


such that the approval voting outcome ofp is rapp, and the positional voting outcome 
with respect to w is rpos. 

Proof. It must be the case that either w and if i are linearly independent or w and 02 are 
linearly independent. Suppose, without loss of generality, that w and 02 are linearly 
independent. Set pi and p2 such that piili = rapp, p2a2 = 0, and p2w = rpos - PiW, 
which we know can be done by Theorem 1. Then set p3 = • • • = pw_i = 0. The re- 
sulting ranked approval profile p has the desired property. Furthermore, by Theorem 1, 
there are an infinite number of such ranked approval profiles. ■ 

6. EQUIVALENT WEIGHTING VECTORS AND EFFECTIVE SPACES. At 
this point, it is helpful to put an equivalence relation on weighting vectors. The idea 
is that two weighting vectors should be equivalent if and only if they yield the same 
ordinal rankings for all profiles. For convenience, we focus our attention on the fully 
ranked situation throughout this section. 

Let the all-ones vector in Qn be denoted by 1. We say that two weighting vectors w 
and x in Qn are equivalent, and write w ~ x, if and only if there exist a, ß e Q such 
that a > 0 and x = aw + ßl. This equivalence relation is often used in the literature 
to simplify calculations and to pinpoint non-cosmetic differences between different 
positional voting procedures. 

To motivate this equivalence relation, note that, for any positive rational number 
a e Q, it makes sense to say that w is equivalent to aw since, for every p e M(lî -tl), 
the ordinal ranking given by Tw(p) is exactly the same as that of Tayv(p). After all, the 
entries in Tayf(p) are simply the entries of Tw(p) multiplied by a > 0. 

Furthermore, suppose a, ß e Q where a > 0. If x = aw + ßl, then the ordinal 
ranking given by Tx(p) is exactly the same as that given by Tw(p). This is because the 
addition of ßl to aw changes each candidate's score by exactly the same amount. 

Note that w ~ x if and only if there is a positive rational number y e Q such that 
w = y% i.e., the sum-zero component of w is a positive multiple of the sum-zero com- 
ponent of x. This is helpful to see because, by Theorem 1, it means that two weighting 
vectors w and x will always yield the same outcome if and only if w ~ x. We therefore 
have the following theorem: 

Theorem 3. (Theorem 2.3.1 in [10]) Let n>2, and let w and x be weighting vectors 
in Qn. The ordinal rankings ö/7w(p) and Tx(p) will be the same for all p e M(l'~A) if 
and only ifvt ~ x. 

It is helpful to view Theorem 3 in terms of effective spaces, which is an approach 
used extensively and with great success by Saari (see, for example, [12], [13], [14], 
and [16]). Recall that the effective space E(T) of a linear transformation T is the or- 
thogonal complement keriT)1 of the kernel of T. For convenience, if w is a weighting 
vector, then we will denote the effective space of Tw by £(w) (rather than EiT^)). 

As a QSn -submodule of the profile space QSn, the effective space £(w) of any 
nontrivial sum-zero weighting vector w is isomorphic to S(n~hl). If w e Qn has a 
nontrivial projection onto the all-ones vector and w ̂  0, then £(w) = 5(w) © S(n~M). 
On the other hand, if w is simply a nonzero multiple of the all-ones vector (so w = 0), 
then £(w) = S(n) (and we only get ties). 

Theorem 4. Let w and x be nontrivial sum-zero weighting vectors in Qn. Then 
£(w) = E(x) if and only ifw^xorw  x. Furthermore, if £(w) ̂  £(x), then 
£(w) H £(x) = {0}. 

678 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 1 16 



Proof. Suppose £(w) = £(x). This implies that ker(Tw) = ker(rx) = ker(7Lx). By 
Theorem 1, if w no x and w oo - x, then there exists a profile p such that pw ̂  0 and 
px = p(-x) = 0. Thus, if £(w) = £(x), then w~xorw~ -x. 

On the other hand, if w ~ x or w ~ -x, then w and x are linearly dependent 
(since we are assuming that w = w and x = x). Thus, ker(rw) = ker(rx), implying 
that £(w) = £(x). 

Finally, £(w) n E(x) is a submodule of both £(w) and £(x), and £(w) and E(x) 
are simple submodules (that are isomorphic to S{n~Xìì)). Thus, if E(w) ^ £(x), then it 
follows that £(w) n E(x) = {0}. ■ 

By Theorem 4, distinct effective spaces for sum-zero weighting vectors intersect 
only at 0. We can, however, say more. To explain, we write w J_ x if the dot product 
of w and x is zero, i.e., if they are orthogonal. Furthermore, if U and W are subspaces 
of a vector space such that every vector in U is orthogonal to every vector in W, then 
we write U J_ W. 

Recall that we may view permutations a € Sn as tableaux in M(1  1}. For example, 
the permutation a = (124) (35) corresponds to the tableau 

~2~ 
4 
5 
1 
"T 

in M01110. In particular, note that the position that candidate j occupies with respect 
to the permutation a is given by or"1 (y), in which case, for a weighting vector w = 
[tüi, . . . , w„]', candidate y would receive uv-i^) points. 

Theorem 5. Ifxv and x are nontrivial sum-zero weighting vectors in Qn, then E(v?) _L 
E(x) if and only ifw _L x. 

Proof First, note that £(w) is simply the row space of Tw when we view Tw as a matrix 
with respect to the indicator functions of Af (1--1). It follows that if £(w) J_ £(x), then 
each row of Tw is orthogonal to each row of Tx. The dot product of the first row of 7W 
and the first row of Tx, however, is a non-zero multiple of the dot product of w and x, 
as we show below in (1). It follows that if £(w) _L £(x), then wlx. 

On the other hand, suppose w _L x. Partition the permutations of the candidates into 
n sets X', . . . , Xn where X¿ contains the permutations that have the first candidate, 
d, in the ith position. Within each X,-, every candidate other than c' occupies every 
position other than the fth position the same number of times, namely (n - 2)! times. 
This is because the ith position is taken by c' , and by fixing Cj,j ^ 1, in some position, 
we are free to place the other candidates in (n - 2)! ways. 

The columns of Tw are indexed by the permutations of the n candidates. The entry 
in row j and column o is wa-'U), which is, of course, the weight given to candidate j 
based on the permutation a. 

Let r' (w) be the first row of Tw, and let r, (x) be the j th row of Tx. These rows may 
be viewed as elements of QSn, where (n(w))(or) = wo-'{X) and (rj(x))(a) = xa-'{j). 
Taking dot products yields 
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n(w) • r;(x) = J2w"-Hnx<T-Hj) 
o 
n 

= X X W°-H')xo-Hj) 
i=l aeXi 

n 

1=1 0<€X; 

If; = l.then 

J2 x°-lU) = ̂ 2 x"-xw = (n - 1)bCi- 
creX/ aeX,- 

It follows that 
n 

r,(w)T1(x) = 
^«;i((n-l)!jc/) 
1 = 1 

= (n-l)!^u;/x/ 
i=i 

= (n-l)!(w-x) (1) 
= 0 

since w ± x. 
On the other hand, if j ^ 1, then 

J2 xo-Hj) = (n - 2)'J2*k = (" - 2)! (-*.•). 

which implies that 

n 

n(w) - r;(x) = £ u;,.«* - 2)!(- je,-)) 
i=i 

n 

= -(n-2)'J2wixi 
i=i 

= -(n-2)!(w.x) 
= 0. 

Thus, if w ± x, then we have that ri(w) J_ ry(x) for all 1 < j < n. To complete the 
proof, note that the ith row of Tw is the result of acting on rx (w) with the transposition 
I = (1 î) that swaps 1 and /. It follows that 

rf(w) • o(x) = gr^w)) • (Çr/x)) = n(w) • rHj)(x) = 0. 

Thus, the row space of Tw is orthogonal to the row space of Tx. In other words, £(w) J_ 
£(x). ■ 
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7. THE BORDA COUNT. If you are familiar at all with Saari's work, then you know 
that the Borda count, i.e., the positional voting procedure for n candidates that uses the 
weighting vector w = [n - 1, n - 2, . . . , 2, 1, 0]', plays a special role when it comes 
to positional voting. In this section, we use the algebraic framework we have thus far 
created to show why this is the case. In doing so, we also begin to pave the way toward 
an analogue to the Borda count for partially ranked voting data. 

To motivate our discussion, consider the so-called Copeland method for running 
an election. This procedure is based on information concerning head-to-head contests 
between the candidates. For each candidate c¡, let w(i) and Z(i') be the number of 
head-to-head contests won and lost, respectively, by c,-. The winner under Copeland's 
method is the candidate whose difference w(i) - /(/) is largest. 

In our "three-candidate and eleven-voter" example, candidate c3 defeats both c' 
and C2 in head to head contests, and C2 defeats c'. The scores for candidates c', ci, 
and c3 are therefore 0 - 2 = -2, 1-1=0, and 2-0 = 2, respectively. Thus, c3 is 
the winner using the Copeland method. Note, by the way, that c3 beat all of the other 
candidates in head-to-head contests. When such a candidate exists, she is said to be a 
Condorcet winner. 

What makes the Copeland method interesting for us is that all of the results can be 
derived from the image of a map P : M(1' 1} ->► m(11/i"2) which we call the pairs 
map. The idea behind the pairs map is that it extracts all of the necessary information 
concerning pairs of candidates (think head-to-head contests). The defining character- 
istic of P is that it maps a tabloid u in Xa 1} to the sum of all tabloids in x(llw~2) in 
which the candidates who are ranked first and second are ranked in the same order as 
they are ranked in u. 

For example, suppose n = 4. Then the image of the tabloid 

T~ 
1 
4 
2 

is 

ti iti iti rn nn nr 
2 4 | 1 1 2 | 1 1 4 | I 2 3 | 1 3 4 | | 1 3 

Given the profile p e M (1 "•'1), the scores for Copeland's method can all be deter- 
mined from the image of p under the pairs map. You need only consult the coefficients 
of P(p) to determine the winner of each head-to-head contest. Moreover, there are 
several examples of voting procedures that essentially rely solely on pairs data (see, 
for example, a list of such procedures in Chapter 4 of [1]). 

An interesting question now arises. What relationship, if any, is there between a map 
Ty, and the pairs map P? To make this question more concrete, let T : V -> W and 
V : V -► U be two linear transformations defined on the same vector space V. We 
say that T is recoverable from T if there exists a linear transformation R : W -► U 
such that T = R o T. It is easy to show that T is recoverable from T if and only if 
ker(r) ç ker(r) which, in turn, occurs if and only if E(T') ç E(T). 

This leads us to a much more specific form of the question above. For what weight- 
ing vectors w e Qn is Tw recoverable from P? To answer this question, we will focus 
on the effective spaces of our positional voting procedures and pairs map. Once again, 
the representation theory of the symmetric group will play an important role. 
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The first thing we want to do is to note that the pairs map P : M(1' ° -> M(lln"2) 
is a QSn -module homomorphism. Thus, we may make use of Schur 's Lemma. Next, 
we turn our attention to the effective space of P. The codomain M(lln~2) of the pairs 
map P has the following decomposition into simple submodules: 

^(l.l.n-2) 
~ 

£(«) 0 ^(n-1,1) 0 £(/i-U) 0 ^(n-2,2) 0 ^(n-2,1,1) 

Furthermore, it can be shown (using, for example, a dimension argument) that the im- 
age, and therefore the effective space, of P is isomorphic to S(n) 0 S(n~hi) 0 5(n"211). 
Since there is only one copy of S*"-1«1) in this decomposition, it follows by Theorem 4 
that there are at most two nontrivial equivalence classes of weighting vectors whose 
effective spaces are contained in the effective space of P. As the following theorem 
(which is essentially implied by Theorem 3.2.1 in [10]) shows, there are such equiv- 
alence classes. They are the equivalence classes that contain the Borda count and its 
negative. 

Theorem 6. Let n > 2, and let w e Qn be a nontrivial weighting vector (i.e., w <* 1). 
The map Tw is recoverable from the pairs map P if and only ifyv or - w is equivalent 
to the Borda count. 

Proof By the above discussion, it is enough to show that if w is the Borda count 
weighting vector, i.e., w = [n - 1, n - 2, . . . , 2, 1, 0]' € Qn, then Tw is recoverable 
from P. This, however, is trivial. In fact, the results vector one obtains by using the 
Borda count can be (and often is) viewed as the sum of the points awarded to a candi- 
date from all of her head-to-head victories, and these points are encoded (blatantly) in 
the image of the pairs map P. ■ 

One of the nice properties that the Borda count enjoys is that if there is a Condorcet 
winner, she is never ranked last by the Borda count (see, for example, Corollary 5 
in [12]). By Theorem 1, any weighting vector that is not equivalent to w = [n - 1, 
n - 2, . . . , 2, 1, 0]' does not enjoy this property. In fact, in the class of positional vot- 
ing procedures for fully ranked profiles, the Borda count maximizes the probability 
that a Condorcet winner is actually ranked first [20]. For more on the relationship 
between the Borda count and Copeland's method, see [7] and [17]. 

The Borda count also has what is called reversal symmetry. In other words, under 
the Borda count, if all of the voters were to completely reverse their ballots so that 
their first choice is now their last, their second choice is now second to last, and so 
on, then the resulting ordinal ranking would be the complete reversal of the original 
result. When n = 3, the Borda count is the unique weighting vector (up to equivalence) 
with this property, but when n > 4, there are others. For example, w = [6, 5, 1, 0]' 
has this property. This is easy to see, however, once you recognize that [6, 5, 1, 0]' ~ 
[3,2,-2,-3]'. 

8. ANALOGUES TO THE BORDA COUNT. Recall that if voters are returning 
fully ranked ballots, then the Borda count and its negative are the unique (up to equiv- 
alence) nontrivial positional voting procedures that are recoverable from the pairs map. 
What if, however, the voters do not return fully ranked ballots? What if it has been de- 
cided that it is infeasible to ask voters to rank all of the candidates? 

In this section, we turn our attention to the "rank-only-your-top-£" situation in 
which À = (l,...,l,/i-fc) = (1*, n - k). By generalizing only slightly the pairs 
map P : M(1  1} -> MilXn'2' we are able to generalize Theorem 6 to the "rank- 
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only-your-top-&" situation. Interestingly, and in contrast to the fully ranked case, we 
show that there is more than one "Borda-like" equivalence class of weighting vectors. 

We generalize the pairs map as follows. Let 0 < r < 1, and define P* : M(1 >n~k) - ► 
M(llw~2) as we did for the pairs map P in the full ranking case, except now, if two 
candidates c, and c, are tied for last place, then we assign both of the ordered pairs 
(cf , Cj) and (c,, c,-) the value r (think "points for tying"). By letting r be a parameter, 
we are able to consider simultaneously an infinite number of analogues of the pairs 
map P. 

For example, suppose n = 4 and k = (1, 1, 2). Then the image of the tabloid 

~2~ 

J  3_ 
is 

jü PE] p[] pD H E] CE 
T] + T~| + ~3~| +T~1 +T] +r T] +r T] . 
1 3 | 3 4 I 1 4 | 2 3 1 1 2 | 2 4 | _2  4_ 

We now have the following question. For which partial weighting vectors w = 
[w', . . . , Wk+iY is Ty, recoverable from P*? To answer this question, define b = 
[b', . . . , bk+iY to be the partial weighting vector corresponding to k = (1*, n - k) 
where b¡ = n - i for 1 < i < k and 

bk+l = ^(n-k-l). 

This is the partial weighting vector one would get by "averaging the Borda count 
with respect to À." In other words, we essentially use the Borda count for the top k 
candidates, but we assign the average of the last n - k Borda count points to each of 
the last n - k candidates. This average is 

n-k 
' 

(O+i+2+...+(„-*-,>)=<"-^'*;-*> 2(n-k) n-k 2(n-k) 

= l(n-k-l)=bk+l. 

Similarly, we define bT = [b', . . . , è£+1]' in exactly the same way, except that we 
set 

bl+i=T(n-k-l). 

In other words, b] = bt for 1 < / < Jfc, but b'+x = 2rbk+'. Thus, if r = 1/2, then 
b = bT. 

Our first goal is to show that both Tb and Thr are recoverable from P*. That is, we 
want to show that there exist linear transformations cph and Vv such that Tb = (f^o P* 
and rbr = for o P*. With that in mind, note that if v e M(llw"2), then we can express 
v as a linear combination of tabloids in x(lln~2). Let vij be the coefficient in this linear 
combination of the tabloid in which c¡ and Cj are ranked first and second, respectively. 
Then define 

far : M(M'w-2) -► M(1'w-1} 
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by setting 

In other words, the result corresponding to the ith candidate is determined by summing 
all of the entries corresponding to the ordered pairs (i, j) where j 5¿ i , i.e., all of the 
pairs in which candidate c¡ is beating some other candidate. 

The map Vv is easily seen to be a QSn -module homomorphism. If we let ue be the 
indicator function corresponding to the tabloid that contains the identity permutation 
e e Sn, then we may easily check that 

[(irhroPTk)(ue)]i=bJ. 

Together with the fact that Vv and P* are QSn -module homomorphisms, this implies 
that Thr = i/v o P*. Thus, Tbr is recoverable from P*. 

Similarly, we may construct a linear transformation ^ such that Th = ^ o P*. 
First, note that for any indicator function m, if we sum the entries of P*(k), we always 
get the same value E where 

E = (n-l) + (n-2) + .>- + (n-k) + 2r(n~ Y 

With that in mind, we define the QSn -module homomorphism 

by setting 

z '^ * k,l J 

Again, we may check (perhaps with a bit more work this time) that 

[(<phoPzk)(ue)]i=bi. 

Thus, Tb = cpbo P*, implying that Th is also recoverable from P*. 
Our next goal is to show that b and bT are equivalent if and only if r = 1/2. This 

is straightforward. If they were equivalent, then the ratios of the differences between 
successive entries would have to be the same. In particular, it would be the case that 

bk - bk+i b' - bTk+l 

This, however, is true if and only if r = 1/2, since the above equation reduces to 

 1  1 

(n-k)-'{n-k- 1) 
~ 

(n-k)-r(n-k- 1) 

and solving for r shows that r = 1/2. We therefore have the following proposition: 

Proposition 1 . J^he weighting vectors b and br are equivalent if and only ifx = 1/2 
(in which case b = bT). 
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Finally, we turn our attention to characterizing those weighting vectors that are 
recoverable from P*. We begin with a proposition. 

Propositions. If x = 1/2, then the image of P* : M^'""^ -> M^Xn~2) contains 
exactly one copy of the simple module S(n~l'lK 

Proof Let / be the image of P*. Since / is a submodule of m(11w~2), and the simple 
module 5(w"11} appears exactly twice in any decomposition of M(hhn~2) into simple 
modules, we know that any decomposition of / into simple modules can contain at 
most two copies of S^n~ltl' Furthermore, since b is a nontrivial weighting vector and 
Th = (fa o P*, we know that / must contain at least one copy of s(n~lilK 

Let J be the direct sum of the two simple modules that are isomorphic to 5(n"11} in 
a decomposition of Af (lflfB"2) into simple modules. In other words, J is the so-called 
isotypic subspace of M(lln~2) corresponding to S^n~]jl' It turns out that any simple 
submodule of M(lln"2) that is isomorphic to 5(w~11} is necessarily a submodule of /. 
We will make use of this fact shortly. 

Assume, for the sake of contradiction, that / contains two copies of S(n~h 1} when we 
decompose it into simple modules. In other words, assume that J ç /. Since r = 1/2, 
we have that Th = Thx . This implies that ̂b ° P£ = Vv ° P£, and therefore that 

is the zero linear transformation. It follows that any vector in / must be in 
ker(<pb - Vv)- In other words, / ç ker((pb - Vv). 

Our assumption is that J ç. I. Given the above, we may contradict this assumption 
by finding a vector in J that is not in ker(<pb - t/v)- With this in mind, for each 
1 < i < n, let V/ € M(lln~2) be such that the coefficient corresponding to an ordered 
pair that contains i is (n - 2)/2, and is -1 otherwise. 

The sum of the entries of v,- is zero. Furthermore, these vectors generate a sub- 
module that is isomorphic to 5(n~11}. Thus each vf is in the 5(n"11} isotypic space 
/ of M(11/I"2), implying that each v,- is in /. One may easily verify, however, that 
V/ € ker <pb, but that v, £ ker i/v . Since this is a contradiction, it must be the case that 
/ contains exactly one copy of 5(n"lf 1). ■ 

The following theorem characterizes those weighting vectors that are recoverable 
from the map P*. More specifically, it says that, with respect to PT*, weighting vectors 
related to b and br form the analogues of the Borda count weighting vector [n - 1 , 
n - 2, . . . , 1, 0]' when it comes to the "rank-only-your-top-£" situation. 

Theorem*). Let w be a partial weighting vector with respect to X = (lk,n -k)where 
1 < k < n - 2. The positional map Tw is recoverable from the map Pk if and only if 
w is a linear combination of h and br. 

Proof If w is a linear combination of b and bT, then Tw is clearly recoverable from 
P*. On the other hand, suppose that Tw is recoverable from the pairwise map P*. If 

b^bT, then {b, bT} is a basis for the recoverable sum-zero weighting vectors since 
the image of P* contains at most two copies of the simple module S(rt~U). Thus w 

is a linear combination of b and bT. If b = br, however, then by Proposition 8, {b} 
is a basis for the recoverable sum-zero weighting vectors. In either case, the theorem 
follows. ■ 
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Recall that one of the nice properties of the Borda count is that if there is a Con- 
dorcet winner, then she is never ranked last by the Borda count. Condorcet win- 
ners make sense in the "rank-only-your-top-fc" situation as well since the pairs map 
p - M(1,...,D _» MdXn-2) and pk . M(lk,n-k) _+ M(hhn-2) haye the same codomain. 
It turns out that if a profile p e M(lk'n~k) has a Condorcet winner with respect to P*, 
then it has the same Condorcet winner with respect to all maps P*, where 0 < x' < 1. 
In other words, the existence of a Condorcet winner does not depend on r . 

As in the fully ranked case, it also turns out that if a Condorcet winner exists in 
the "rank-only-your-top-fc" situation, then she will never be ranked last under the po- 
sitional map 7b. More importantly, given what we have seen so far, it should hardly 
come as a surprise that this statement is not true for any other weighting vector w such 
that b is not equivalent to w. Therefore, if the notion of a Condorcet winner is impor- 
tant to you, then it would certainly be reasonable to say that b is the unique (up to 
equivalence) analogue of the usual Borda count. 
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A Proof of the Pythagorean Theorem 

A,. 

-i x '/D a - x ^v. 
cu 

-i  x 
*-s  

a - x 
^z? 

Let the lengths of the sides of the right triangle A ABC be a, b, and c' as usual. 
Construct AD bisecting ZCAB, and DE perpendicular to AB. Then AADC = 
AADE. Let x = CD = DE. Then since ADBE is similar to AABC, we have 
x/{a - x) - b/c, and therefore x = ab/(b + c). But we also have (c - b)/x - 
a/b, so c - b = xa/b = a2 /(b + c), and therefore a2 + b2 = c2. 

- Submitted by Sang Woo Ryoo, student, Carlisle High School Carlisle, PA 

Editor's Note: Although this proof does not appear to be widely known, it is 
a rediscovery of a proof that has appeared in print before (E. S. Loomis, The 
Pythagorean Proposition, 2nd ed., National Council of Teachers of Mathemat- 
ics, Washington, DC, 1968, pp. 26-27). Loomis's proof can itself be seen as a 
refinement of an earlier proof (B. F. Yanney and J. A. Calderhead, New and old 
proofs of the Pythagorean theorem, this Monthly 3 (1896) 65-67). 


