
Math 197: Senior Thesis

Increasing Visibility of Vertices in Covert Networks
Yaniv Ovadia

@
Mathematics

Harvey Mudd College

Introduction
Disrupting covert networks requires identifying and
capturing key leaders. Recent work suggests that
changing the topology of a covert network by vertex
removal may cause a target vertex to participate in
more communication and therefore become more vis-
ible.
In [5] Martonosi and Altner defined the load of a key

vertex k in a simple undirected graph G to be

L(k, G) = ∑
u,v∈G\{k}

fu,v(G)− fu,v(G \ {k}) (1)

where fu,v(G) is the maximum flow (or equivalently,
the minimum cut) between vertices u and v in the
graph G.
We explored the feasibility of efficiently computing a

subset of vertices whose removal causes the load on k
to increase the most.

k

v

m m

Figure 1: In this example graph, the load on k is only
3 because the flow between most pairs of vertices does
not depend on k. If v is removed, the load increases to
(m + 2)2.

The brute-force algorithm for computing the optimal
single vertex to remove from G behaves as follows:

for v ∈ V do
compute fu,v for all u, v ∈ G \ {v}
compute fu,v for all u, v ∈ G \ {v, k}
use results of the last two steps to calculate L(k, G \
{v})

end for
return the vertex v which caused the greatest load
on k

Since this process involves many all-pairs max flow
calculations, we employ Gomory-Hu tree construc-
tion algorithms (described in the next section). Fur-
thermore, the all-pairs max flow calculations are of-
ten repeated on graphs which differ only by a single
vertex deletion. Thus, we hoped to achieve a run-
time improvement by designing an algorithm which
uses results from an all-pairs max flow calculation in

G to warm-start an all-pairs max flow calculation in
G \ {v}.
The more general form of this problem asks for the

subset R of a given set S of deletable vertices such
that removing R from G maximizes the load on k. We
proved this generalized problem to be NP-complete
via a reduction from 3SAT.

Gomory-Hu Trees
A Gomory-Hu tree T for an undirected graph G is an
encoding for the n − 1 unique minimum cuts in G.
Specifically, for any two vertices u, v ∈ G, the value
of a minimum (u, v)-cut (or equivalently a maximum
(u, v)-flow) is equal to the weight of the lightest edge
on the unique (u, v)-path in T. Furthermore, the par-
tition for a cut of this size is obtained from the con-
nected components that result when this lightest edge
is removed from the tree.

a b

c d

a b

c d2

32

Figure 2: An example graph and its corresponding
Gomory-Hu tree.
Since our load metric depends on calculating the min-

imum cuts between every pair of vertices in a graph,
the Gomory-Hu tree is particularly useful because it
provides minimum cuts between all pairs of vertices,
and can be constructed with only n− 1 maximum flow
calculations (as opposed to (n

2) via a näive algorithm).
Gomory and Hu defined the first algorithm for con-
structing this structure in [3], and Gusfield later de-
scribed a conceptually simpler algorithm in [4].

Non-Uniqueness of Gomory-
Hu Trees
The Gomory-Hu tree for a graph is not unique, and
different trees may result based on arbitrary decisions
made in the construction process. Thus, in order to
optimize the brute-force algorithm, it would be desir-
able to compute the specific tree which will change the

least after a vertex deletion. We demonstrated that
Gomory-Hu tree diversity results from the choice of
minimum cuts (when more than one exists) as well as
the order in which vertices are processed in the tree
construction. This result suggests that constructing the
specific tree which changes least after a vertex deletion
is likely to be difficult.

a b

c d

a b

c d

a b

c d

3 3 3 3

33

Figure 3: An example of a graph with two distinct
Gomory-Hu trees. The difference is due to choices in
minimum cuts as opposed to vertex permutation.

Warm-Start Algorithm
Recall that the brute-force algorithm for finding the
optimal single vertex to remove from the graph in-
volves the construction of many Gomory-Hu trees for
very similar graphs. To improve the efficiency of this
process, we designed an algorithm which uses infor-
mation from the construction of G’s Gomory-Hu tree
to warm-start the construction of a Gomory-Hu tree
for G \ {u}.
To update the Gomory-Hu tree T, for graph G, fol-

lowing a vertex deletion, we use Gusfield’s algo-
rithm to construct the new tree but warm-start each
min cut computation within the algorithm using flow
assignments acquired while calculating the existing
Gomory-Hu tree.

a b

c

a b

c

a b

c

Figure 4: Starting with an (a, b)-flow assignment (solid
arcs), and a (b, c)-flow assignment (dashed arcs), we can
construct an (a, c)-flow assignment.

Experimental Performance
We implemented both the brute-force algorithm, and
the warm-start algorithm in Python, and tested their
performance at searching for the load maximizing ver-
tex removal on Barabási-Albert [1] and Erdős-Rényi
[2] random graphs. The results in Figure 5 show
that the warm-start algorithm is significantly faster on
some graphs, particularly larger graphs with sufficient
edge density.

Figure 5: Performance difference between brute-force
and warm-start algorithms on Barabási-Albert and Erdős-
Rényi random graphs.

References
[1] A.L. Barabási and R. Albert. Emergence of scaling

in random networks. Science, 286(5439):509, 1999.
[2] P. Erdős and A. Rényi. On the evolution of random

graphs. Publ. Math. Inst. Hung. Acad. Sci, 5:17–61,
1960.

[3] R.E. Gomory and T.C. Hu. Multi-terminal network
flows. Journal of the Society for Industrial and Applied
Mathematics, pages 551–570, 1961.

[4] D. Gusfield. Very simple methods for all pairs net-
work flow analysis. SIAM Journal on Computing,
19:143, 1990.

[5] S.E. Martonosi, D.S. Altner, M. Ernst, and S. Plott.
”Disrupting Terrorist Networks”, Working Paper.
2009.

Advisor: Susan E. Martonosi Readers: Susan E. Martonosi , Nicholas J. Pippenger


