Review: Nevanlinna-Pick spaces with hyponormal multiplication operators

Stephan Ramon Garcia
Pomona College

Recommended Citation
The main result of this paper (Theorem 1.1) shows that the classical Hardy space H^2 is essentially the only complete Nevanlinna-Pick space whose multiplication operators are all hyponormal. To be more specific, if \mathcal{H} is an irreducible complete Nevanlinna-Pick space on a set X with kernel K such that all multiplication operators on \mathcal{H} are hyponormal, then either:

1. X is a singleton and $\mathcal{H} = \mathbb{C}$.
2. There is a set of uniqueness $A \subset \mathbb{D}$ for H^2, a bijection $j: X \to A$, and a nowhere vanishing function $\delta: X \to \mathbb{C}$ such that

$$K(\lambda, \mu) = \delta(\lambda)\overline{\delta(\mu)} k(j(\lambda), j(\mu)).$$

Here $k(z, w)$ denotes the Szegö kernel on H^2.

In particular, the map $f \mapsto \delta(f \circ j)$ is a unitary operator. Continuity and analyticity are also respected: if X is endowed with a topology such that K is separately continuous on $X \times X$, then j is also continuous. If $X \subset \mathbb{C}^n$ and K is holomorphic in the first variable, then j is holomorphic.

An interesting consequence of the main theorem is Corollary 1.3, which asserts that if $n \geq 3$ and $U \subset \mathbb{R}^n$ is an open set, then there is no irreducible complete Nevanlinna-Pick space on U which consists of continuous functions and whose multiplication operators are all hyponormal. The proof appeals to Brouwer’s invariance of domain theorem.

Stephan R. Garcia

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2016