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Abstract 

Individuals in modern Western societies are experiencing increasing sedentary lifestyles, 

overindulgence of high fat, high-sugar diets, and extremely sterilized conditions, putting 

immense pressure on researchers and clinicians alike to come up with viable treatments for 

conditions implicated with an aging society. Emerging research have published the benefits of 

IMS and metabolic switching in a variety of neuroprotective, cellular stress resistance, and 

neuroplasticity pathways in animal models and clinical results from randomized trials of IMS 

regimens with susceptible human populations are soon to be published. The application of 

genome editing and next-generation sequencing (NGS) strategies to clinical and 

neurodegenerative research continues to elucidate the relationship between a patient’s specific 

genetic background and modern environmental stressors towards disease pathology. This study 

attempts to utilize novel CRISPR/Cas9 strategies to introduce targeted gene edits and explores the 

role of reduced ketone-body synthesis/metabolism with 3-hydroxymethyl-3-methylglutaryl-CoA 

lyase HMGCL KO, in the therapeutic and neuroprotective potential of intermittent metabolic 

switching in 3xTg mice, genetically predisposed for Alzheimer pathology. IMS-mediated 

attenuation of hippocampal spatial memory deficits was confirmed in 5-month-old 3xTg mice 

using Morris Water Maze and Aβ1-40, Aβ1-42, total tau and p-tau levels were calculated 

accordingly. Mice receiving time-restricted feeding (TRF) and caloric restriction (CR) regardless 

of KO performed better in the hippocampal-dependent spatial memory test and ELISA analysis of 

CSF revealed reduced p-tau levels of 3xTg WT TRF + CR mice relative to WT control or the two 

experimental groups. Overall, genetic modifications of key metabolic enzymes highlight the 

variable therapeutic results of the glucose to ketone metabolic switch on cognitive deficits 

depending on an organism’s genetic background.  
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Emergence of Alzheimer Disease  

The NIH has stated that the percentage of the world population over 65 years old is expected to 

double to 1.6 billion people by the year 2050, putting immense pressure on researchers and 

society alike to provide reproducible solutions to the issues faced by an aging population and 

their families (Hebert et al., 2013). Accordingly, the rising prevalence of Alzheimer disease 

(AD) and other dementia-like disorders has placed genetic data analysis and transgenic animal 

studies at the forefront of pharmacogenetics and clinical research. Progress in understanding 

the complex etiology of early and late on-set forms of AD have largely stemmed from the 

application of molecular and cellular manipulations against genetic backgrounds implicated in 

disease progression and have shed light on the complex interaction of genetic and 

environmental factors in the pathogenesis of AD. This proposal attempts to address three main 

hypotheses: Can CRISPR/Cas9 transfected embryonic stem cells and surrogate transplantation 

lead to viable chimeric HMGCL KO strain in 3xTg AD mice? How does IMS affect cognitive 

abilities in 6-month-old 3xTg/HMGCL-/- compared to 3xTg/WT littermates? What effect does 

IMS and gene KO have on levels of Aβ protein and p-tau concentrations? Is cell death observed 

in hippocampal slices? 
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Alzheimer Disease Pathology 

Traditionally, Alzheimer disease pathology has been well characterized by the amyloid cascade 

hypothesis (Hardy & Higgins, 1992). This study concludes that the extracellular aggregation of 

amyloid beta (Aβ) protein from aberrant cleavage of the amyloid precursor protein (APP) leads 

to neurotoxic amyloid plaques, ultimately contributing to the formation of intracellular 

neurofibrillary tangles (NFTs), hyper-phosphorylated microtubule associated protein tau 

pathology, and subsequent cell death (Hardy & Higgins, 1992, Grundke-Iqbal et al., 1986). Since 

the early identification of mutations associated with APP, researchers have refined the diagnoses 

of familial early onset forms of AD to also include mutations in presenilin-1 or presenilin-2, which 

are the catalytic subunits of gamma-secretase, implicated in the pathway that generates the 

insoluble Aβ1-42 protein aggregates (Lanoiselée et al., 2017, Murphy & LeVine, 2010). 

Recently, Haass & Selkoe have demonstrated that small soluble oligomer intermediates formed 

in the aggregation process lead to synaptic dysfunction and that these insoluble Aβ1-42 plaques 

can act as “reservoirs of bioactive oligomers” in the etiology of AD (2007). Post-mortem analysis 

of AD patient brain tissue has confirmed both morphological hallmarks of the disease, the 

extracellular AB protein aggregates, and intracellular hyper-phosphorylated tau protein leading to 

cytotoxic insult and ultimately cell death, cognitive decline, and disease progression (Selkoe, 1991, 

LaFerna & Green, 2012, Thal & Brak, 2005). Mutations in this tau protein, responsible for 

microtubule assembly stability and microtubule binding, result in the protein’s hyper-

phosphorylation and propensity to form paired helical filaments causing subsequent axonal 

damage and neurofibrillary tangle formation (Matsue et al., 1994, Grundke-Iqbal et al., 1986). The 

mutations in the aforementioned genetic loci by themselves are not sufficient to cause cognitive 

decline associated with AD as studies have shown patients with elevated levels experience normal 
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physiologies. Therefore, disease progression is dependent on several other known risk factors 

including the apolipoprotein E allele (APOE-e4) in late-onset AD, inflammatory signatures, diet 

and exercise, and other environmental factors that affect neuron durability and synaptic coherence 

(Stritmatter et al., 1993, Wyss-Coray, 2006, Scarmeas et al., 2009, Butterfield et al., 2002, LaFerla 

& Green, 2012). Attention is given specifically to the complex gene-environment interaction of 

patients with familial forms of AD by inducing genetic knockouts to pre-existing model organisms 

through novel CRISPR/Cas9 systems and assessing relevant behavioral and morphological 

changes associated with the given modification. For this study, the triple transgenic mice (3xTg) 

contain three mutations associated with familial Alzheimer disease (APP Swedish, MAPT P301L, 

and PSEN1 M146V) and display progressive AB deposition as early as three to four months of 

age, extracellular deposition in the frontal cortex noticeable by six months becoming more 

extensive, and aggregates of altered hyper-phosphorylated tau are detected in the hippocampus 

(Oddo et al., 2003, Billings et al., 2005). Corresponding behavioral deficits in hippocampal spatial 

memory deficits and long-term potentiation have been determined in 3xTg mice and have 

continued to elucidate the age-dependent molecular and physiological manifestations of AD and 

other disease states (Billings et al., 2005, Clark et al., 2015, Sterniczuk et al., 2010, Orta-Salazar 

et al., 2013). 
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Gene Editing by CRISPR/Cas9 Systems 

Though the exact nature of the complex interaction of amyloid and tau pathologies in Alzheimer 

disease progression is still unresolved, researchers have benefitted greatly from the use of 

transgenic mice model organisms to imitate classical disease conditions and inducible genetic 

manipulations at sites relevant to human AD pathology through novel CRISPR-Cas9 systems. 

Recent literature has cited the development of sequence specific DNA nuclease technologies from 

microbial CRISPR (clustered regularly interspaced short palindromic repeat) systems and 

programmable Cas9 nucleases that have enhanced the efficiency and accuracy of targeted 

modifications to genomic sequences of living cells and model organisms (Ran et al., 2013, Jinek 

et al., 2012, Carlson et al., 2012). Studies have shown that targeted mutagenesis using Cas9 

nucleases induce double stranded breaks in an organism’s DNA, complementary to the set of guide 

RNAs encoding for a given gene of interest, and exploit endogenous cellular repair mechanisms 

such as nonhomologous end-joining or homology-directed repair pathways to produce site-specific 

knockout at specific genetic loci with minimal toxicity (Katigbak et al., 2018, Cong et al., 2013, 

Ran et al., 2013, Thurtle-Schmidt & Lo, 2017). Though various strategies exist to increase the 

specificity of genome editing strategies such as zinc-finger nucleases (ZFN) and transcription 

activator-like effector nucleases (TALENs) in embryonic cell lines, CRISPR-Cas9 emerges as a 

reliable mechanism of eukaryotic homologous recombination and genome-scale KO of 

mammalian cell lines (Shalem et al., 2014, San Filippo et al., 2008, Bozas et al., 2009, Chu et al., 

2015). As evident in any field, the cooperation of multiple organizations and individuals with 

different skill sets is necessary for robust outcomes. Recently, the development of techniques and 

appropriate culture conditions to introduce genetic manipulations to study human genetic diseases 

in animal models have expanded the arsenal of researchers and neuroscientists to exploit (Sukoyan 
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et al., 2002). The formation of in vivo germ-line competent chimeras containing the genetic 

knockout of 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) against a triple transgenic 

background predisposed to AD pathology and implantation into surrogate mothers was able to 

produce chimeric offspring (Yamamoto et al., 2013) and relevant behavioral test were conducted.  
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Intermittent Metabolic Switching 

Under normal physiological conditions, an organism will absorb the nutrients from a given food 

source and will store excess energy in the form of glycogen primarily in the liver and skeletal 

muscles to maintain healthy blood-glucose levels and supply the tissue with energy in the absence 

of oxygen (Berg et al., 2002). As an organism begins to burn off the stored energy with activity 

and liver glucose reserves are used up, the brain and body will recognize low circulating glucose 

levels and switch the primary energy source of the cells to ketone bodies produced from fatty acids 

released by adipose tissue (Mattson et al., 2018, Courchesne-Loyer et al., 2017, Camandola & 

Mattson, 2017). The “G-K” switch from glucose to ketone body use as the major energy source of 

the cells and subsequent switch back to glucose after food consumption “K-G” has been shown to 

greatly improve the phenotypic presentations of various inflammatory pathways, resistance to 

neuronal injury and oxidative stress, shown to improve lifespans and age-dependent cognitive 

deficits seen in both human and rodent models (Anson et al., 2003, Hatori et al., 2012, Ingram et 

al., 1987, Means et al., 1993). As such, the role of metabolic disturbances in disease progression 

and lifestyle intervention strategies have seen increasing salience. A recent review article by 

Mattson et al. suggests that switching between time-periods of negative energy balance (short 

fasts/exercise) and positive energy balance (eating and resting) can optimize brain health, improve 

mood, and create the conditions for cellular stress resistance and cell growth/neuroplasticity 

pathways in ameliorating neurodegenerative diseases (Longo & Mattson, 2014). Intermittent 

metabolic switching can be defined as scenarios in which an individual’s eating and exercise 

patterns result in periodic changes in glucose or ketone use as the primary energy source and has 

been implicated in providing a range of therapeutic effects including increasing spine density and 

LTP capabilities, reduce seizure induced hippocampal neurodegeneration, and even enhance basal 
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neurogenesis and neuronal survival (Eckles-Smith et al., 2000, Bruce-Keller et al., 1999, Lee et 

al., 2002). The physiological effects of time-restricted feeding (TRF) and alternate-day fasting 

(ADF) methods of experimentally inducing IMS in rodent models have been well characterized in 

reducing aging-related behavioral deficits seen in 3xTg mice models of AD (Halagappa et al., 

2007, Higami et al., 2006, Huber et al., 2017). Similarly, fasting and exercise have been shown to 

upregulate both BDNF and CREB pathways implicated in cellular repair pathways, long-term 

memory, insulin-like growth factor (IGF1) signaling and play key roles in mitochondrial 

biogenesis and LTP (Hirano et al., 2013, Estrada et al., 2009, Llorens-Martin et al., 2009, Hepple 

2009, Marosi et al., 2014). Though the benefits of IMS and caloric restriction/exercise on overall 

brain health and disease pathology have been briefly mentioned role of 3-hydroxy-3-

methylglutaryl-CoA lyase knockout in AD progression has not been previously examined. 

Essentially, training regimens of IMS and periods of fasting/exercise followed by periods of 

eating/resting can improve the metabolic efficiency and stress tolerance of mitochondria through 

SIRT3 pathways, regulate protein synthesis through mechanistic target of rapamycin (mTOR) and 

autophagy pathways, and stimulate the release of peripheral signals that mediate neuroplasticity 

and behavior (Mattson et al., 2018, Cheng et al., 2016, Palacios et al., 2009, Tang et al., 2002, 

Alirezaei et al., 2010, Johnson et al., 2013, Kim et al., 2015). 
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3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL) 

The HMGCL gene encodes for a protein that belongs to the HMG-CoA lyase family necessary for 

ketogenesis and the use of ketone bodies as an alternative energy source by an organisms’ cells 

during periods of low blood glucose or fasting. This protein is a mitochondrial enzyme that 

catalyzes the final step of leucine degradation in ketone body metabolism and is found on 

chromosome 1 of the human genome and chromosome four of the mice genome (The Knockout 

Mouse Project). Genetic knockouts at this target loci may produce challenges to cell viability 

because of the critical nature of ketone body synthesis and energy expenditure demands of 

mitochondrion during periods of fasting, and cell death signatures may be experienced prematurely 

by already susceptible hippocampal neurons of the 3xTg mice. Of note, the few HMGCL 

mutations that have been investigated in human patients have led to severe metabolic acidosis, 

acute metabolic degeneration, and the relevant isoforms of HMGCL transcripts and nature of 

mutations lead to potentially lethal outcomes (Grunert et al., 2017, Fu et al., 2010, Mattson et al., 

2018). As such CRISPR-Cas9 mediate genetic knockout of HMGCL in mice models may result in 

embryonic lethality and gene expression alterations using RNA guided CRISPR-Cas9 systems 

may help potentiate the complex role of ketone body synthesis and use during periods of fasting 

(Wang et al., 1998). Regardless of the efficacy of the specific genetic knockout, the use of genome 

editing strategies to produce high fidelity mutations at specific loci is significant in order to 

elucidate the interaction of specific genotypes with disease and behavioral phenotypes. 
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CRISPR/Cas9-mediated 3xTg/HMGCL-/- Chimera Mouse Line from ES Cell 

All CRISPR transfection protocol of embryonic cell lines and chimeric mouse generation produced 

by Synthego (powered.synthego.com, 2018). Single stem cells are extracted from 3xTg mice 

background and electroporation/nucleofection of cell lines with Cas9 and specifically designed 

sgRNAs to the HMGCL gene on chromosome four (Catrionia 2013, Fig 1). Multiple sgRNA 

transcripts that bind to multiple regions of the HMGCL gene adjacent to a NGG PAM sequence 

included in viral transfection to induce DSB at more specific target sites: 5’ 

CCTGACTCCAAACATGAAAA GG 3’, 5’ TCCTGACTCCAAACATGAAA GG 3’, 5’ 

GACCACTCTGACGTCTTGAA GG 3’. Cell are selectively cultured for those expressed 

mutant germ line DNA and ES cell aggregates are analyzed with qPCR using sequence specific 

oligonucleotides to HMGCL labeled with fluorescent EGFP reporter only after hybridization 

with its complementary strand (TagMan probes). The real-time PCR analysis of whole brain 

tissue of 3xTg/WT ad libitum and 3xTg/HMGCL-/- ad libitum will be conducted and critical 

threshold scores are determined. Colocalization of NeuN and HMGCL-EGFP antibody staining 

was noted in 3xTg/HMGCL-/- ad libitum relative to NonTg/WT ad libitum. Mouse monoclonal 

antibodies received (Chemicon, Catalog number: MAB377) and IHC-Tek antibody diluent 

(Cat#IW-1000) used to reduce unspecific staining. Antigen retrieval used  IHC-TekTM Epitope 

Retrieval Steamer Set (Cat# IW-1102) at 95/100 ºC/room temperature for 20 minutes each. LSAB 

method for detection was utilized and nuclei staining was observed.  

 

http://www.ihcworld.com/products/IHC-Tek-Reagent.htm
http://www.ihcworld.com/products/IHC-Tek-Reagent.htm
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Figure 1. Generalized workflow of gene KO at one-cell embryonic stage to produce non-mosaic 

gene knockout in all cells followed by surrogate implantation. 
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Animals 

3xTg mice were ordered from The Jackson Lab; available through the JAX MMRRC Stock# 

034830. All mice are housed 5 per cage and kept on 12h light/dark cycles with accessible water 

and minimal animal handling. All euthanization techniques and mice testing/handling meet 

standards approved by the Institutional Animal Care and Use Committee (IACUC). Intermittent 

metabolic switching will be experimentally induced in specific cohorts of 3xTg mice using 24-

hour periods of restricted feeding with a 40% reduction in caloric intake to determine if the 

previously established therapeutic effect of IMS is attenuated in mice with differing genetic 

backgrounds HMGCL KO. Time restricted feeding protocols followed previously established 

methods and food was deprived every other 24 hours (Halagappa et al., 2007, Anson et al., 2003). 

At three months of age, 5 groups of five mice each were assigned to the following dietary regimen: 

non-Tg/WT ad libitum, 3xTg/WT ad libitum, 3xTg/WT TRF + CR, 3xTg/HMGCL-/- ad libitum, 

and 3xTg/HMGCL-/- TRF + CR. Mice on the CR diet were provided an amount that is 60% of the 

amount consumed by the 3xTg/WT ad libitum group. At about 6 months of age, the mice were 

subjected to a hippocampal-dependent spatial memory test to better characterize functional 

differences in gene knockout and therapeutic efficacy of IMS. CSF fluids were drawn at 6 months 

of age and animals were euthanized for whole brain and hippocampal dissection and frozen for 

Aβ1-42, p-tau level analysis and Fluoro-Jade B immunostaining. 

 

 

 

 

 

http://jaxmice.jax.org/strain/004807.html
http://jaxmice.jax.org/strain/004807.html
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Morris Water Maze 

Previous studies have shown that both intermittent fasting regimens and caloric restriction 

contribute to improved cognitive ability and ultimately reduce risk of Aβ deposition and tau 

pathology seen in mouse models of Alzheimer pathology (Halagappa et al., 2007, Mattson et al., 

2015, Patel et al., 2005). The behavioral testing followed previously established protocol. A 

circular tank (diameter 1.0 m, height 0.40 m, painted white) was filled with water (22 ± 1°C) and 

water made opaque using non-fat milk. Water will be changed after all mice of a given cohort are 

tested to prevent detritus buildup. Spatial cues are not provided along the ridge of the tub and mice 

given one test run to determine escape latency (s). If mice are unable to find the platform hidden 

1 cm below the surface of the water before the maximum 2-minute mark, mice were manually 

guide to the platform and allowed to acclimate for 1 minute. On day 1 of acquisition trials, mice 

from a given cohort are tested one after another for four cycles as to allow mice to relax between 

trials and prevent over-handling. Escape latency or the time it takes each mouse to reach the 

submerged platform was recorded using a stopwatch. A 24-hour delay was administered after day 

1 of behavioral testing and subsequent preservation or loss of spatial memory is examined. 
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ELISA Immunosorbent Assay of Aβ1-42 and p-Tau Levels 

Enzyme linked immunosorbent assay (ELISA) kits acquired from ThermoFisher.com for mouse 

Aβ1-42 (Catalog number: KMB3441) and phosphorylated tau (p-Tau199, Catalog Number: 

KMB7041) level measurements from cerebrospinal fluid (CSF) of 6-month old mice. In an ELISA, 

an antigen is immobilized to a solid plate and is complexed with an antibody for a given enzyme. 

Elevated insoluble Aβ1-42 levels and phosphorylated tau are well characterized biomarkers of AD 

pathology and subsequent shifts in relative concentrations to the NonTg/WT control were 

measured (Huber et al., 2017, thermofisher.com). Efficient collection of CSF from cisterna magna 

of 6-month old mice followed protocol previously outlined using special stereotaxic guides to hold 

the syringe in place to prevent CSF contamination by blood and other fluids (Zarghami et al., 2013, 

Rosen et al., 2013).  This study could have benefited greatly from repeated measures of minimally-

invasive CSF extractions throughout IMS training initiation at 3-months to see how aging and 

cytotoxic biomarkers contribute to cognitive decline.  
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Hippocampal Dissection 

Hippocampal cell tissue extraction follows standard protocol from previously published studies 

(Mathis et al., 2011). The ACSF components 124 NaCl, 2KCl, 1.25 KH2PO4, 2MgSo4, 26 

NaHCO3, 10 dextrose (in mM)) were combined with distilled H20 were oxygenated vigorously in 

a 2L Erlenmeyer flask. Oxygenated Ca2+-free ACSF poured into separate Erlenmeyer flask and 

transferred to ultrafreezer (-80 °C) for 30 minutes to be used during dissection. To produce the 

media used for brain slice storage after dissection, 2 mM of CaCl2 was added to remaining 1.25 L 

volume of ACSF and oxygenation resumed with 95%O2//5%CO2. Extracted brain tissue 

submerged in Ca2+-free ACSF covered with parafilm and prepared for brain slicing from 

Vibratome sectioning (Leica VT1000 S). Cerebellum and rostral tips of frontal lobe carefully 

dissected out and brain tissue transferred to the sectioning stage of Vibratome filled with ice-cold 

Ca2+-free ACSF. Slices collected with wide-mouth paint brush and transferred to small petri dish 

containing ice-cold Ca2+-free ACSF. Brain slices transferred to holding chamber to bathe in 

oxygenated Ca2+-containing ACSF and chamber temperature increase +1°C every five minutes 

to 32°C.  
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Cellular Degeneration Identification using Fluoro-Jade B 

Fluoro-Jade B has shown to exhibit greater target specificity of neurons undergoing degeneration 

with minimal background staining than earlier Fluoro-Jade staining methods (Schmued & 

Hopkins, 2000). Fluoro-Jade B positive neuron measurements in this study follow standard 

procedures from previously cited literature (Laflamme et al., 2016). Tissue sections mounted on 

Superfrost plus slide (Thermo Fisher Scientific, catalog number: 12-550-17 ) and fixed for 20 min 

in paraformaldehyde 4%, and 2 minutes in KPBS (Electron Microscopy Science, catalog 

number: 19210 ) Dehydrated with 50%-70%-100% Ethanol for 2 minutes each and rehydrated 

with 70%-50% Ethanol and KPBS. Incubated in potassium permanganate 0.06% for 5 min at room 

temperature, rinsed in water, and incubated in Fluoro-Jade B solution on orbital shaker (Merck 

Millipore Corporation, catalog number: AG310 ). Slides kept covered from light and dried under 

vacuum at room temperature after three rinses with water. Slide cleared with Xylene three times 

at 2 minutes each and slip covered with DPX before drying under hood (Sigma-Aldrich, catalog 

number:534056, Electron Microscopy Science, catalog number: 13512). Immunofluorescent of 

Fluoro-Jade positive hippocampal cells counted using EVOS FL Auto Imaging System (SKU# 

AMAFD1000). 

 

 

 

 

 

 

 

http://www.bio-thing.com/p116723
http://www.bio-thing.com/p4495
http://www.bio-thing.com/p4494
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Confirmation of Gene Knockout  

Relative fluorescence of qPCR antibodies for anti-HMGCL loci in 3xTg/HMGCL-/- and 

NonTg/WT hippocampal cell homogenates reveal reduced critical threshold value from 

NonTg/WT samples. Significant quantities of HMGCL loci binding in NonTg/WT is apparent 

nearly twice as quickly than in 3xTg/HMGCL-/- mice samples (Fig 2). Colocalization of NeuN 

and HMGCL/EGFP staining reveal HMGCL preservation in physiologically relevant neurons 

of the hippocampus but the lack of EGFP-staining suggests genetic knockout compared to the 

wild-type (Fig 3).  

 

Figure 2. Diminished critical threshold score from quantitative PCR of 3xTg/WT mice compared 

to 3xTg/HMGCL-/- mice (n=1). 

 

Figure 3. Characterization of NeuN and HMGCL-EGFP in a) 3xTg/HMGCL-/- and b) 

NonTg/WT 
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Increased Hippocampal-Dependent Spatial Memory Deficits seen in 3xTg HMGCL-/- mice 

Mean escape latency measurements trends suggest similar cognitive phenotypes of NonTg/WT 

and 3xTg/WT mice on the TRF + CR regimen (Fig. 4). The phenotypic presentation of 3xTg/WT 

ad libitum mice in spatial memory behavioral tests have been well characterized in recent 

Alzheimer disease mice models, demonstrate delayed learning speed and altered retention of 

spatial memory, and serves as the control to compare behavioral data (Huber et al., 2017, 

Sterniczuk et al., 2010, Gimenez-Llort et al., 2013, Clinton et al, 2007). Latency reduction of 3xTg 

and memory preservation is evident between 3xTg/WT ad libitum and 3xTg/WT TRF+CR cohorts 

as evidenced by consistent latency times following the 24-hour break in the IMS induced mice. 

Interestingly, the escape latencies of both HMGCL KO mice regardless of training regimen 

experience marked differences in mean latency scores and the IMS training regimen was not 

sufficient to improve cognitive deficit attenuation seen in 3xTg/WT TRF+CR compared to 

3xTg/WT ad libitum trials. The 3xTg/HMGCL-/- mice exhibit significantly longer escape latency 

times with the mice swimming close to the maximum allotted swim time with each trial, and 

significant latency reductions were not observed between trials such as in the 3xTg/WT TRF+CR 

mice (Fig 4.) All groups see a similar upward trend toward the end of their acquisition trials likely 

due to over-handling. 
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Figure 4. Summary of mean escape latency of hippocampal-dependent MWM cognitive tests 

(n=5). NonTg/WT = dashed square; 3xTg/WT TRF + CR = blue circle; 3xTg/WT ad libitum = 

blue triangle; 3xTg/HMGCL-/- TRF + CR = grey diamond; 3xTg/HMGCL-/- ad libitum = grey 

square 
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Elevated Aβ1-42 and p-Tau199 from CSF 

ELISA Immunosorbent Assay analysis of insoluble Aβ1-42 from the five cohorts reveal 

significantly elevated concentrations in 3xTg/WT ad libitum compared to NonTg/WT and 

3xTg/WT TRF + CR (Fig 5). Interestingly, though 3xTg/WT TRF+CR show slightly elevated 

concentrations of Aβ1-42 protein, statistical significance is not determined. Mice in the 

3xTg/HMGCL-/- TRF + CR cohort show ~35% increase in Aβ concentration compared to 

3xTg/WT mice experiencing the same IMS regimen whereas 3xTg/HMGCL -/- ad libitum 

experience a 250% increase in Aβ accumulation. Analysis of phosphorylation of tau protein at 

Ser199 of the wild-type and chimeric mice reveal similar concentrations between NonTg/WT ad 

libitum and 3xTg/WT TRF+CR. A nearly 50% increase in p-tau concentration is noticed in 

3xTg/WT ad libitum mice relative to controls for transgene and IMS regimen. Both 

3xTg/HMGCL-/- exhibit nearly 200% increases in phosphorylated tau concentrations and 

correlate with the worst phenotypic presentations in Morris Water Maze. 

 

 

Figure 5. Relative Aβ1-42 and p-tau levels normalized to NonTg/WT mice and significant 

associations between HMGCL KO and experimental conditions are identified (n=5). 
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Fluoro-Jade B Positive Staining of Hippocampal Slices 

Hippocampal neurons exhibiting positive Fluoro-Jade B staining were elevated to noticeable levels 

in 3xTg KO mice and IMS training regimen was insufficient to ameliorate cell degeneration 

processes (Fig 6.) The 3xTg/WT ad libitum mice experience one order of magnitude larger in cell 

death markers relative to 3xTg/WT TRF+CR and NonTg/WT cohorts. However, insignificant 

differences were determined between 3xTg/WT ad libitum and 3xTg/HMGCL-/- TRF+CR mice. 

The elevated counts of Fluoro-Jade B positive hippocampal neurons in 3xTg/HMGCL-/- ad 

libitum mice were expected but a significant difference existed with the 3xTg/HMGCL-/- 

TRF+CR.  

 

 

Figure 6. Fluoro-Jade B fluorescent neurons in the hippocampus seen noticeably in HMGCL KO 

mice and IMS regimen could not recover memory deficits or attenuate Aβ and p-tau levels (n=5). 
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Discussion 

An increasingly sedentary and overindulgent lifestyle of modern Western societies have shown 

to contribute to complex pathologies of various metabolic and neurodegenerative conditions. 

The therapeutic potential of IMS and everyday lifestyle management shifts have been attributed 

to a variety of neuroprotective, synaptic plasticity, and attenuating cognitive decline in both 

human and AD animal models. Current research continues to elucidate the role of diet and 

exercise in decelerating disease progression and providing neuroprotective pathways against 

pathogenesis. This paper has addressed the three specific hypotheses originally posited by 

successful genetic and visual confirmation of targeted knockout of chimeric mouse strains 

predisposed for AD pathology, demonstration of the hippocampal-dependent spatial memory 

deficit mitigation of intermittent metabolic switching regimens to 3xTg mice, and analysis of 

the classical hallmarks of Aβ1-42, p-tau and cell degeneration biomarkers. As expected, 

NonTg/WT and 3xTg/WT TRF+CR mice exhibited similar cognitive abilities in MWM and 

relative concentrations of the enzymes and proteins associated with AD pathology leading to 

cellular death (Fig 4). IMS has been shown to enhance cell-stress resistance and neuroplasticity, 

the relatively low levels of Fluoro-Jade B staining of 3xTg/WT TRF+CR a make sense as more 

neurons are resilient to the degrading nature of Aβ oligomers and phosphorylated tau. Initially, 

it was expected that mice receiving TRF+CR training regimen would experience overall 

improvements in behavioral abilities and phenotypic presentations but the 3xTg/HMGCL-/- 

TRF+CR performed relatively poorly in all aspects. Interestingly, in both HMGCL KO cohorts, 

marked elevations in Aβ1-42 and p-tau proteins were recognized. The necessary role of HMGCL 

protein in proper mitochondrial function during the fasting period and subsequent gene editing of 

this loci may contribute to the increase in cell death markers seen in HMGCL KO cohorts relative 
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to 3xTg/WT mice. Mice following the IMS diet in the 3xTg/HMGCL-/- group showed decreased 

relative Aβ1-42, pTau, and Fluoro-Jade B positive staining relative to ad libitum groups. The 

ability of TRF+CR to prepare neuronal populations for stressful environments and subsequent 

neuronal degeneration from aberrant amyloid and tau pathologies is evidenced by the decreased 

Fluoro-Jade staining seen in 3xTg/HMGCL-/- TRF + CR compared to 3xTg/HMGCL-/- ad 

libitum. The creation of chimeric mouse strains encoding for HMGCL enzyme knockout against 

a genetic background predisposed for AD progression highlights the complex interaction of the 

gene and environment on phenotypic presentations of a disease and a patient’s response to a given 

therapeutic. The application of high fidelity genome editing and growing understanding of 

embryonic cell lines and genomic analysis continue to improve the arsenal of researchers to 

reliably translate genomic data into personalized treatments. Manipulating CRISPR/Cas9 systems 

for targeted gene expression modifications instead of permanent genetic knockout is emerging at 

the forefront of gene therapies and mouse models of disease pathologies. With a growing 

understanding of functional genomics and endogenous gene expression modifications, researchers 

may refine the CRISPR/Cas9 systems to non-invasively, non-permanently alter protein expression 

and functional/phenotypic presentations can be measured. Differing training regimens such as 

longer food restriction periods or exercise-coupled IMS may contribute to different degrees of 

cognitive attenuation and the exact nature of IMS regimens could be further developed. Ultimately, 

an individual’s genetic makeup may determine the propensity for aberrant signaling and cellular 

dysfunction but environmental cues and lifestyle characteristics play a huge role in the pathologies 

of neurodegenerative diseases. Currently, randomized, double blind clinical trials prescribing 

individualized training regimens for older patients at risk for developing dementia-like disorders 

is underway and clinical applications of daily lifestyle management may be seen as early as 2018. 



 

 

 26 

Literature Cited 

Alirezaei et al. (2010). Short-term fasting induces profound neuronal autophagy. Autophagy 6, 

702–710. 

 

Anderson et al. (2005). Regional Distribution of Fluoro-Jade B staining in the hippocampus 

following traumatic brain injury. Experimental Neurology. 193(1): 125-130 

 

Anson et al. (2003).  Intermittent fasting dissociates beneficial effects of dietary restriction on 

glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl 

Acad. Sci. USA 100, 6216–6220. 

 

Berg et al. (2002). Biochemistry. 5th Edition. New York. W.H. Freeman. Chapter 21 

 

Billings et al. (2005). Intraneuronal Aβ Causes the Onset of Early Alzheimer’s Disease-Related 

Cognitive Deficits in Transgenic Mice. Neuron. 45(5): 675-688 

 

Bozas, A., Beumer, K.J., Trautman, J.K. & Carroll, D. Genetic analysis of zinc-finger 

nuclease-induced gene targeting in Drosophila. Genetics 182, 641–651 (2009). 

 

Bruce-Keller, A. J., Umberger, G., McFall, R. & Mattson, M. P. (1999). Food restriction 

reduces brain damage and improves behavioral outcome following excitotoxic and 

metabolic insults. Ann. Neurol. 45, 8–15 

 

Butterfield et al. (2002). Amyloid β-peptide and amyloid pathology are central to the oxidative 

stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal 

of Alzheimer’s Disease. 4(3): 193-201 

 

Camandola, S. & Mattson, M. P. (2017). Brain metabolism in health, aging, and 

neurodegeneration. EMBO J. 36, 1474–1492  

 

Cheng et al. (2016). Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise 

and metabolic and excitatory challenges. Cell Metab. 23, 128–142  

 

Chu et al. (2015). Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced 

precede gene editing in mammalian cells. Nature Biotechnologies. 33: 542-548  

 

Clark et al. (2015). Alterations in synaptic plasticity coincide with deficits in spatial working 

memory in presymptomatic 3xTg-AD mice. Neurobiol Learn Mem. 125: 152-162 

 

Clinton et al. (2007). Age-dependent sexual dimorphism in cognition and stress response in the 

3xTg-AD mice. Neurobiology of Disease. 28(1): 76-82 

 

Cong et al. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 

339(6121): 819-823 

 



 

 

 27 

Courchesne-Loyer et al (2017). Inverse relationship between brain glucose and ketone 

metabolism in adults during short-term moderate dietary ketosis: a dual tracer 

quantitative positron emission tomography study. J. Cereb. Blood Flow Metab. 37, 

2485–2493 

 

www.creative-animodel.com/Animal-Model-Development/Knockout-Services. Process 

Diagram. Accessed 04/15/18 

 

Eckles-Smith, K., Clayton, D., Bickford, P. & Browning, M. D. (2000). Caloric restriction 

prevents age-related deficits in LTP and in NMDA receptor expression. Mol. Brain 

Res. 78, 154–162 

 

Estrada, N. M. & Isokawa, M. (2009). Metabolic demand stimulates CREB signaling in the 

limbic cortex: implication for the induction of hippocampal synaptic plasticity by 

intrinsic stimulus for survival. Front. Syst. Neurosci. 3, 5  

Fu et al. (2010). Functional Insights into Human HMG-CoA Lyase from Structures of Acyl-

CoA-containing Ternary Complexes. J Biol Chem. 285(34): 26341-26349 

Gimenez-Llort et al. (2013). Early intervention in the 3xTg-AD mice with an amyloid β-antibody 

fragment ameliorates first hallmarks of Alzheimer disease. MAbs. 5(5): 665-864 

Gomez-Pinollo, Fernando. (2008). Brain foods: the effects of nutrients on brain function. Nat 

Rev Neurosci.. 99(7): 568-57 

 

Grundke-Iqbal et al. (1986). Microtubule-associated protein tau. A component of Alzheimer paired 

helical filaments. Journal of Biological Chemistry. 261(13): 6084-6089 

 

Grunert et al. (2017). 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: Clinical 

presentation and outcome in a series of 37 patients. Molecular Genetics and Metabolism. 

121(3): 206-215 

 

Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from 

the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 8(2): 101-112  

 

Halagappa et al. (2007). Intermittent fasting and caloric restriction can ameliorate age-related 

behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol 

Dis. 26(1): 212-220 

 

Hardy, J.A., and Higgins, G.A. (1992). Alzheimer’s Disease: The Amyloid Cascade Hypothesis. 

Science. 256: 184-204 

 

Hatori et al. (2012). Time-restricted feeding without reducing caloric intake prevents 

metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860  

 

http://www.creative-animodel.com/Animal-Model-Development/Knockout-Services


 

 

 28 

Hebert et al. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 

2010 census. Neurology. 80(19). 

 

Hepple, R. T. (2009). Why eating less keeps mitochondria working in aged skeletal muscle. 

Exerc. Sport Sci. Rev. 37, 23–28  

 

Higami et al. (2006). Energy Restriction Lowers the Expression of Genes Linked to 

Inflammation, the Cytoskeleton, the Extracellular Matrix, and Angiogenesis in Mouse 

Adipose Tissue. The Jour of Nutrition, 136(2): 343-352. 

 

Hirano et al. (2013). Fasting launches CRTC to facilitate long-term memory formation in 

Drosophila. Science 339, 443–446  

 

Huber et al. (2017). Cognitive Decline in Preclinical Alzheimer’s Disease: Amyloid Beta versus 

tauopathy. Journal of Alzheimer’s Disease. 61(1): 265-281. 

 

Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R. & Walford, R. L. (1987).  

Dietary restriction benefits learning and motor performance of aged mice . J. Gerontol. 

42, 78–81  

 

Jinek et al. (2012). A Programmable Dual RNA-Guided DNA Endonuclease in Adaptive 

Bacterial Immunity. Science. 337(6096): 816-821 

 

Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. (2013). mTOR is a key modulator of 

ageing and age-related disease. Nature 493, 338–345 

Katigbak et al. (2018). Inducible Genome Editing with Conditional CRISPR/Cas9 Mice. G3. 1-

17 

Kim et al. (2015). Ghrelin is required for dietary restriction-induced enhancement of 

hippocampal neurogenesis: lessons from ghrelin knockout mice. Endocr. J. 62, 269–

275 . 

 

The Knockout Mouse Project. Mouse Biology Program. University of California, One Shields 

Avenue, Davis, CA 95616 USA 

 

Kopke et al. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non- 

paired helical filament pool in Alzheimer disease. Journal of Biological Chemistry. 

268(32): 24374-24383 

 

Kunze et al. (2012). Neuron-Specific Prolyl-4-Hydroxylase Domain 2 Knockout Reduces Brain 

Injury After Transient Cerebral Ischemia. Stroke. 43(10): 2748-2756 

 

LaFerla, F.M., and Green, K. N. (2012). Animal Models of Alzheimer Disease. Cold Spring Harb 

Perspect Med. 2(11): a006320 

 



 

 

 29 

Lanoiselée et al. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: 

A genetic screening study of familial and sporadic cases. PLOS Medicine. 14(3): 

e1002270 

Lee, J., Duan, W. & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is 

required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis 

by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375 

Llorens-Martín, M., Torres-Alemán, I. & Trejo, J. L. (2009). Mechanisms mediating brain 

plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 15, 134–148  

 

 

Longo, V.D and Mattson, M.P. (2014). Fasting: Molecular mechanisms and Clinical 

Applications. Cell Metabolism. 19(2): 181-192 

 

Marosi et al. (2016). 3-Hydroxybutyrate regulates energy metabolism and induces BDNF 

expression in cerebral cortical neurons. J. Neurochem. 139, 769–781 

Mathis et al. (2011). Preparation of Acute Hippocampal Slices from Rats and Transgenic Mice 

for the Study of Synaptic Alterations during Aging and Amyloid Pathology. J Vis Exp. 

(49): 2330 

 

Mattson et al. (2018). Intermittent Metabolic Switching, Neuroplasticity, and Brain Health. 

Nature Reviews Neuroscience. 19: 63-80. 

 

Means, L. W., Higgins, J. L. & Fernandez, T. J. (1993). Mid-life onset of dietary restriction 

extends life and prolongs cognitive functioning. Physiol. Behav. 54, 503–508 

 

Murphy, M.P., and LeVine III, H. (2010). Alzheimer’s Disease and the β-Amyloid Peptide. J 

Alzheimers Dis. 19(1): 311 

 

Oddo et al. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: 

intracellular Abeta and synaptic dysfunction. Neuron. 39(3):409-21. 

 

Orta-Salazar et al. (2013). Morphological Analysis of the hippocampal region associated with an 

innate behavior task in the transgenic mouse model (3xTg-AD) for Alzheimer disease. 

Neurologia. 28(8): 497-502 

 

Palacios et al. (2009). Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-

1alpha in skeletal muscle. Aging. 1(9): 771-783 

 

Ran et al. (2013). Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome 

Editting Specificity. Cell. 155(2):479-480 

 

Rosen et al. (2013). Fluid biomarkers in Alzheimer’s disease—current concepts. Molecular 

Neurodegeneration. 8:20 

 



 

 

 30 

San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. 

Annu. Rev. Biochem. 77, 229–257 (2008). 

 

Scarmeas et al. (2009). Physical Activity, Diet and Risk of Alzheimer Disease. JAMA. 203(6): 

627-637 

Schmued, L.C., and Hopkin, K.J. (2000). Fluoro-Jade B: a high affinity fluorescent marker for 

the localization of neuronal degeneration. Brain Res. 874(2): 123-130 

 

Selkoe, Dennis J. (1991). The molecular pathology of Alzheimer’s disease. Neuron. 6(4): 487-498 

 

Shalem et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 

84–87 (2014). 

 

Sterniczuk, R, Antle, M.C., Laferla, D.M., Dyck, R.H. (2010). Characterization of the 3xTg mouse 

model of Alzheimer’s disease: part 2. Behavioral and cognitive changes. Brain Res. 1348: 

149-155  

 

Strittmatter et al. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased 

frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS. 90(5): 19977-

1981 

 

Tang et al.  (2002). A rapamycin-sensitive signaling pathway contributes to long-term 

synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA 99, 467–472  

 

Thal, D.R. and Braak, H. (2005). [Post-mortem diagnosis of Alzheimer’s disease]. Pathologe. 

26(3): 201-213 

 

Thurtle-Schmidt, D.M. and Lo, T.W. (2017). Molecular Biology at the Cutting Edge: A Review 

on CRISPR/CAS9 Gene Editing for Undergraduates. Biochemistry and Molecular Biology 

Education. 46(2): 195-205 

Wang et al. (1998). 3-Hydroxy-3-methylglutaryl-CoA lyase (HL): gene targeting causes prenatal 

lethality in HL-deficient mice. Hum Mol Genet. 7(13): 2057-2062 

Wang et al. (2013). One-Step Generation of Mixe Carrying Mutations in Multiple Genes by 

CRISPR/Cas-mediated Genome Engineering. Cell. 153(4): 910-918 

Wyss, Coray T. (2006). Inflammation in Alzheimer disease: driving force, bystander or 

beneficial response? Nat. Med. 12(9): 1005-1015 

Xu et al. (2014). Expression of PHB2 in Rat Brain Cortex Following Traumatic Brain Injury. Int. 

J. Mol. Sci. 15(2): 3299-3318 

 

Yamamoto et al. (2013). Generation of gene-targeted mice using embryonic stem cells derived 

from a transgenic mouse model of Alzheimer’s disease. Transgenic Res. 22(3): 537-547 

 

Zarghami et al. (2013). A Modified Method for Cerebrospinal Fluid Collection in Anaesthetized 

Rat and Evaluation of the Efficacy. IJMCM. 2(2): 97-98 


	Claremont Colleges
	Scholarship @ Claremont
	2018

	CRISPR-Cas9 mediated HMGCL KO in 3xTg AD mice reduces the cognitive deficit improvement seen in an intermittent metabolic switching regimen
	Eric Joon Bum Kil
	Recommended Citation


	tmp.1525466632.pdf.e5kNm

