1-1-1957

On Minimal Completely Regular Spaces Associated With a Given Ring of Continuous Functions

Melvin Henriksen
Harvey Mudd College

Recommended Citation

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.
ON MINIMAL COMPLETELY REGULAR SPACES ASSOCIATED
WITH A GIVEN RING OF CONTINUOUS FUNCTIONS

Melvin Henriksen

1. INTRODUCTION

Let $C(X)$ denote the ring of all continuous real-valued functions on a completely regular space X. If X and Y are completely regular spaces such that one is dense in the other, say X is dense in Y, and every $f \in C(X)$ has a (unique) extension $\tilde{f} \in C(Y)$, then $C(X)$ and $C(Y)$ are said to be strictly isomorphic. In a recent paper [2], L. J. Heider asks if it is possible to associate with the completely regular space X a dense subspace μX minimal with respect to the property that $C(\mu X)$ and $C(X)$ are strictly isomorphic.\(^1\)

In this note, Heider's question is answered in the negative. It is shown, moreover, that if μX exists, then it consists of all of the isolated points of X, together with those nonisolated points p of X such that $C(X - \{p\})$ and $C(X)$ fail to be strictly isomorphic. Thus, if μX exists, it is unique.

2. PRELIMINARY REMARKS

Let $C(X)$ denote the ring of all continuous real-valued functions on a completely regular space X. Let $C^*(X)$ denote the subring of all bounded $f \in C(X)$. The following known facts are utilized below.

(2.1) Corresponding to each completely regular space X, there exists an essentially unique compact space βX, called the Stone-Čech compactification of X, such that (i) X is dense in βX, and (ii) every $f \in C^*(X)$ has a (unique) extension $\tilde{f} \in C^*(\beta X) = C(\beta X)$. Thus $C^*(X)$ and $C(\beta X)$ are isomorphic. (See, for example, [3] or [4, Chapter 5].)

(2.2) There exists an essentially unique subspace νX of βX such that (i) X is a Q-space, (ii) X is dense in νX, and (iii) every $f \in C(X)$ has a (unique) extension $\tilde{f} \in C(\nu X)$. Thus $C(X)$ and $C(\nu X)$ are isomorphic. (For the definition of Q-space, and a proof of this theorem, see [1] or [3].)

(2.3) If X and Y are completely regular spaces such that $C(X)$ and $C(Y)$ are isomorphic, then Y is homeomorphic to a dense subspace of νX such that every real-valued function continuous on this subspace has a (unique) continuous extension over νX. [3, Theorem 65.]

(2.4) If Z is any compact space, and f is any continuous mapping of X into Z, then there exists a (unique) continuous extension \tilde{f} of f over βX into Z. (See [5, Theorem 88].)

Received May 17, 1956.

The author was supported (in part) by the National Science Foundation, grant no. NSF G 1129. He is also indebted to Meyer Jerison for several helpful comments, and to L. J. Heider for an advanced copy of [2].

1 Since the writing of this paper, Heider's problem has been generalized and solved independently by J. Daly and L. J. Heider.
In the oral presentation of [2], Heider asked "... whether or not to each completely regular space \(X \), there is associated a completely regular space \(\mu X \) such that \(\mu X \) and \(v(\mu X) \) are homeomorphic, and \(\mu X \subset Y \subset vX \) for every completely regular space \(Y \) such that \(vY \) is homeomorphic to \(vX \)." By considering the special case \(Y = X \) in Heider's formulation, we see at once that \(\mu X \subset X \). Moreover, since \(v(\mu X) \) and \(vX \) are homeomorphic, it follows from (2.3) that \(\mu X \) is homeomorphic to a dense subspace of \(X \) all of whose continuous real-valued functions have continuous extensions over \(X \). Thus, it is natural to identify \(\mu X \) with its image in \(X \) under this homeomorphism; this identification leads to the formulation of Heider's problem given in the Introduction, namely: does there exist a dense subspace \(\mu X \) of \(X \) which is minimal with respect to the property that \(C(\mu X) \) and \(C(X) \) are strictly isomorphic?

We conclude this section with a definition.

Definition. If \(X \) is a completely regular space, let \(\eta X \) denote the union of the set of isolated points of \(X \) and the set of nonisolated points \(p \) of \(X \) such that \(C(X \sim \{p\}) \) and \(C(X) \) fail to be strictly isomorphic.

Thus, by (2.3), a nonisolated point \(p \) of \(X \) fails to be in \(\eta X \) if and only if every \(f \in C(X \sim \{p\}) \) has a (unique) continuous extension over \(X \).

3. Uniqueness of \(\mu X \)

We begin this section with a theorem which will be used below, and which we believe to be of some independent interest.

Theorem 3.1. If \(Y \) is a dense subspace of a completely regular \(X \) such that the rings \(C(Y) \) and \(C(X) \) (respectively, \(C^*(Y) \) and \(C^*(X) \)) are strictly isomorphic, then, for any (nonisolated) point \(p \in Y \), the rings \(C(Y \sim \{p\}) \) (respectively, \(C^*(Y \sim \{p\}) \) and \(C^*(X \sim \{p\}) \)) are strictly isomorphic.

Proof. Except for the part of the theorem in parentheses, it is enough, by (2.3), to show that every \(f \in C(Y \sim \{p\}) \) has a (unique) extension \(F \in C(X \sim \{p\}) \). As for the part in parentheses, it will be evident from the construction that if \(f \in C^*(Y \sim \{p\}) \), then \(F \in C^*(X \sim \{p\}) \).

Let \(\{U_{\alpha}\}_{\alpha \in A} \) be a base of neighborhoods in the space \(X \) of \(p \). The index set \(A \) becomes a directed set if we let the statement \(\beta \geq \alpha \) mean that \(U_{\beta} \subset U_{\alpha} \). Since \(X \) is completely regular, for each \(\alpha \in A \), there exists an \(i_{\alpha} \in C(X) \) such that \(i_{\alpha}(x) = 1 \) for \(x \in X \sim U_{\alpha} \), and \(i_{\alpha} \) vanishes on a neighborhood of \(p \). (To see this, let \(h_{\alpha} \in C^*(X) \) be such that \(h_{\alpha}(X \sim U_{\alpha}) = 1 \), and \(h_{\alpha}(p) = -1 \). Then let \(i_{\alpha}(x) = \max(h_{\alpha}(x), 0) \) for every \(x \in X \).) Let \(f \) be the function defined on \(Y \) by letting \(f_{\alpha}(y) = i_{\alpha}(y)f(y) \) for every \(y \in Y \sim \{p\} \), and by letting \(f_{\alpha}(p) = 0 \). Clearly, \(f_{\alpha} \in C(Y) \), and \(f_{\alpha}(y) = f(y) \) for all \(y \) outside of \(U_{\alpha} \). Now, by hypothesis (and (2.3)), \(f_{\alpha} \) has a unique extension \(F_{\alpha} \in C(X) \).

For each \(x \in X \sim \{p\} \), the set \(\{F_{\alpha}(x)\}_{\alpha \in A} \) forms a real-valued net [4, Chapter 2]. For each \(x \in X \sim \{p\} \), let \(F(x) = \lim_{\alpha \in A} F_{\alpha}(x) \). This limit exists since, if \(U_{\alpha x} \) is a basic neighborhood of \(p \) disjoint from \(x \), it follows from \(\beta \geq \alpha_x \) that

\[
F_{\alpha x}(x) = F_{\beta}(x) = F(x).
\]

It is clear that \(F \) is an extension of \(f \). We will show next that \(F \in C(X \sim \{p\}) \), by verifying that \(F \) is continuous at each \(x_0 \in X \sim \{p\} \).

Let \(V_{x_0} \cap U_{\alpha_0} \) denote disjoint neighborhoods (in \(X \)) respectively of \(x_0 \) and \(p \). If \(x \in V_{x_0} \cap U_{\alpha_0} \), then for any \(\beta \geq \alpha_0 \), \(F(x) = F_{\beta}(x) \). Hence the continuity of \(F \) at \(x_0 \) follows from the continuity of \(F_{\beta} \) at \(x_0 \). This completes the proof of the theorem.
COROLLARY. If \(Y \) is a dense subspace of the completely regular space \(X \) then, for any (nonisolated) point \(p \in Y \), if \(\nu Y \) and \(\nu X \) (respectively, \(\beta Y \) and \(\beta X \)) are homeomorphic, then \(\nu(Y - \{p\}) \) and \(\nu(X - \{p\}) \) (respectively, \(\beta(Y - \{p\}) \) and \(\beta(X - \{p\}) \)) are homeomorphic.

It will be shown next that if \(\mu X \) exists, then it is unique.

THEOREM 3.2. If with the completely regular space \(X \) there is associated at least one dense subspace \(\mu X \) minimal with respect to the property that \(C(\mu X) \) and \(C(X) \) are strictly isomorphic, then \(\mu X \) is unique. In fact, \(\mu X = \eta X \).

Proof. It follows from the definition of \(\eta X \), and from the fact that \(\mu X \) is dense in \(X \), that each of these spaces contains all the isolated points of \(X \). Hence we need only consider the nonisolated points of \(X \). We will show first that \(\mu X \subset \eta X \).

Let \(p \) be a nonisolated point of \(X \) contained in \(\mu X \). By the minimality of \(\mu X \), there exists an \(f \in C(\mu X - \{p\}) \) with no continuous extension over \(\mu X \). But, by Theorem 3.1, \(f \) has an extension \(F \in C(X - \{p\}) \). If \(p \) were not in \(\eta X \), \(F \) would have a continuous extension over \(X \), whose restriction to \(\mu X \) would in turn be a continuous extension of \(f \) over \(\mu X \). Hence \(p \in \eta X \), whence \(\mu X \subset \eta X \).

Suppose there were a point \(p \in \eta X - \mu X \). If \(f \in C(X - \{p\}) \), then since \(C(\mu X) \) and \(C(X) \) are isomorphic, the restriction of \(f \) to \(\mu X \) has a continuous extension over \(X \). This latter would be a continuous extension of \(f \) over \(X \), contrary to the assumption that \(p \in \eta X \). Hence \(\mu X = \eta X \). This completes the proof of the theorem.

COROLLARY. A necessary and sufficient condition that \(\mu X \) exist (in which case it is equal to \(\eta X \)) is that \(\eta X \) be dense in \(X \) and that every \(f \in C(\eta X) \) have a (unique) extension \(f^* \in C(X) \).

As noted by Heider [2], \(\mu X = \eta X = X \), provided every point of \(X \) is a \(G_\delta \).

4. THE SUBSPACE \(\mu X \) NEED NOT EXIST

In this section we give an example of a completely regular space \(X \) such that \(\mu X \) does not exist. In fact, for this \(X \), \(\eta X \) is dense in \(X \), but \(C(\eta X) \) and \(C(X) \) are not isomorphic.

We begin by generalizing a result of Hewitt [3, p. 62].

THEOREM 4.1. Let \(Y \) be a noncompact completely regular space, and suppose that \(Y \subset X \subset \beta Y \) and that \(\beta Y - X \) has power less than \(\exp \exp N_0 \). Then \(\nu X = \beta X = \beta Y \).

Proof. We will show first that \(C(X) = C^*(X) \), thus verifying that \(\nu X = \beta X \). (See (2.1) and (2.2).) For any \(f \in C(X) \), let \(f^* \) denote its restriction to \(Y \). As noted in [1], \(f^* \) may be regarded as a continuous mapping of \(Y \) into the one-point compactification \(R \cup \{\infty\} \) of the real line \(R \). By (2.4), \(f^* \) has a (unique) continuous extension \(f^* \) over \(\beta Y \) into \(R \cup \{\infty\} \). Since \(Y \) is dense in \(X \), the function \(f^* \) is also an extension of \(f \).

Now the set \(G = \{ y \in Y : f^*(y) = \infty \} \) is a closed \(G_\delta \) of \(\beta Y \), and it is contained in \(\beta Y - X \subset \beta Y - Y \). Hewitt has shown [3, Theorem 49] that every nonempty closed \(G_\delta \) of \(\beta Y \) contained in \(\beta Y - Y \) has power at least \(\exp \exp N_\beta \). On the other hand it is evident, from the hypothesis, that \(G \) has power less than \(\exp \exp N_\beta \). Hence \(G \) is empty. So \(f^* \in C^*(Y) \), and it follows that \(f \in C^*(X) \). Thus \(\nu X = \beta X \).

Since \(X \) is dense in \(\beta Y \), and \(\beta Y \) is compact, in order to conclude that \(\beta X = \beta Y \) it suffices, by (2.1), to show that every \(f \in C^*(X) \) has a (unique) extension \(f^* \in C^*(\beta X) \). We may take \(f^* \) to be the (unique) extension over \(\beta Y \) of the restriction of \(f \) to \(Y \).

This completes the proof of the theorem.
Example. Let Y be any completely regular space that admits unbounded continuous real-valued functions, and such that $\eta Y = Y$. (In particular, Y could be any infinite discrete space.) Let $X = \beta Y$. For each $p \in \beta Y - Y$, it follows from Theorem 4.1 that $\nu(X - \{p\}) = X$. Hence, $\eta X \subset Y$, and since $\eta Y = Y$, it follows that $\eta X = Y$. But, although ηX is dense in X, no unbounded $f \in C(Y)$ has a continuous extension over the compact space X. Thus, by the corollary to Theorem 3.1, μX does not exist.

REFERENCES

Purdue University