2-29-2016

Review: On rank one perturbations of complex symmetric operators

Stephan Ramon Garcia
Pomona College

Recommended Citation
(Reviewer: Stephan R. Garcia)
Let \mathcal{H} denote a separable, complex Hilbert space. A bounded linear operator $T: \mathcal{H} \to \mathcal{H}$ is a complex symmetric operator (CSO) if there is a conjugation $C: \mathcal{H} \to \mathcal{H}$ so that $T = CT^*C$ (a conjugation is a conjugate-linear, isometric involution). One says that T is decomposable if for every open cover $\{U, V\}$ of \mathbb{C}, there are T-invariant subspaces \mathcal{X} and \mathcal{Y} so that $\mathcal{H} = \mathcal{X} + \mathcal{Y}$, $\sigma(T|_\mathcal{X}) \subseteq \overline{U}$, and $\sigma(T|_\mathcal{Y}) \subseteq \overline{V}$. The authors study the decomposability of rank-one perturbations of CSOs. They also investigate conditions under which such a perturbation is hyponormal or satisfies the σ-Weyl theorem. They study several instructive examples based on shift operators and truncated Toeplitz operators.

Stephan R. Garcia

© Copyright American Mathematical Society 2016