[0, ω1)
)

is functionally conservative by 7.9. Thus, the converse
of 7.5(a) need not hold, and the hypothesis that X is σ-compact in Theorem 7.8
may not be omitted. Nor is it true that X Lindelöf and |C(X)| = 2ω imply X is
functionally conservative as is witnessed by Examples 4.7 and 4.9.

(3) In Remark 3.11(c) above, it is shown that if 2ω1 = 2ω, then the discrete
space D(ω1) of power ω1 is not functionally conservative for compact spaces.
Under this same set-theoretic assumption (consistent with Martin’s axiom and
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not CH), it follows that β
(

D(ω1)
)

is functionally conservative. We do not know
if this result holds in all models of ZFC.

Definition 7.13. If there is a continuous surjection of a Tychonoff space T onto
a dense subspace of a Tychonoff space X such that |C(X)| = |C(T )|, then X is
called a functionally tight image of T .

Proposition 7.14. A Tychonoff functionally tight image X of a functionally
conservative space T is functionally conservative.

Proof. If ϕ : T → X is a continuous surjection, then for any space Y , the map
Φ: T × Y → X × Y given by Φ(x, y) =

(

ϕ(x), y
)

is also a continuous surjection.
So, |C(X × Y )| ≤ |C(T × Y )| = |C(T )| |C(Y )| = |C(X)| |C(Y )| because X is a
functionally tight image of T and T is functionally conservative.

Two kinds of topological conditions that guarantee that a space has a function-
ally tight image are considered next. To describe them, we borrow from [DHH],
[HVW], and [V]. A Tychonoff space X is called a quasi-F space if each of its dense
cozerosets is C∗-embedded, and is called basically disconnected each of its coze-
rosets has an open closure. It is well known that every basically disconnected space
is a quasi-F -space, but not conversely, and that open subspaces of basically discon-
nected spaces are basically disconnected. (See [Ko].) It is noted in 1.1 of [HVW]
and in [V] that if X is Tychonoff, there is a unique quasi-F space QF (X) (called
the quasi-F -cover of X) (resp. a unique minimal basically disconnected cover
BD(X) called the basically disconnected cover) and an irreducible perfect contin-
uous surjection of QF (X) (resp. BD(X)) onto X that is minimal among all quasi-
F spaces (resp. basically disconnected spaces) that map irreducibly, perfectly, and
continuously onto X. It is shown in Sections 1-3 of [DHH] that if X is compact,
then so is QF (X), and that C

(

QF (X)
)

consists of certain kinds of equivalence
classes of sequences of elements of C(X). So

∣

∣C
(

QF (X)
)∣

∣ = |C(X)|ω = |C(X)|,
and it is noted in [V] that if X is compact, then C

(

BD(X)
)

is the σ-completion
of C(X), whence

∣

∣C
(

QF (X)
)∣

∣ = |C(X)|ω = |C(X)|. Hence by Theorem 7.13, we
have:

Proposition 7.15. If X is compact and its quasi-F cover or its basically discon-
nected cover is functionally conservative then X is functionally conservative.

By 3.6(b), {0, 1}iω1 is not functionally conservative. So functional conservatism
is not a productive property. (We leave it to the reader to ponder the political
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implications of this result.) Despite this, functional conservatism shares some-
thing in common with productive properties. By 7.5(c) and 3.13, finite products
of functionally conservative spaces are pseudo-ω1-compact. Hence we have:

Theorem 7.16. Every continuous real-valued function on a product of function-
ally conservative Tychonoff spaces is determined by countably many coordinates.
Hence every product of functionally conservative spaces is pseudo-ω1-compact.

We conclude with some open questions about functionally conservative spaces.
Question 7A. Is there a functionally conservative space X such that |C(X)| >

2ω?
Question 7B. By Theorem 7.10, [0, ω1] is functionally conservative. If (m, t)

is a bad cardinal pair, in particular if m = iω1 , then [0,m] is not functionally
conservative by 3.3 and 3.4. What is the least cardinal α such that [0, α] is not
functionally conservative? Indeed, what can be said about the set α of cardinals
such that [0, α] is not functionally conservative?

Question 7C. Just before 7.16, we noted that {0, 1}iω1 is not functionally con-
servative, thereby showing that the class of functionally conservative spaces is not
productive. By 7.5(c), the product of countably many functionally conservative
spaces is functionally conservative. Thus with λ denoting the least cardinal for
which some product of λ-many functionally conservative spaces fails to be func-
tionally conservative, we have ω < λ ≤ iω1 . What is the value of λ? Is λ = c?
Is there a functionally conservative space X such that Xλ is not functionally
conservative?

Question 7D. Suppose X is compact and functionally conservative. Must
QF (X) or BD(X) be functionally conservative?

Question 7E. Is the functional conservatism of β
(

D(ω1)
)

independent of ZFC?
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