1-1-1953

On Rings of Entire Functions of Finite Order

Melvin Henriksen
Harvey Mudd College

Recommended Citation
ON RINGS OF ENTIRE FUNCTIONS OF FINITE ORDER

By MELVIN HENRIKSEN

[Received March 26, 1953]

In 1940, Helmer showed [1, Theorem 9] that in the ring R of entire functions, every finitely generated ideal is principal. That is, if f, g are entire functions without zeros in common, there exist s, t in R such that

$$sf + tg = 1. \quad (1)$$

He asked if this theorem is true in the ring R^* of all entire functions of finite order. A negative answer to this question existed already in 1936 in a paper of Whittaker [7, p. 256]. In particular if the zeros (a_n), (b_n) of f, g respectively are not sufficiently separated as $n \to \infty$, the equation (1) cannot hold with s, t in R^*. In 1940, making use of results of [7], Mursi showed [6] that if there is an $k > \max (\text{ord } f, \text{ord } g)$ such that the circles $S(a_n, |a_n|^{-k})$ with center a_n and radius $|a_n|^{-k}$ intersect none of the corresponding circles $S(b_m, |b_m|^{-k})$, then (1) holds with both ord s and ord t no greater than $\max (\text{ord } f, \text{ord } g)$.

In an earlier paper [2], the author showed that if M is any maximal ideal of R, the residue class field R/M is isomorphic with the complex field K. In this paper, under some restrictions, this theorem is extended to the ring R_λ of all entire functions of order no greater than λ, and hence to R^*.

Definition. Let $i_n(f, n)$ be the number of zeros of f contained in $S(a_n, |a_n|^{-h})$, where a zero of multiplicity m is counted m times.

Theorem. Let M' be a maximal ideal of R_λ containing a function f such that $i_n(f, n)$ is bounded for some n. Then R_λ/M' is isomorphic with K.

Madras Christian College
Tambaram

58 T. V. LAKSHMINARASIMHAN

REFERENCES

The proof proceeds as in [2, Theorem 5]. It is easily seen that R/M' has degree of transcendency c (where c is the cardinal number of the continuum) over the rational field. By a well-known theorem of Steinitz, it is only necessary to show that R/M' is algebraically closed.

Since a maximal ideal of any integral domain is prime, there is a g in M' such that $i_k(g, n) = 1$, for all n. In particular, all the zeros (b_n) of g are simple. Let $\Phi(z, X) = X^n + f_1(z) X^{n-1} + ... + f_m(z)$ be a polynomial with coefficients in R/M', of degree $m > 0$. For each n, $\Phi(b_n, X)$ is a polynomial with coefficients in K, which has m complex roots. Choose any such and call c_n. It is well known that $|c_n| < 1 + \max (|f_1(b_n)|, ... , |f_m(b_n)|)$. Since the order of the f_i, and the exponent of convergence of (b_n) do not exceed λ, it follows from a theorem of Macintyre and Wilson [5, Theorem 4] (also obtained independently by Leont'ev [4]) that there is a t in R such that $i(b_n) = c_n$. So $\Phi(z, t(z))$ is in M', whence the theorem.

Remarks:
1. The author does not know if there is a maximal ideal in R that fails to satisfy the hypothesis of the theorem.

2. There exist prime ideals of R_4 and R^* that fail to satisfy this hypothesis. For, the set B of elements of f of R_4 (or R^*) with $i_n(f, n)$ bounded for some h, is closed under multiplication. Hence, one can construct, with the aid of Zorn's lemma, prime ideals not intersecting B. See also [3].

3. If in the theorem R_4 is replaced by R^*, the constant h in the definition of $i_n(f, n)$ can be replaced by a positive, increasing function of $|z|$ such that $\lim \sup \frac{\log h(|a_n|)}{\log |a_n|}$ is finite. See [5, Theorem 5].

References

Purdue University
Lafayette, Indiana, U. S. A.