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Introduction
The field of circuit complexity is concerned with find-
ing small circuits to compute various functions. This
thesis began by consideration of minimal circuits for
incompletely specified functions. The goal was to find
the (asymptotic growth of) the minimum number of
circuit elements needed to compute a boolean func-
tion on n variables where only some small number of
the required outputs are specified, and where a certain
error is allowed. Pippenger (1976) solved this prob-
lem for the case that the number of specified outputs
is a fixed fraction of the 2n outputs; Sholomov (1969)
solved the same problem for slower-growing numbers
of specified outputs but with no allowed error. We
showed the combined theorem, solving the problem
both with error and slower-growing numbers of spec-
ified outputs.
Additionally, we explored several other restrictions

on functions and their effects on minimal circuit size.
The problem of partially-specified functions is mo-

tivated in part by theoretical biology. Livnat and
Pippenger (2008) are interested in the behavior of
resource-limited computation devices as a model for
organisms’ brains.

Circuits
By a circuit we mean an acyclic network of circuit ele-
ments, each of which computes a function. These are
combined to create more complex functions. Each cir-
cuit has some n inputs and one output. In this for-
malism, we can study the number of gates needed to
compute various functions

• The complexity L( f ) of a boolean function f is the
minimum number of circuit elements required to
make a circuit computing it.

• The complexity L(S) of a set of boolean functions S
is the maximum complexity of any function in S:

L(S) = max
f∈S

L( f ).

Hence, L(S) gates is sufficient compute any function
in S.

How Bounds are Proven
We are interested in the size of minimal circuits for a
class of boolean functions as we increase the number
of inputs.

Lower Bounds
To prove a lower bound of q, we mean we proving a
theorem similar to the following: let p be a property of
boolean functions, and Pn be the set of n-input boolean
functions having property p. Then L(Pn) & q(n).
In general, lower bounds are proven by a counting ar-

gument (see for example Wegener (1987)). Two func-
tions can’t be computed by the same circuit, so to
prove a lower bound we count the number of func-
tions in the class, and the number of circuits with a
number n of elements. To get every circuit, we must
at least increase n until the latter is greater than the
former.

Upper Bounds
To prove an upper bound of q, we mean proving a sim-
ilar to the following: let p be a property of boolean
functions, and Pn be the set of n-input boolean func-
tions having property p. Then L(Pn) . q(n). Upper
bounds are usually proven by explicit construction –
that is, by giving a method which will always con-
struct a small enough circuit for any function in Pn.
They are typically more difficult to prove than lower
bounds.

Results
Our primary result is an upper bound for the case of
very incompletely-specified boolean functions. Addi-
tionally, we have proven several lower bounds, and
are close to a second upper bound.

Very Incompletely Specified Functions
Pippenger (1976) studied incompletely specified func-
tions, that is, a class of functions parameterized by a

fraction p indicating how many function values are
specified, as well as allowing a fraction E of errors. In
this class, p2n function values are specified; these were
referred to as incompletely specified functions.. In a sim-
ilar method to Sholomov (1969), we extend this result
to include more slowly-growing numbers of specified
values; these we call very incompletely specified func-
tions.
The statement of the theorem is: let Pn be the set of

n-input functions specified on Rn inputs, and allow a
fraction E of errors. Suppose

Rn ≥ n log1+δ
2 n

for some δ. Then

L(Pn) ∼ (1− H(E))
Rn

log Rn
.

Here H is the binary entropy function
H(p) = −p log p− (1− p) log(1− p).

We prove the theorem using a very similar process
to Sholomov (1969). The lower bound can be proven
by a counting argument. The upper bound is proven
by constructing a circuit for a given function f . Since f
is incompletely specified, we complete it with a func-
tion g. The function g may also differ from f in a frac-
tion E of places. g is chosen by a covering lemma to
have a minimal entropy; hence it can be described in a
short binary string, χ(g). The length of χ(g) is short
enough to allow it to be in a sense hard-coded into
a circuit while using few enough gates to match the
lower bound.

Investigating the Factoring Behavior
Sholomov (1969) showed the number of gates required
for a function specified in Rn places is Rn

log Rn
. Pippenger

(1976) showed that the number of gates required for a
function when E errors are allowed is (1 − H(E))2n

n .
The expression 2n

n is the number of gates required for
a general circuit of size n. Comparing these to our de-
rived formula of

(1− H(E))
Rn

log Rn
as well as several other similar bounds in literature,
an immediate question of whether this “factoring” be-
havior persists. We began an investigation by consid-
ering a pair of restrictions, choosen because both in-

dividually or when applied together, the counting is
simple enough to easily find lower bounds. No upper
bounds have been completely proven using the princi-
ple of local coding, although we have made significant
progress on skewedness.

Conclusions and Future Work
The most interesting queston for future work is: when
exactly does the factoring behavior occur? The lower
bounds derived don’t suggest an easy parameteriza-
tion for factoring in the case we have examined, but
much more work is needed to have an exact characteri-
zation of this behavior. Additionally, given the kind of
modifications to Sholomov’s arguments, it seems that
a more general theorem could be stated for the upper
bound.
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