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For a system which undergoes electron or energy transfer in a polar solvent, we define the diabatic
states to be the initial and final states of the system, before and after the nonequilibrium transfer
process. We consider two models for the system-solvent interactions: A solvent which is linearly
polarized in space and a solvent which responds linearly to the system. From these models, we
derive two new schemes for obtaining diabatic states from ab initio calculations of the isolated
system in the absence of solvent. These algorithms resemble standard approaches for orbital
localization, namely, the Boys and Edmiston–Ruedenberg �ER� formalisms. We show that Boys
localization is appropriate for describing electron transfer �Subotnik et al., J. Chem. Phys. 129,
244101 �2008�� while ER describes both electron and energy transfer. Neither the Boys nor the ER
methods require definitions of donor or acceptor fragments and both are computationally
inexpensive. We investigate one chemical example, the case of oligomethylphenyl-3, and we
provide attachment/detachment plots whereby the ER diabatic states are seen to have localized
electron-hole pairs. © 2009 American Institute of Physics. �DOI: 10.1063/1.3148777�

I. INTRODUCTION TO DIABATIC STATES

There are many different definitions of diabatic states in
the chemical literature.1–3 Within the context of nonadiabatic
quantum dynamics, one historical definition is that diabatic
states are the many-electron states with zero �or minimal�
nuclear derivative couplings.4–7 Within the context of a sys-
tem that can undergo electron or energy transfer in a con-
densed environment, another definition is that the diabatic
states are the initial and final states of the system before or
after the transfer process.8,9 Many other definitions exist.10–16

In this paper, we will adopt the second definition given
above, appropriate for condensed environments, and we will
present three new approaches for generating many-electron
states relevant to nonequilibrium processes.

A. The historical motivation for diabatic states

Before discussing diabatic states relevant to condensed
environments, we review the original, historical motivation
for diabatic states. According to the standard dogma of quan-
tum mechanics, the relevant stationary states of a physical
system are the eigenstates of the Hamiltonian H. The stan-
dard route to these eigenstates is to invoke the Born–
Oppenheimer approximation, whereby the full Hamiltonian
is first partitioned into nuclear �R� and electronic �r� opera-
tors,

H�r,R� = Hnuc�R� + Hel�r;R� . �1�

According to the Born–Oppenheimer approximation, one
should freeze the nuclei, diagonalize the electronic Hamil-
tonian Hel, and generate adiabatic states ��� j��,

Hel�r;R��� j�r;R�� = Ej�R��� j�r;R�� . �2�

Next, one expands the full wave function in terms of the
adiabatic electronic states and diagonalizes the full Schro-
dinger equation,

��i�r,R�� = 	
j

Ci
j�� j

i�R�� � �� j�r;R�� , �3�

H��i�r,R�� = Ei
tot��i�r,R�� . �4�

Here ���i�r ,R��� are the eigenfunctions of the total Hamil-
tonian H, and ��� j

i�R��� are the nuclear wave functions that
describe the vibrations and rotations associated with a given
Born–Oppenheimer electronic state.

According to Eq. �4�, it can be shown that the different
adiabatic electronic states ��� j�� are coupled together by
nuclear derivative couplings �
�i�r ;R���R�� j�r ;R��r�, where
the subscript r indicates integration over electronic coordi-
nates. The meaning of the derivative couplings is that be-
cause the electronic adiabatic states vary when the nuclear
degrees of freedom are changed, any representation of
nuclear motion in terms of adiabatic states must necessarily
couple nuclear motion with electronic transitions. For this
reason, diabatic states were historically defined4–7 as
rotations of adiabatic states with zero nuclear derivative
couplings,
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��i� = 	
j=1

Nstates

�� j�Uji, i = 1, . . . ,Nstates, �5�

0 = 
�i�r;R���R�� j�r;R��r. �6�

Although diabatic states satisfying Eqs. �5� and �6� ex-
actly do not usually exist,17 one can select diabatic states
where the derivative couplings above are minimized.6,7 With
this definition, diabatic states are coupled together only very
weakly through the nuclear derivative, but they can now be
coupled together moderately through the electronic Hamil-
tonian 
�i�r ;R��Hel�r ;R��� j�r ;R��, resulting in the so-called
diabatic couplings or HAB’s that appear in nonadiabatic elec-
tron transfer theory.

B. The motivation for diabatic states in a condensed
environment

When applying the Born–Oppenheimer treatment to a
system capable of electron or energy transfer in a condensed
environment, there is a separate motivation for constructing
diabatic states. Namely, even if the system does not ex-
change electrons with its surroundings, one can find that the
important quantum mechanical states of the system depend
as much on the environment as on the system, in particular,
when the environment is polarizable.18 Thus, in many cases,
the adiabatic states of the isolated system will not be the
relevant stationary states of the solvated system, and they do
not describe the system before or after an electron or energy
transfer event.

For example, consider the standard example19 of two
solvated iron cations �Fe�H2O�6�2

+5. If we ignore solvent and
construct the Hamiltonian for the 107 electrons belonging to
the two cation complexes in vacuum, we will find adiabatic
states with exactly 53.5 electrons attached to each of the two
iron centers �assuming the Fe–O distances are equal for both
centers�. In fact, because the electronic Hamiltonian is sym-
metric between the left and right, all eigenfunctions of Hel�r�
must also be eigenstates of the parity operator and therefore
distribute charge equally between the two iron centers. The
aforementioned electronic adiabatic states of �Fe�H2O�6�2

+5

do not represent the important stationary states of iron in
solution because, in a strongly polarizable environment,
equal sharing of charge between the two cations is unphysi-
cal. In solution, the solvent will polarize around charge and
the system-solvent interactions will drive an asymmetry,
forcing the extra charge to be localized on one of the two
iron centers. Indeed, if we relax the constraint of equal Fe–O
distances even in the gas phase, the odd electron may well
localize.19

With this motivation, diabatic states for a system in a
condensed environment can be defined as the projection onto
the system of the stationary states of the system plus environ-
ment. With this definition, when appropriate, the diabatic
states of a system represent the initial and final states of the
system before or after an electron or energy transfer event.
There is a vast literature of research focused on computing
these diabatic states when the surrounding solvent is mod-
eled as a polarizable continuous medium20–24 �PCM� de-

signed to account for nuclear polarizability of the
solvent.24,25 For a comprehensive review, see Ref. 18.

C. The connection between the two definitions

Although a priori there is no reason to expect that di-
abatic states ���i�r ;R��� representing the initial and final
states of an electron transfer process should obey the historic
definition of diabatic states �i.e., 
�i�r ;R���R�� j�r ;R��r=0�,
as a practical matter the two definitions do usually agree. As
pointed out by Atchity and Ruedenberg10,11 and extended by
Nakamura and Truhlar,12–14 diabatic states with minimal de-
rivative couplings should have “configurational uniformity”
whereby the dominant configurations are unchanged over the
entire potential energy surface. Pacher et al.15,16 also inde-
pendently published similar ideas of diabatization, proposing
a “block diagonalization” algorithm that minimizes the dis-
tance �in wave function space� between the target diabatic
states and a reference basis of states with fixed character
�which were assumed always available�. Because the initial
and final states of an electron or energy transfer process
should have a fixed character �e.g., covalent, ionic, etc.�, we
may expect that the historic definition of diabatic states will
usually agree with the condensed environment definition.

D. Current algorithms for constructing diabatic states
for electron and energy transfer

Unfortunately, including explicit solvent �beyond a con-
tinuum model� is computationally intractable for most calcu-
lations. There is an immense literature modeling the solvent
as a continuum that polarizes the system self-consistently for
use in electron transfer.18,24,26 Two challenges with con-
tinuum models are sensitivity to cavity definition and the
difficulty calculating a complete set of diabatic states when
the nuclear geometry of the system is not close to the tran-
sition state and the effective solvent nuclear geometry needs
to be very different for each of the diabatic states sought. For
modern electron or energy transfer calculations, the standard
approach to constructing diabatic states ���i�� �and their di-
abatic couplings� is to rotate the adiabatic states of the sys-
tem in vacuum ���i�� �as in Eq. �5�� according to some physi-
cal criterion that should mimic the effect of solvent.
Examples of such methods in the context of electron transfer
include generalized Mulliken Hush �GMH�,8,9 Boys
localization,27 constrained density functional theory
�CDFT�,28–31 fragment charge difference �FCD�,32 and in the
context of energy transfer, fragment energy difference
�FED�.33–35

In some cases, the diabatic states are obvious. For in-
stance, in the case of �Fe�H2O�6�2

+5, our intuition is to rotate
together the adiabatic ground state and the adiabatic first ex-
cited state so that the resulting two diabatic states would
have charge localized either on the left or on the right cation.
We make this choice of diabatic states for �Fe�H2O�6�2

+5 be-
cause, according to electrostatic theory, the solvent should
choose to localize the extra charge on one or the other iron
center if the dielectric constant is sufficiently large and the
metal-metal electronic coupling is not too strong. For a more
general system, however, there can be no unique definition
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for constructing such diabatic states because the need for
such diabatic states is based on the initial state preparation
and our lack of information about solvent position and ori-
entation. For this reason, many electron-transfer theorists
have preferred to avoid calculating diabatic states altogether,
choosing instead to extract the electronic couplings neces-
sary for predicting electron transfer rates using indirect meth-
ods that do not make explicit reference to diabatic states.36–43

Nevertheless, because the physical meaning of diabatic
states in condensed environments is paramount, it is worth-
while and useful to construct approximate system diabatic
states even if these computed states are not unique. Ideally, a
diabatization algorithm applicable to electron and energy
transfer in condensed environments should

• treat the initial and final states of both electron and
energy transfer equivalently;

• apply to both inter- and intramolecular electron or
energy transfer;

• be computationally feasible for large molecules with
arbitrarily many charge or energy excitation centers;

• apply to molecules with arbitrary amounts of electron-
electron correlation;

• rely on as few parameters as possible �e.g., dielectric
constants, cavity sizes, charge fragments, etc.�;

• allow for the calculation of diabatic states at all nuclear
geometries of the system with or without solvent
�so that the Condon approximation �e.g., see Ref. 44�
can be tested�.

In Sec. II, we will present two new diabatization algo-
rithms, namely, Boys and Edmiston–Ruedenberg �ER� diaba-
tization. The Boys approach satisfies most of the above re-
quirements �for electron transfer only� while the ER
approach satisfies them all �for electron and energy transfer�.
A third approach, von Niessen–Edmiston–Ruedenberg
�VNER� diabatization, will be discussed in Appendix B. Be-
fore introducing these new methods, we briefly review the
four modern algorithms commonly used to construct diabatic
states relevant to electron and energy transfer processes:
GMH,8,9 FCD,32 FED,33–35 and CDFT.28–31

1. Generalized Mulliken Hush

The GMH algorithm8,9 is a simple approach that has
proved very popular for the specific case of describing the
initial and final states of an electron transfer process. The
general idea behind GMH is to recognize that, when model-
ing electron transfer, the diabatic states should correspond to
charge localized on different centers �donors and acceptors�.
The physical motivation underlying charge-localized diabatic
states is that solvent localizes charge on a system by reorga-
nizing around it.

When seeking charge-localized diabatic states, according
to GMH theory, one constructs diabatic states as follows �for
the two-state problem�. First, one calculates all dipole matrix
elements of the adiabatic states ��1� and ��2�: �� 11, �� 22, and
�� 12. Second, one recognizes that the important direction is

the direction of the dipole moment of the initial adiabatic
state minus the dipole moment of the final adiabatic state:
v0�= ��� 11−�� 22� / ��� 11−�� 22�. Third, one projects all dipole ma-
trix elements into the v0 direction and diagonalizes the dipole
matrix. The motivation here originally was proposed by Mul-
liken and Hush who reasoned that the transition dipole con-
necting localized diabatic states should be zero for charge
transfer calculations due to the locality of the dipole moment
operator and the exponential decay of the localized donor
and acceptor states. The rotation matrix that diagonalizes the
projected dipole matrix is taken as the GMH transformation
matrix from adiabatic to diabatic states.

GMH theory has been used to model several experimen-
tal systems for two-state electron transfer. For systems with
more than two states but only two charge centers, GMH
makes the reasonable choice to diagonalize the Hamiltonian
within the block of states for each charge center, thus gener-
ating unique, locally adiabatic diabatic states. For systems
with more than two noncollinear charge systems, however,
there is no unique charge transfer direction and GMH is un-
satisfactory. GMH is also incapable of treating energy
transfer.

2. Fragment charge difference

The FCD method32 is based on GMH, with the advan-
tage that FCD can account for multiple charge centers. The
FCD approach works by associating each diabatic state ��i�
with a given donor or acceptor fragment �indexed by i�, and
then maximizing the sum over all diabatic states of the
charge density lying on the associated fragment. While this
approach is general and can be applied to many charge cen-
ters, the price for this generality is that a priori one must
define donor and acceptor fragments, rather than allowing
the diabatization routine to distribute charge naturally. Thus,
it is difficult to rigorously justify the FCD algorithm on
physical grounds for intramolecular electron transfer. More-
over, the FCD algorithm does not treat energy transfer.

3. Fragment energy difference

The FED algorithm by Hsu and co-workers33–35 extends
the FCD approach to energy transfer by defining energy ex-
citation density as the density of electron attachment plus the
density of electron detachment, all relative to a molecular
ground state. Similar to the FCD approach for electron trans-
fer, FED makes diabatic states by first associating each di-
abatic state with one molecular fragment for energy excita-
tion, and second maximizing the sum over all diabatic states
��i� of the energy excitation density associated with frag-
ment i. Just like the FCD approach, the FED method can
treat multiple energy excitation centers. However, as for
FCD, the price for this flexibility is that the algorithm de-
pends on a priori definitions of molecular fragments, which
is difficult to justify on physical grounds for intramolecular
energy transfer. Moreover, it is unclear if the FED algorithm
can be directly applied to charge transfer.
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4. Constrained DFT

In the past decade, CDFT �Refs. 28–31� has evolved as
an alternative approach to constructing diabatic states, en-
tirely avoiding the adiabatic states normally produced by
standard electronic structure methods. The idea behind
CDFT is to define donor and acceptor fragments, and to con-
strain the Kohn–Sham wave function to have the correct
charge on each fragment. While CDFT has the strong advan-
tage of being computationally inexpensive, because of the
necessary fragment definitions, the algorithm is more diffi-
cult to justify on physical grounds for intramolecular �rather
than intermolecular� electron transfer. To our knowledge,
CDFT-like methods have not yet been applied to energy
transfer. Formally, CDFT diabatic states are not rotations of
adiabatic states arising from standard ab initio quantum
chemistry calculations.

E. A brief synopsis of orbital localization routines

In Sec. II, we will derive two new diabatization routines
based on different models for the interaction of system with
solvent �and a third model is given in Appendix B�. These
new techniques bear a striking resemblance to algorithms
commonly used for molecular orbital localization, including
the Boys,45–47 ER,48 and VNER �Refs. 48–50� localization
routines. For completeness, we remind the reader how these
different localized orbitals are defined.

For a closed molecular system, we denote the canonical
molecular orbitals �i , i=1, . . . ,Norbitals which are almost al-
ways delocalized. One can construct localized orbitals �i by
applying a rotation matrix U,

�i = 	
j=1

Norbitals

� jUji, i = 1, . . . ,Norbitals. �7�

Because the �Slater� determinant is multiplicative, rotating
occupied molecular orbitals together does not change the
overall many-electron state of the system.

The rotation matrix U is usually defined by maximizing
a localization function. For the three localization routines
mentioned above, these localization functions are

fBoys�U� = fBoys���i�� = 	
i,j=1

Nstates

�
�i�r���i� − 
� j�r��� j��2, �8�

fER�U� = fER���i��

= 	
i=1

Norbitals

��i�i��i�i� �9�

= 	
i=1

Norbitals� dr1� dr2
�i�r1��i�r1��i�r2��i�r2�

�r1 − r2�
,

�10�

fVNER�U� = fVNER���i��

= 	
i=1

Norbitals� dr1�i�r1��i�r1��i�r1��i�r1� . �11�

In Eq. �9�, we use the chemists’ notation for the two-electron
Coulomb integral �pq �rs�.51 Equations �8�–�11� should be
compared to Eqs. �22�, �28�, and �B4� below. There would
appear to be a remarkable connection between orbital local-
ization techniques and many-electron state diabatization
algorithms.

II. CONSTRUCTING DIABATIC STATES BASED
ON SYSTEM-SOLVENT INTERACTIONS

We now present a new approach for constructing diaba-
tic states relevant to electron and energy transfer, beginning
with a standard model for a solvated system.

A. The difficulty modeling system-solvent interactions
explicitly

As noted many times before �e.g., see Ref. 18�, when
treating electron and energy transfer in condensed environ-
ments, the need for diabatic states is motivated especially by
the interactions between the system and the polar solvent.
The full Hamiltonian for a quantum mechanical system in-
teracting with solvent can always be written as18

Hfull = Hsys�r,Rsys� + Hint�r,Rsys,rsolv,Rsolv�

+ Hsolvent�rsolv,Rsolv� . �12�

r ,R denote electronic and nuclear degrees of freedom, re-
spectively. We restrict ourselves to cases where electrons are
not exchanged between system and solvent so that system
electrons �denoted r� can be distinguished from solvent elec-
trons �denoted rsolv�.

We will also assume that for any nuclear configuration of
the solvent �Rsolv�, the solvent electrons are in their ground
state �independent of the system�, which can be found by an
electronic structure calculation on the solvent alone. This
allows us to collectively represent solvent electrons and nu-
clei by the solvent nuclear coordinate �Rsolv� alone,

Hfull = Hsys�r,Rsys� + Hint�r,Rsys,Rsolv� + Hsolvent�Rsolv� .

�13�

For future calculations, we seek an algorithm to compute
meaningful diabatic electronic states that are applicable at
any fixed nuclear configuration of the system �Rsys�.
Such states can be found by minimizing the ground state
energy of the system as a function of all solvent nuclear
coordinates,18

Hfull
el �r;Rsys,Rsolv

�m� ���0
�m��r;Rsys,Rsolv

�m� ��

= E0�Rsys,Rsolv
�m� ���0

�m��r;Rsys,Rsolv
�m� �� , �14�

�

�Rsolv
E0�Rsys,Rsolv��Rsolv=Rsolv

�m� = 0. �15�

In Eqs. �14� and �15�, we have labeled one optimal choice of
nuclear solvent coordinates by index m and index 0 denotes
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the fact that ��0
�m�� is the electronic ground state. The semi-

colons in Eq. �14� emphasize that nuclear and electronic mo-
tion are decoupled according to the Born–Oppenheimer ap-
proximation and, as stated above, solvent electrons are
treated implicitly by assuming that they are in the solvent
ground state.

Because there can be many optimal nuclear configura-
tions satisfying Eqs. �14� and �15�, in order for us to describe
completely the stable states of the system, we must find all
such optimal nuclear configurations for the system and sol-
vent. The resulting electronic states ���0

�m��r ;Rsys ,Rsolv
�m� ��� are

the important set of wave functions for the system electrons,
and they depend parametrically on all nuclear coordinates
�system and solvent�. These wave functions are neither the
adiabatic states of the system plus solvent �because we sepa-
rate solvent electrons from system electrons� nor the adia-
batic states of the system �because we have included the
effect of solvent in our Hamiltonian�. Instead, by our defini-
tions above, the set ���0

�m��r ;Rsys ,Rsolv
�m� ��� are exactly the di-

abatic states for the system. Our goal is to compute these
wave functions as easily as possible.

If one treats the solvent as a polarizable continuous me-
dium �PCM�, Eqs. �14� and �15� have been explored with
great success over the past 30 years by Tomasi and
co-workers.20–23,52–54 The caveats in using PCM-like models
for electron or energy transfer are �i� the dependence of the
resulting diabatic states on cavity geometry and �ii� the dif-
ficulty computing a complete set of diabatic states for the
system when the system nuclear geometry �Rsys� is biased
toward one state and the effective solvent nuclear geometry
needs to be very different for each of the diabatic states
sought. In the future, when possible, it will be worthwhile to
compare the diabatic states and diabatic coupling matrix el-
ements �HAB� produced with PCM with those produced by
the algorithms presented below. In Sec. II B, we will derive
an approximate description of the diabatic states in a polar
solvent that requires neither modeling explicit solvent nor
assuming a fixed cavity geometry.

B. Necessary approximations for system-solvent
interactions

We follow the formal procedure given above for con-
structing diabatic states in a polar environment, attempting to
satisfy Eqs. �14� and �15� approximately. In the process, we
will eventually derive Boys and ER localizations, which re-
quire only calculations of the system in vacuum. To make
any progress, we make several initial assumptions, which are
discussed in detail in Sec. IV.

1. Nearly degenerate adiabatic system states

Our preliminary assumption is that, in the absence of
solvent, the adiabatic eigenstates of the isolated system in
vacuum will include some set of nearly degenerate levels
which, in the presence of a solvent, are mixed together to
form diabatic states. This assumption is clearly true in nu-
merous physically relevant cases including, for instance,
charge transfer systems between symmetric ions or energy
transfer along a chain of chromophores.

Formally, we diagonalize the system Hamiltonian Hsys

and generate a complete set of adiabatic states �denoted
A and labeled by n� for the isolated system,
A����n�r ;Rsys���, with no reference to a solvent coordinate,

Hsys�r;Rsys���n�r;Rsys�� = En�Rsys���n�r;Rsys�� . �16�

Here, n=0 is the electronic ground state of the isolated sys-
tem, n=1 is the first excited state, etc. We will assume that
the important adiabatic states are nearly degenerate in en-
ergy, with the energy scale to be determined below.

2. The system-solvent interaction is neither too strong
nor too weak

For systems that can undergo electron transfer, moving
the solvent corresponds to an outer sphere reorganization,
which should be small compared to the range of electronic
energies for the adiabatic states of the system. The magni-
tude of a reorganization energy is usually between a few
tenths of an eV and a couple of eV,55 while quantum chem-
istry calculations routinely calculate molecular excited states
with energies 10 eV above the ground state. Thus, we expect

��Hint� 	 energy spread�A� . �17�

Given Eq. �17�, when constructing diabatic states, it is
reasonable to focus on a reduced subspace W�A which
includes all system states that are spread out over an energy
range of no more than a 1–2 eV. W can include or exclude
the ground state adiabatic wave function of the system, and
we define the dimension of W to be Nstates. We expect W
should contain the nearly degenerate adiabatic system states
predicated above. The possibility that other, dynamically un-
important system states are included in W is discussed in
Sec. IV A. Now, suppose we are given an optimal set of
solvent nuclear coordinates Rsolv

�m� satisfying Eq. �14�. By as-
suming that �Hint should not be too large, the implication
is that in order to compute the electronic ground
state ��0

�m��r ;Rsys ,Rsolv
�m� ��, we need only minimize

Hsys�r ;Rsys�+Hint�r ;Rsys ,Rsolv
�m� � within the subspace W.

Next, after assuming an upper bound for ��Hint� in Eq.
�17�, we assume that in a polar solvent, ��Hint� is not too
small and is larger than the spread of system eigenvalues in
W,

energy spread�W� 
 ��Hint� 	 energy spread�A� . �18�

Thus, the system-solvent interaction is assumed to be the
dominant term in lifting the near degeneracy of the vacuum
adiabatic states. The implication of this second and balancing
assumption is that instead of diagonalizing
Hsys�r ;Rsys�+Hint�r ;Rsys ,Rsolv

�m� � directly in the W subspace, a
good approximation is to diagonalize �Hint alone �in the W
subspace� and look for the lowest eigenvalue. If the adiabatic
states in W were exactly degenerate, this would be equiva-
lent to first-order degenerate perturbation theory.

3. The system-solvent interaction is electrostatic

Our last and biggest assumption is that the system-
solvent interaction energy is based on electrostatics. With
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this in mind, we may write the electronic density at position
r�> as a dynamic variable and the system-solvent interaction
Hamiltonian as an integral over all space,

�̂�r�>� = 	
j

��r�> − r��j�� , �19�

Hint�r;Rsys,Rsolv
�m� � =� dr�>�int�r�> ;Rsys,Rsolv

�m� ��̂�r�>� . �20�

Here, r��j� represents the position of the jth electron and this
expression is exact for arbitrary system-solvent interaction
energies that are based on electrostatics. The hat on �̂ de-
notes the fact that �̂ is an operator, and �int is the electrostatic
potential caused by the solvent acting on the system. We
repeat that the index m stands for one configuration of sol-
vent nuclei which is optimal for stabilizing the system.

C. Distinct models for the system-solvent interaction
and the resulting diabatization algorithms

Thus far, we have outlined a general strategy for obtain-
ing diabatic states based on assumptions about the strength
of the system-solvent interaction potential Hint relative to
other energy ranges of the system. The derivation of different
diabatization methods now hinges on our specific treatment
of the interaction potential Hint. As shown below, applying
different models for Hint leads to distinct diabatization meth-
odologies.

1. Multipole expansion: Boys diabatic states
and electron transfer

For a system located near the origin, one simple approxi-
mation to the general expression in Eq. �20� is to represent
the interaction energy as a multipole expansion of the elec-
tronic coordinate r of the system around zero,

Hint�r;Rsys,Rsolv
�m� � = Hint

�0,m� + Hint
�1,m� + Hint

�2,m� + Hint
�3,m� + ¯

= Q�0� + 	
i=x,y,z

Qi
�1��Rsys,Rsolv

�m� �ri

+ 	
i,j=x,y,z

Qij
�2��Rsys,Rsolv

�m� �rirj + ¯ .

�21�

Here, ri stands for a Cartesian component of the second-
quantized electronic coordinate r� �i.e., ri=x ,y ,z�. In the
neighborhood of the system, we must assume that �Hint

�0,m��

 �Hint

�1,m��
 �Hint
�2,m��
¯. This multipole expansion works

best for small systems where the system-solvent interaction
is dominated by the linear term.

Making all the assumptions in Sec. II B and approximat-
ing Eq. �21� by the linear term �as would be expected
in the case of electron transfer�, it follows that we can con-
struct diabatic states by diagonalizing the operator
Hint

�1,m�=	i=x,y,zQi
�1��Rsys ,Rsolv

�m� �ri in the subspace W. The prob-
lem remains, however, that without actually constructing
Rsolv

�m� , which would be very costly, there is no straightforward
way to minimize Hint

�1,m� because the coefficients
Qi

�1��Rsys ,Rsolv
�m� �ri depend on the solvent configuration. Thus,

any diabatization algorithm would appear to require model-
ing the solvent, either explicitly as molecules or as a PCM.

Nevertheless, although computing Qx
�1�, Qy

�1�, and Qz
�1�

formally requires Rsolv
�m� , note that if all three component op-

erators of r, i.e., x ,y ,z, were diagonalized simultaneously,
then Hint

�1,m� would automatically be diagonal and minimiza-
tion would be trivial. Now, even though x ,y ,z cannot be
simultaneously diagonalized in the subspace W, an approxi-
mate diagonalization of all three operators in the subspace W
can be achieved by rotating the basis states ���n�� into new
states ���l��, where the variances of the x ,y ,z operators are
minimal. It is important to note that, for any operator A and
state �, if 
��A2���− 
��A���2=0, then � is an eigenvector
of A.

Thus, we propose to rotate the adiabatic states into di-
abatic states as in Eq. �5� where we fix the rotation matrix U
by minimizing the sum of the variances of each Cartesian
component in each of the different rotated states,

fBoys�U� = fBoys���i��

= 	
l=1

Nstates

	
i=x,y,z

�
�l�ri
2��l� − 
�l�ri��l�2� . �22�

Equation �22� is a reasonable minimization criterion because
the linear expansion of a complex three-dimensional system-
solvent interaction into three terms is a very compact repre-
sentation, and minimizing the sum of the variances of all
three dipole operators �x ,y ,z� can be accomplished easily
and effectively. As a bonus, minimization of Eq. �22� is in-
variant to translation of the origin or rotations of the coordi-
nate axes �see Eq. �23��.

Now, minimizing Eq. �22� generates approximate eigen-
vectors of Hint

�1,m� without any detailed knowledge of the sol-
vent coordinate Rsolv

�m� . Thus, for each solvent configuration
Rsolv

�m� , it would be pointless for us to find the exact ��m� that
minimizes 
�m�Hint

�1,m���m�. Instead, we should assume that
each basis function in the set ���l�� corresponds to the opti-
mal electronic state for a different solvent configuration,
Rsolv

�l� . This interpretation is particularly reasonable if each of
the states in ���l�� keeps excess charge localized on a differ-
ent charge center. In that case, we will argue that the set
���l�r ;Rsys���l=1

Nstates is a complete set of diabatic states for our
system within the energy range defined by W. At the same
time, if two diabatic states have charge localized on the same
center, the system Hamiltonian should be rediagonalized
within this two-dimensional subspace to generate unique, lo-
cally adiabatic diabatic states. This completes our recipe for
constructing the diabatic states of the electron transfer
system.

Solving Eqs. �5� and �22� is exactly equivalent to the
Boys algorithm, which was shown previously to give charge-
localized diabatic states relevant to electron transfer.27 This
localization property of the Boys algorithm becomes most
obvious if, using the fact that the trace of an operator is
invariant to representation, we maximize Eq. �23� rather than
minimize Eq. �22�,
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fBoys�U� = fBoys���i�� = 	
i,j=1

Nstates

�
�i��� ��i� − 
� j��� �� j��2.

�23�

Moreover, if we were to pick a charge transfer direction v0

and diagonalize the operator r̂ ·v0 in the subspace W, we
would recover the GMH formalism. At this point, we have
approximately justified the Boys and GMH algorithms on
physical grounds, and we have motivated why it is important
to rotate together only adiabatic states that are close in
energy.

One final point must be made about Boys localization.
The form of Eq. �23� should remind the reader that Boys
localized diabatic states are applicable only for electron
transfer and not for energy transfer.56 The optimization func-
tion fBoys in Eq. �23� seeks to separate the centers of charge
between different diabatic states and if we focus on a sub-
space W of adiabatic states �within a certain energy range�
that exhibits energy transfer and not electron transfer, we will
find that the sum fBoys is invariant to rotations in W and
cannot be optimized. In such cases, the system-solvent inter-
action is not linear in space and cannot be described by the
linear term in Eq. �21�. Instead, we must work with a more
general expression for the system-solvent interaction
potential.

2. Linear response of the solvent: ER diabatic states
and electron/energy transfer

Beyond the case of solvent fields which are linear in
space, a more robust approximation to Eq. �20� is for us to
assume that the response of the solvent is a linear function of
the state of the system. With that in mind, we denote the
electrostatic potential at a point r�>1 in space caused only by
the system as

�sys�r�>1� =� dr�>2

�̂�r�>2��
�r�>1 − r�>2�

+ Vnuc�r�>1� . �24�

Here, the bracket 
 � denotes that the density operator �̂ must
be evaluated in the state of the system.

We now assume that the solvent acts as a linear dielec-
tric, with dielectric constant �. Thus, the electrostatic poten-
tial from the solvent should be linearly proportional to the
electrostatic potential from the system, with a constant
�1−�� /�,

�int�r�>1� =
1 − �

�
�sys�r�>1� . �25�

It follows that the total system-solvent interaction is nonlin-
ear and can be written as

Hint =
1 − �

�
� dr�>1� dr�>2


�̂�r�>2���̂�r�>1�
�r�>1 − r�>2�

+
1 − �

�
� dr�>1Vnuc�r�>1��̂�r�>1� . �26�

Equations �25� and �26� are commonly used in solid state
physics when computing solvation energies and screening
effects for a system immersed in a linear dielectric.57 If we
seek a diabatic state ��i� which minimizes the system-
solvent interaction energy, we must minimize the energy,

Eint
�i� =

1 − �

�

� dr�>1� dr�>2


�i��̂�r�>2���i�
�i��̂�r�>1���i�
�r�>1 − r�>2�

+� dr�>1
�i�Vnuc�r�>1��̂�r�>1���i�� . �27�

Because we seek a complete set of orthogonal diabatic
states, it would not be fruitful to search for the global mini-
mum of Eq. �27�. Instead, we will search for the rotation
matrix U in Eq. �5� which minimizes the sum of the system-
solvent interactions for each orthonormal diabatic state. The
second term in Eq. �27� �arising from the system nuclear
potential� is then a constant because the nuclei are fixed and
the resulting trace is invariant to representation. Hence, be-
cause the dielectric constant of a condensed environment sat-
isfies �
1, we must maximize

fER�U� = fER���i��

= 	
i=1

Nstates� dr�>1� dr�>2

�i��̂�r�>2���i�
�i��̂�r�>1���i�

�r�>1 − r�>2�
.

�28�

Because of its similarity to Eq. �9�, Eq. �28� should be called
the ER function for localizing diabatic states. In Appendix A,
we show how to maximize the function fER in the context of
configuration interaction singles �CIS� excited states.

In Sec. III, we give chemical examples showing that ER
localization successfully generates diabatic states applicable
both to electron transfer and energy transfer. In this sense,
ER localization is much more powerful than Boys localiza-
tion.

FIG. 1. �Color online� Detachment density plot for an adiabatic excited state
in the trans conformer of OMP3. Note that the detached and attached den-
sities are both delocalized over the molecule.

FIG. 2. �Color online� Attachment density plot for an adiabatic excited state
in the trans conformer of OMP3.
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3. A delta function potential between free
and induced charges: VNER diabatic states

For completeness, in Appendix B, we present a third
algorithm for constructing diabatic states, the VNER formal-
ism. The VNER approach can be derived by assuming that
the solvent responds linearly to the system, but free charges
in the system interact with induced charges in the solvent via
a delta function in real space �rather than by Coulomb’s law�.
VNER diabatic states satisfy a maximally different density
criterion and have elements in common with both Boys and
ER localized diabatic states.

III. A CHEMICAL EXAMPLE:
OLIGOMETHYLPHENYL-3, ENERGY
TRANSFER, AND THE CONDON APPROXIMATION

A previous article has already demonstrated that Boys
localization leads to charge-localized diabatic states.27 In or-
der to verify that ER localization does the same, we have
performed straightforward CIS calculations on linear
�Na–Be–Na�2+ in a 6-31G� basis, where the Na–Be distance
is 5 Å. All electronic structure calculations were performed
using the Q-CHEM package.58 In the ground state of the mol-
ecule, after a HF calculation, the Be atom is neutral and both
Na atoms have charge +1. The first and second adiabatic
excited states of the system, ��1� and ��2�, are nondegener-
ate delocalized charge transfer states, wherein Be donates an
electron into orbitals on both Na atoms. Performing either
ER or Boys localization on the subspace W= ��1� � ��2�
produces two energetically degenerate diabatic states, ��1�
and ��2�, each with excess charge localized on a separate Na
atom. The diabatic coupling elements between the two states
are identical for the two algorithms. More details of this
simple case are given in the online EPAPS depository,59 in-
cluding attachment/detachment plots. We conclude that,
similar to Boys localization, ER localization can indeed de-
scribe diabatic states appropriate for charge transfer. The
more challenging test, however, is whether ER can describe
diabatic states appropriate for energy transfer. We demon-
strate this now for one chemical example.

Consider the molecule shown in Figs. 1 and 2, where
three benzene rings are attached together by two CH2 single
bonds. For notational ease, we will call this molecule
oligomethylphenyl-3 �OMP3�. CIS calculations for OMP3 in
a 6-31G� basis in the HF optimized ground state geometry
show that the six lowest-lying excited states have energies
6.137, 6.138, 6.267, 6.291, 6.427, and 6.553 eV relative to

the ground state. The next lowest excited states begin at
7.652 eV and will be ignored. Figures 1 and 2 are
attachment/detachment60 plots for one of these six adiabatic
states which shows that in the adiabatic picture, both the
detached and attached electron density are delocalized over
the whole molecule. According to Figs. 1 and 2, the effective
detached electron comes from the � system and the attached
electron goes into the �� system.

Given that the six lowest excited states of OMP3 are so
close in energy, we propose that these six states should be
mixed together and diabatized according to the ER algorithm
above, which should approximately represent solvent �or vi-
brational� effects. In order to check the Condon approxima-
tion, we have performed this diabatization procedure both for
the gauche and trans conformers of OMP3, checking the
sensitivity of the coupling element HAB to nuclear geometry.

In contrast to the delocalized picture of electronic exci-
tation in the adiabatic basis, the attachment/detachment plots
in Figs. 3–6 show that the electronic excitation can be
viewed as local in the basis of diabatic states. For each di-
abatic state, the attached and detached electron appears to be
localized in the � and �� orbitals of one specific monomer.
Note that after the initial ER localization, we find two diaba-
tic states with electron-hole pairs on each benzene monomer.
In order to generate the locally adiabatic diabatic ER states
shown in Figs. 3–6, we have rotated within each two-
dimensional subspace so that the final Hamiltonian is diago-
nal between states with excitation energy on the same center.
As described above, our intuition is that states with excita-
tions �or charge� on the same center should be uncoupled, as
the effect of solvent should be minimal between states so
close together. We admit, however, that this approach is not
general and cannot be rigorously justified. Nevertheless, it is
comforting that the attachment/detachment plots of the ER
diabatic states before and after this final diagonalization look
very similar. Finally, we mention in passing that unlike ER
diabatization, Boys localization �with the dipole operator�
produces erratic and unphysical diabatic states with delocal-
ized electron-hole pairs for this molecule.56

In Table I, we give the diabatic coupling elements
�HAB= 
�A�Hel��B�� between ER diabatic states. From the
data, the six excited states can be separated into two sets of
three, those with even state numbers and those with odd state
numbers, and each set is nearly uncoupled from the other.
Let us label the degenerate highest occupied molecular orbit-
als of benzene �1 and �2, and the degenerate lowest unoc-
cupied molecular orbitals �1

� and �2
�. Because the diabatic

states shown in Figs. 3–6 show no nodal plane perpendicular
to the benzene plane, it is likely that the two diabatic states

FIG. 3. �Color online� Detachment density plot for an ER localized diabatic
excited state in the trans conformer of OMP3. Note that the detached den-
sity is localized on one and the same benzene monomer as the attached
density. This state with a localized electron-hole pair could be called an
exciton.

FIG. 4. �Color online� Attachment density plot for an ER localized diabatic
excited state in the trans conformer of OMP3.
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on each benzene monomer are approximately ��1,2�
= �1 /�2����1

��†�1� ��2
��†�2���HF�. In this second-quantized

expression, we imagine replacing �1 by �1
� and �2 by �2

�,
and adding or subtracting the two singly substituted Slater
determinants. This rough picture of the diabatic states would
fit the attachment/detachment density seen in Figs. 3–6, al-
though this is not conclusive.

According to Table I for both groups of diabatic states,
the nearest-neighbor diabatic couplings are very similar be-
tween the trans and gauche conformers, agreeing with the
Condon principle that HAB should be insensitive to nuclear
geometry. Between diabatic states on opposite ends, how-
ever, the diabatic coupling is dramatically changed, in one
case increasing by a factor of 3. This reflects the fact that the
opposite benzene monomers become much closer when the
molecule is rotated around the methylene group. Moreover,
for the gauche conformation, the odd and the even groups of
states are coupled more strongly than they are in the trans

conformation. Nevertheless, the nearest-neighbor diabatic
couplings within each group are still one to two orders of
magnitude larger than all other couplings, and because these
couplings vary only minimally from trans to gauche, the
Condon approximation largely holds for the molecule.

Finally, note that we have calculated diabatic states and
HAB elements at the ground state geometry of the molecule,
rather than at the formal transition state geometry, where the
edge and middle states would be degenerate. While the latter
geometry would be more common in typical Marcus theory
electron or energy transfer applications, we point out that
within each group, the energies of our diabatic states are
within 0.15 eV. By contrast, for the adiabatic states, the
spread in energies is approximately 0.41 eV. We also note
that the on-diagonal energies of the diabatic states change
only minimally �
0.01 eV� between the trans and gauche
conformations. In the end, these ER diabatic states conform
to our expectations of the initial and final states of an energy
transfer process.

TABLE I. The diabatic coupling elements �HAB� for the ER diabatic states of OMP3 in units of electron volts
�eV�. Here, we have included six adiabatic excited states in our subspace W and, because of symmetry, we find
two groups of three states that are nearly uncoupled �i.e., the odd and even numbered states below�. The six
adiabatic excited states were computed with CIS in a 6-31G� basis. Because the nearest-neighbor couplings are
very similar for both trans and gauche conformers, the ER diabatic states obey the Condon approximation.

State

Monomer

1 2 3 4 5 6

Center Center Left Left Right Right

�a� Trans conformation
1 Center 6.1615 0 �0.0394 1�10−5 0.0396 �0.0001
2 Center 6.2759 0.0002 0.1384 �0.0003 0.1383
3 Left 6.2673 0 4�10−5 0.0007
4 Left 6.4213 �0.0007 �0.0061
5 Right 6.2671 0
6 Right 6.4212

�b� Gauche conformation
1 Center 6.1609 0 �0.0395 0.0011 0.0391 �0.0011
2 Center 6.2736 �0.0010 �0.1391 �0.0011 �0.1388
3 Left 6.2670 0 0.0001 �0.0011
4 Left 6.4204 �0.0009 �0.0068
5 Right 6.2669 0
6 Right 6.4203

FIG. 5. �Color online� Detachment density plot for an ER localized diabatic
excited state in the gauche conformer of OMP3. Note that the detached
density is localized on one and the same benzene monomer as the attached
density. This state with a localized electron-hole pair could be called an
exciton.

FIG. 6. �Color online� Attachment density plot for an ER localized diabatic
excited state in the gauche conformer of OMP3.
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IV. DISCUSSION AND SUMMARY

Rather than seeking diabatic states with zero derivative
couplings, in this paper, we have examined diabatic states
which describe a system interacting with a polar solvent be-
fore or after an electron or energy transfer process. In prac-
tical terms, we have proposed constructing such diabatic
states by �i� calculating the adiabatic states of the system
without solvent; �ii� grouping together those adiabatic states
that fall within an energy window approximately equal to the
reorganization energy of the solvated system; �iii� perform-
ing either Boys or ER localization on this relevant subspace
of adiabatic states. Both the Boys and ER diabatization
schemes have very physical foundations, and we believe
both will be successful in describing nonequilibrium trans-
port phenomena. Boys localization is based upon a system-
solvent potential that is linear in space and is applicable to
electron transfer. ER localization is based upon linear re-
sponse of the solvent to the system and is applicable to both
electron and energy transfer. Overall, the ER method satisfies
all six of the desirable criteria for diabatization algorithms
listed in Sec. I D, and the Boys method satisfies five. We
emphasize that neither algorithm requires definitions of
charge fragments �unless multiple diabatic states have charge
or excitation energy on the same atom center or monomer
and we choose to rediagonalize the Hamiltonian within this
subblock�. For the OMP3 problem, the compatibility of the
ER approach with the Condon approximation is encouraging
and the attachment-detachment plots in Figs. 3–6 agree with
our intuition for the shape of excitons in this system.

Although we have tried to be as rigorous as possible in
deriving the Boys and ER diabatization algorithm above
from system-solvent interactions, we would now like to ana-
lyze the approximations made in modeling the effect of sol-
vent and make explicit the limitations of our approach.

A. Assumption of nearly degenerate, well-separated
system states in a polar solvent environment

Our methods of diabatization assume that the relevant
adiabatic system states are nearly degenerate and can be
grouped together in a subspace W. Furthermore, we assume
that changes in the system-solvent interaction �Hint are on
the order of the reorganization energy, which is small com-
pared to the full energy spectrum of the system but large
compared to the energy width of the nearly degenerate states.
It follows that diabatic states can be constructed by minimiz-
ing Hint in the subspace W. These two assumptions have
clear limitations, however.

First, for a general molecule or system, there is no guar-
antee that the adiabatic states of interest will be close in
energy but well separated from other states. Such a case
would appear to be the exception rather than the rule. More-
over, in practice, when doing electronic structure calculations
with active space models �e.g., CASSCF/CASPT2�, un-
wanted “intruder” states can appear that are not physical or
dynamically important.61 Thus, for real ab initio calculations,
there is not always a black-box algorithm for picking adia-
batic states to mix together in order to form meaningful di-
abatic states, and some physical intuition may be necessary,

using properties other than just energy. For difficult cases,
when choosing the appropriate adiabatic states to mix to-
gether, investigating the sizes of derivative couplings may be
helpful as a last resort.

Second, when diagonalizing Hint instead of Hint+Hsys in
this subspace, we assume that solvent effects are strong and,
thus, the algorithm here can work only with a polar solvent
strongly coupled to the system. For less extreme conditions,
besides applying PCM for the solvent, one approach to bal-
ance the quantum mechanical system energetics �Hsys� with
the electrostatic system-solvent interaction �Hint� would be to
introduce an empirical parameter �, such that the diabatic
states are the minimal solution to either

fER
comp = � 	

l=1

Nstates

�
�l�Hsys
2 ��l� − 
�l�Hsys��l�2�

+ �1 − ��� dr�>1� dr�>2

�l���r�>1���l�
�l���r�>2���l�

�r�>1 − r�>2�
,

�29�

fBoys
comp = � 	

l=1

Nstates

�
�l�Hsys
2 ��l� − 
�l�Hsys��l�2�

+ �1 − �� 	
l=1

Nstates

	
i=x,y,z

�
�l�ri
2��l� − 
�l�ri��l�2� .

�30�

When �=0, we recover either the Boys or the ER diaba-
tic states. When �=1, we recover the adiabatic states. The
computational cost of solving Eq. �29� is identical to solving
Eq. �28�, and the cost of solving Eq. �30� is identical to Eq.
�22�. For weak system-solvent interactions, it may be benefi-
cial to see whether choosing 0
�
1 best matches experi-
ment. Similar attempts to mix energetic effects with locality
effects within the context of molecular orbital theory have
had moderate success.62 A good choice for � would neces-
sarily depend on the dielectric constant of the solvent and
diabatic states computed with Eqs. �29� and �30� should be
compared to models using PCM for the solvent.

B. Electrostatic assumption

Both the Boys and ER diabatization schemes have as-
sumed that Hint arises only from electrostatics. This allowed
us to use one-electron operators �either r̂ or ��r�>�� to approxi-
mate the effect of solvent on the system, which makes dia-
batization practical and fast. It is worthwhile, however, to
consider under what circumstances the system-solvent inter-
actions can be safely modeled by a one-electron electrostatic
operator.

Interactions with solvent may induce strong effects be-
tween different system electrons, and these are not included
in our Hamiltonian �Eq. �21��, especially given that we diag-
onalize Hint instead of Hint+Hsys. We are also ignoring charge
transfer between system and solvent and induced dipole-
dipole effects, which could both be important. In particular,
for the problem of energy transfer, we have assumed that
local electronic excitations will lead to different charge dis-
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tributions, and that the solvent response to these electrostatic
changes is enough to stabilize excitons, which may not al-
ways be true. Many different physical effects may force the
system-solvent interaction to be neither electrostatic nor a
one-electron operator, and for comparison future research
should explore diabatization using alternative ansätze for the
interaction. In particular, for a higher computational cost, it
may be possible to construct better diabatic states using both
one-electron and two-electron operators to account more ac-
curately for both external and internal interactions.

Beyond electrostatics, we remind the reader that Boys
localization makes the additional assumption that the system-
solvent interaction potential has a valid multipole expansion
near the system which is dominated by the linear term. In the
future, it will be very interesting to compare ER results with
Boys localization computations on charge transfer systems,
and assess the relative accuracy of each method. If our ex-
perience with orbitals is relevant, different localization
schemes usually agree qualitatively, except in cases of sym-
metry �� versus �, etc.�. For the trivial example of
�Na–Be–Na�2+ in Sec. III, the ER and Boys localized diaba-
tic states were identical.

C. Derivative couplings and potential energy surfaces

Beyond the limitations expressed above, there remains
the question of how Boys or ER localized diabatic states
compare to more standard diabatization algorithms. To con-
nect our diabatization scheme with other approaches, the size
of the derivative couplings63 must be small. Second, near a
conical intersection where analytical forms exist for exact
diabatic states, the behavior of diabatic couplings and deriva-
tive couplings produced with Boys localized states must
match standard solutions. These computational benchmarks
will yield important information toward understanding and
validating Boys localization and the ER approach. We are
currently implementing the necessary code to perform such
calculations, and we will report our results in a later commu-
nication.

A separate concern is to whether the potential energy
surfaces and off-diagonal coupling terms are smooth in the
basis of Boys or ER diabatic surfaces. In this article, we have
performed diabatization at one geometry alone, which was
chosen to resemble the nonadiabatic transition state. We have
not checked for smoothness of the global potential energy
surface, which will likely be problematic because, as the mo-
lecular geometry changes, different adiabatic states will nec-
essarily enter and leave the energetic window defined by the
W subspace. Moreover, we have not examined the shape of
the potential energy curves in the vicinity of a crossing point.
We presume that one can compute the analytical gradients
�with respect to nuclear displacements� of the energies of
these diabatic states, although we have not yet done so. For
these reasons, use of the Boys or ER diabatic states as a
complete basis for chemical dynamics requires more bench-
marking and may be challenging.

Ultimately, however, the usefulness of any diabatization
algorithm for electron and energy transfer can be measured

only by how well it matches experiment. In the near future,
we hope to use Boys localization and ER to generate diabatic
states for ab initio models of electron or energy transfer for
comparison with experimental data.

D. Computational cost

Before finishing this discussion, we want to emphasize
that if optimally implemented, both algorithms discussed
here are computationally inexpensive and will never be rate-
limiting compared to the necessary electronic structure cal-
culations. Like GMH, Boys localization requires as input
only the dipole matrices in the basis of adiabatic states, and
because these are one-electron operators, they can usually be
computed with effectively zero cost. Likewise, the ER ap-
proach also requires matrix elements of one-electron opera-
tors ar

†as in the basis of adiabatic states, which have effec-
tively zero cost. See Appendix A for details on how the ER
algorithm is applied in the context of CIS excited states.

Although neither Boys localization nor ER have a trans-
portable formula for predicting the HAB coupling elements
such as GMH, the standard algorithm for optimizing quartic
functions of rotation matrices converges rapidly using so-
called Jacobi sweeps.47,48,64 Because Boys localization re-
quires the storage of only a quadratic number of variables,
the algorithm runs almost instantaneously compared to any
prerequisite electronic structure method no matter how big
the system size. The ER algorithm scales worse than the
Boys localization because one must work with the two-
electron matrix elements of 1 /r12, i.e., ��� ���� �see Appen-
dix A�. Nevertheless, if one uses the sparsity of the atomic
orbital basis and one works in a subspace W with fewer than
twenty adiabatic states �as would be expected usually�, an
optimal implementation of the ER algorithm should be fast,
with only a marginal increase in computational cost after the
necessary electronic structure calculations. Recent advances
with resolution of the identity �RI� methods have made ER
localization for orbitals relatively inexpensive,64,65 and the
same should be true for ER localization of diabatic states.
See Appendix A for more details.

Ultimately, both Boys localization and ER can be ap-
plied to large chemical systems, where they can model either
electron transfer or energy transfer �in the case of ER�. This
applicability to large systems is not true for other diabatiza-
tion approaches involving analytical derivative couplings,
which are very computationally expensive to calculate.
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APPENDIX A: IMPLEMENTATION OF ER
DIABATIZATION AS APPLIED TO CIS
EXCITED STATES

For concreteness, we derive the principal equations nec-
essary for implementing ER localization of CIS excited
states. Many of the equations below can be found also in the
work of Hsu and co-workers.33–35 For the remainder of this
subsection, many-electron states are indexed with capital let-
ters �I ,J ,K ,L ,M� and molecular spin orbitals are indexed by
lower-case letters: �i , j� identify occupied orbitals, �a ,b�
identify virtual orbitals, and �p ,q ,r ,s� identify either occu-
pied or virtual orbitals. States are labeled by capital Greek
letters �adiabatic states �, diabatic states �� and orbitals are
labeled by lower-case Greek letters ���.

ER localization for a group of adiabatic excited states
���I�� is defined by the rotation U satisfying

��I� = 	
J

��J�UJI, �A1�

fER�U� = max
��I�

	
I=1

Nstates� dr�>1� dr�>2

�I��̂�r�>2���I�
�I��̂�r�>1���I�

�r�>1 − r�>2�
.

�A2�

The one-electron density of diabatic state I at position r�>
can be expressed using second-quantized operators in the
basis of molecular orbitals as


�I��̂�r�>���I� = 	
rs


�I�cr
†cs��I��r�r�>��s�r�>� �A3�

=	
JK

UJIUKI	
rs


�J�cr
†cs��K��r�r�>��s�r�>�

�A4�

For CIS excited states, the ansatz of the adiabatic wave
function is

��J� = 	
ia

ti
Jaca

†ci��HF� . �A5�

According to Wick’s theorem, it follows that the density ma-
trix D is

Drs
JK = 
�J�cr

†cs��K� , �A6�

=� 	
i

ti
Jrti

Ks, r,s = virtual

− 	
a

tr
Jats

Ka + �rs�JK, r,s = occupied.� �A7�

Finally, using the chemists’ notation for the two-electron
Coulomb integral �rs � pq�,51 fER can be expressed as

fER�U� = 	
IJKLM

UJIUKIULIUMI 	
rspq

Drs
JKDpq

LM� dr�>1� dr�>2

�
�r�r�>1��s�r�>1��p�r�>2��q�r�>2�

�r�>1 − r�>2�
, �A8�

= 	
IJKLM

UJIUKIULIUMIRJKLM , �A9�

RJKLM = 	
rspq

Drs
JK�rs�pq�Dpq

LM �A10�

Equation �A9� shows that ER localization of diabatic
states is identical to ER localization of orbitals. All standard
localization algorithms are quartic functions of the unitary
matrix U and can be solved with standard “Jacobi sweeps”48

or with other iterative approaches.64,65 Because we do not
anticipate having too many states to localize �usually, under
20� and computing an element of the tensor RJKLM will be
expensive, Jacobi sweeps should be the most attractive ap-
proach for ER localization of states. In order to have a fast
implementation of ER diabatization, the key bottleneck to
overcome will be computing the tensor RJKLM in Eq. �A10�
quickly. Research is currently ongoing to develop an algo-
rithm to make this contraction as fast as possible. In calcu-
lations for this paper, we have computed RJKLM using the
RI-approximation69 with an auxiliary basis �ỹ , z̃�,

RJKLM = 	
rspq

	
ỹz̃

Drs
JK�rs�ỹ��ỹ�z̃�−1�z̃�pq�Dpq

LM . �A11�

In the future, we expect that this contraction can be made
much faster.

Finally, we note that the form of Eqs. �A8�–�A10� is
completely general and can be applied to arbitrary excited
states, not just CIS states. The largest obstacle will be com-
puting the tensor Drs

JK= 
�J�cr
†cs��K� when ��J� and ��K� are

not CIS excited states. For CIS, Eq. �A7� is simple to derive
and the three terms are the density of attached electrons,
detached electrons, and the ground state. The ground state
density is just a constant and does not affect Boys or ER
localization, suggesting a connection with the FED
approach—FED only uses electron attachment/detachment
densities.

APPENDIX B: THE MAXIMUM DENSITY
DIFFERENCE CRITERION:
VON NIESSEN–EDMISTON–RUEDENBERG
DIABATIC STATES

In Secs. II C 1 and II C 2 above, we derived Boys and
ER diabatization on the basis of system-solvent interactions.
Boys localization was based upon a linear expression for the
interaction potential in terms of the x ,y ,z operators, and ER
was based upon a linear response of the solvent to system.
We now derive a third diabatization scheme, which shares
similarities with both standard algorithms and may also
prove useful. Because of the similarity to VNER localization
�see Eq. �11��, these diabatic states should be called VNER
diabatic states.
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Recall that in our derivation of Boys localization, al-
though we wanted to minimize Hint in Eq. �21� directly, in-
stead our approach was to minimize the sum of the variances
of the three dipole operators, x ,y ,z. This was a reasonable
proposition because we did not know the coefficients in front
of the different dipole operators, but the linear expansion of
a complex three-dimensional system-solvent interaction into
three terms is a very compact representation, and minimizing
the sum of the variances of each operator was effective. As a
bonus, the resulting Boys localization algorithm was invari-
ant to translation of the origin or rotations of the coordinate
axes.

Now, according to Eqs. �19� and �20�, even when the
system-solvent potential is not linear in space, the interaction
can always be expanded over an infinite number of operators
indexed by r�> , namely, ���r�>��, where r�> can be any position in
real, three-dimensional space. Moreover, this expansion is
actually a compact description of the system-solvent interac-
tion because electrostatic potential energies are diagonal only
in position space �and not in momentum space�. Thus, just
like for Boys localization, we can attempt to diagonlize Hint

in Eq. �19� by minimizing the integral of the variances of all
of the ���r�>�� operators,

fVNER�U� = fVNER���i��

= 	
l=1

Nstates� dr�>�
�l��2�r�>���l� − 
�l���r�>���l�2� .

�B1�

Because the trace of an operator is invariant to representa-
tion, minimizing fVNER is equivalent to maximizing

fVNER�U� = fVNER���i��

= 	
k,l=1

Nstates� dr�>�
�k���r�>���k� − 
�l���r�>���l��2.

�B2�

Optimizing fVNER breaks the near energetic degeneracy in W
by rotating the adiabatic states so that their diabatic densities
are maximally different. Thus, this approach has the flavor of
the FCD approach32 and the FED approach,33–35 only without
defining any fragments. Moreover, from the form of the
function fVNER in Eq. �B2�, it is clear that similar to the Boys
algorithm, VNER diabatization is invariant to translations
and rotations of the origin.

Looking back at Eqs. �26�–�28�, we see that the VNER
approach can also be derived by assuming that the response
of the solvent is linearly dependent on the system, but that
the induced charges in the solvent interact via a delta func-
tion ��r�>1−r�>2� with free charges in the system �instead of the
Coulomb operator 1 / �r�>1−r�>2��,

fVNER�U� = 	
l=1

Nstates� dr�>1� dr�>2
�l��̂�r�>2���l�

�
�l��̂�r�>1���l���r�>1 − r�>2� , �B3�

= 	
l=1

Nstates� dr�>1
�l��̂�r�>1���l�
�l��̂�r�>1���l� . �B4�

Given the similarities between VNER and ER localiza-
tion, VNER diabatic states should be applicable to both elec-
tron transfer and energy transfer, but this must be checked
explicitly. One potential advantage of the VNER approach
will be computational speed. Whereas ER localization re-
quires the contraction of the two-electron Coulomb integral
�pq �rs� in Eq. �A10�, the VNER approach requires only the
one-electron overlap of four orbitals,

Spqrs =� dr�>�p�r�>��q�r�>��r�r�>��s�r�>� . �B5�

In an atomic orbital basis, S���� is much more sparse than
��� ����, and the VNER approach will be faster than ER
localization, although still slower than Boys localization. In
general, we expect the VNER approach to be a compromise
between Boys and ER localization and it may also find use in
future diabatization calculations.
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