Title

A Bound on the Number of Spanning Trees in Bipartite Graphs

Graduation Year

2016

Document Type

Open Access Senior Thesis

Degree Name

Bachelor of Science

Department

Mathematics

Reader 1

Mohamed Omar

Reader 2

Nicholas Pippenger

Terms of Use & License Information

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License

Rights Information

© 2016 Cheng Wai Koo

Abstract

Richard Ehrenborg conjectured that in a bipartite graph G with parts X and Y, the number of spanning trees is at most the product of the vertex degrees divided by |X|⋅|Y|. We make two main contributions. First, using techniques from spectral graph theory, we show that the conjecture holds for sufficiently dense graphs containing a cut vertex of degree 2. Second, using electrical network analysis, we show that the conjecture holds under the operation of removing an edge whose endpoints have sufficiently large degrees.

Our other results are combinatorial proofs that the conjecture holds for graphs having |X| ≤ 2, for even cycles, and under the operation of connecting two graphs by a new edge.

We also make two new conjectures based on empirical data, each of which is stronger than Ehrenborg's conjecture.