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Introduction
The study of regular lattices is important in solid-
state physics for calculating properties of semicon-
ductors and other materials. One important statis-
tic is the number of possible configurations of dimers
(molecules that take up two adjacent slots in a crys-
tal lattice) on a grid, or, equivalently, the number of
domino tilings of a checkerboard.
In 1961, Kasteleyn [2] and Fisher and Temperley [3]

independently discovered that the number of ways to
tile a 2m× 2n checkerboard is

m

∏
j=1

n

∏
k=1

[
4 cos2 jπ

2m + 1
+ 4 cos2 kπ

2n + 1

]
. (1)

Their proof involved the computation of a compli-
cated Pfaffian. We attempt to give a clean, combina-
torial proof of this result, and studied other identities
with trigonometric terms and complex numbers. This
investigation led to a novel evaluation of the sum of
evenly spaced binomial coefficients.

Binomial Coefficients
Among the first combinatorial identities introduced in
a discrete math course are the sum

∑
k≥0

(
n
k

)
= 2n

of binomial coefficients and the sum

∑
k≥0

(
n
2k

)
= 2n−1

of every other binomial coefficient. However, once we
increase the spacing r of the binomial coefficients be-
yond 2, the sums suddenly become quite a bit more
complex—in both their closed form and in their meth-
ods of evaluation.
In fact,

∑
k≥0

(
n
rk

)
=

1
r

r

∑
j=1

(
1 + ω j

)n
, (2)

where ω = e
2πi

r is a primitive rth root of unity.
The standard method uses the binomial theorem, but
here we shall offer a combinatorial approach using
weighted walks. This proof technique will motivate
our approach towards finding a combinatorial inter-
pretation of Equation 1.

Walks on Looped Cycles

Definition 1. The looped cycle graph Gr on r vertices is
the directed cycle on r vertices, plus an additional edge
from each vertex to itself.
Now, any length n walk on Gr is completely described

if we choose
• An initial vertex; and
• For each of the n steps, whether to remain at the same

vertex or to advance to the next.
Hence
Lemma 2. The number of closed walks of length n on Gr is
given by

r ∑
k≥0

(
n
rk

)
.

Weighted Walks

Let us now assign a weight to each of the r2n possible
walks on Gr. Say a walk X begins on vertex j and a of
the n steps are forward. Then, letting ω be a primitive
rth root of unity, we define the weight of X to be

f (X) = ωaj.

The cleverness of our weight function lies in that
Proposition 3. A walk X on Gr is closed if and only if it
has weight 1.
Moreover,

Proposition 4.The set of open walks can be partitioned into
orbits, each with total weight 0.
In other words, summing the weight of every walk on

Gr gives the number of closed walks on Gr. Therefore,
Lemma 5. The number of closed walks of length n on Gr is
given by

∑
X∈W

f (X) =
n

∑
j=1

(
1 + ω j

)n
,

where W is the set of all length n walks on Gr.
Now, because Lemmas 2 and 5 enumerate the same

objects, the resultant quantities in fact must be equal.
Hence,

r ∑
k≥0

(
n
rk

)
=

n

∑
j=1

(
1 + ω j

)n
.

Dividing both sides by r yields Equation 2.

Trigonometric Form

In the special case when r divides n, we may rewrite
Equation 2 as a sum of cosines. Hence, we have

∑
k≥0

(
n
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)
=

1
r

r

∑
j=1

(−1)
n
r

(
2 cos

π j
r

)n
.

This formulation suggests that other combinatorial
identities involving cosine may be proved by first
writing the cosine as a sum of roots of unity, then
counting the total weight of an appropriate combina-
torial object.

Dominoes and Checkerboards
We would like to use a similar approach to enumerate
the number of domino tilings of a 2m × 2n checker-
board. Let us rewrite each factor in the double product
of Equation 1 as

ω
2j
2m+1 + ω

−2j
2m+1 + ω2k

2n+1 + ω−2k
2n+1 + 1 + 1 + 1 + 1,

where ωr = e
πi
r is an rth root of unity. This expression

seems to take the product of mn independently cho-
sen weights, each of which has 8 possible values, and
we attempt to find a combinatorial proof using such a
weight function.
We will use both white and black dominoes, and in-

dependently choose one of 8 possible dominoes (2 col-
ors, 4 orientations) to cover each doubly even cells (the
mn cells with both coordinates even). Next, we will as-
sign each domino configuration a weight, and say that
the weight of a doubly even tiling is the product of the
weights of its constituent dominoes.
We find that

Proposition 6. Every doubly even tiling with no overlap-
ping or black dominoes can be extended in a unique way to
a complete tiling of the checkerboard. Moreover, each such
tiling has weight 1.

In addition, we have a partial result which states that

Proposition 7. Every doubly even tiling that contains

• A column with exactly one vertical black domino; or

• A row with exactly one horizontal black domino

can be put into an orbit with total weight 0.

Future Work
The combinatorial proof of the 1961 result has yet to
be completed. In fact, a combinatorial proof for even
the m = 1 case has yet to be completed. Future work
might also investigate the related problem of domino
tilings of a toroidal checkerboard.
Roots of unity show up in many other binomial coef-

ficient identities as well. Gould lists

∑
k≥1

1

(kr
r )

=
r−1

∑
k=1

(−νk)(1− νk)r−1 log
1− νk

−νk ,

where ν = e
2πi

r is a primitive rth root of unity, as Iden-
tity 2.24 in [1]. Perhaps with the right combinatorial
interpretation, this identity will no longer appear so
complex.
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