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Abstract

Two methods for control of swarms are described. The first of these meth-
ods, the Virtual Attractive-Repulsive (VARP) method, is based on poten-
tials defined between swarm elements. The second control method, or the
abstraction method, is based on controlling the macroscopic characteris-
tics of a swarm. The derivation of a new control law based on the second
method is described. Numerical simulation and analytical interpretation of
the result is also presented.
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Chapter 1

Introduction

In nature, large collections of individuals, usually from the same species,
cluster together and behave as a single entity. These entities are commonly
referred to as swarms. Types of swarms that may immediately come to mind
are a school of fish or a locust swarm, illustrated in Figure 1.1. Attempts
have been made to model the behavior of swarms by reproducing behavior
observed in biology. Such behavior can be classified in two ways

1. Perceived coordination between individuals (microscopic scale);

2. A unified goal/action of the swarm (macroscopic scale).

In the school of fish of Figure 1.1a, we may characterize the coordination be-
tween individuals as maintaining a maximum distance between neighbors
and a minimum speed, and the unified goal/action of the swarm may be
identified as moving in a coordinated, clockwise circular formation. Sim-
ilarly, for the locusts, the microscopic behavior could be characterized as
maintaining a maximum distance between neighbors while the perceived

a. Fish swarm b. Locusts swarm

Figure 1.1 Depicted are swarms in nature.



2 Introduction

behavior on the macroscopic scale could be the swarm having a constant
volume defined by the boundaries of the group.

1.1 Motivation

The two characteristics of swarm behavior may be viewed as two sides
of the same coin. Interactions between individuals give rise to perceived
macroscopic behavior, and the unified goal of a swarm is what defines be-
havior between individuals. Biologically, the question of which character-
istic is dominant could be a very complicated one, and it is far beyond the
scope of this work. However, in terms of analysis and application, both
views are equally valuable and will be discussed in the following chapters.

Engineers and mathematicians are interested in modeling swarms be-
cause such systems have particularly useful applications. Often, complex
and time-consuming tasks can be accomplished much more efficiently by a
coordinated collection of individuals than by extensive efforts of a single-
ton. For example, in searching for a target in the open ocean, a group of
drones could find the object faster if they share information about where
they have been and what they have observed than if they worked inde-
pendently. In their work, Kurabayashi et al. (2002) utilize the concept of
cooperation in devising a coordination algorithm for a group of robots for
effectively sweeping a given work area. The examples of drones and robots
working together to accomplish a task illustrate the central importance
of swarm behavior to applied problems. Swarms are valuable as general
structures because the collective capabilities of the group transcend those
of the individuals comprising the group. However, as coordinated tasks
become more complex, it is first necessary to understand how to control a
swarm. It is the goal of this work to explore and develop mathematical
methods for such control.

1.2 Direction

Chapter 2 introduces the Virtual Attractive-Repulsive Potential method for
controlling swarms by imposing specific intraparticle interaction laws. Chap-
ter 3 introduces a “macroscopic-first” approach as outlined by Belta and
Kumar (2004) that derives the controls for the members of a swarm by first
defining macroscopic behaviors. Chapter 4 describes the derivation of a
new control law based on the “macroscopic-first” approach aiming to cre-
ate a uniform disk distribution on a swarm; Section 4.6 goes through the
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numerical simulation results and analytical interpretation of the results.
Chapter 5 concludes with future work direction.





Chapter 2

The Virtual
Attractive-Repulsive Potential
Method

The “Virtual Attractive-Repulsive Potential Method” (VARP from hereon)
is a general control approach used by Nguyen et al. (2005). Simply put, this
method imposes a virtual potential function on each member of the swarm,
whose gradient is the potential force vector establishing the controls for the
member of the swarm. In this chapter, the basic idea behind the model is
given in Section 2.1. The model is then developed in Sections 2.2 and 2.3,
with Equation 2.4 being the control law due to the VARP method.

2.1 Model Basics

In the VARP method we seek to guide a group of individuals (the swarm)
from a starting position to a final destination. Along the way, the swarm
should avoid collisions between individuals and collisions of individuals
with obstacles.

Two types of environmental objects have potentials associated with them.
Targets are attractors (having a negative potential), while obstacles are re-
pulsors (having a positive potential). Swarm elements have both positive
and negative components of their potentials. The reason for this duality in
that we want the elements to stay together but also avoid colliding.
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2.2 The Virtual Attractive-Repulsive Potential

The potential function V(z) which generates virtual force vectors guiding
the swarm can take many forms, but its defining quality is that its argument
is a scalar representing distance. Given an ith element in the swarm, the
potential for that element is

Vi = ∑
k

Vattractors (||∆~zi,k||) + ∑
l

Vrepulsors (||∆~zi,l ||)

+ ∑
j(j 6=i)

[
Va
(∣∣∣∣∆~zi,j

∣∣∣∣)+ Vr
(∣∣∣∣∆~zi,j

∣∣∣∣)] . (2.1)

Vattractors gives the potential that an element feels due to an attractor, the
index k ranges over all attractors in the environment, Vrepulsors gives the po-
tential that an element feels due to repellers, and the index l ranges over all
repellers in the environment. Va, Vr are the attractive and repulsive compo-
nents of the potential that element i experiences due to the jth element, and
the j index spans all elements in the swarm plus the repellers and attractors.
∆~zi,j is a vector pointing from position of element i to position of element
j, and ||~v|| is the Euclidean norm in Rn, so that

∣∣∣∣∆~zi,j
∣∣∣∣ is the distance be-

tween elements i and j. We will combine the attractive and repulsive parts
of the potential function so that

Vi = ∑
j(j 6=i)

[
Va
(∣∣∣∣∆~zi,j

∣∣∣∣)+ Vr
(∣∣∣∣∆~zi,j

∣∣∣∣)] . (2.2)

Note that repulsors can be environmental objects, and they are accounted
for here as stationary elements.

The Potential Force Vector

The potential Vi for the ith element in the swarm naturally creates a cor-
responding potential force vector, which is the gradient of the function.
Namely, Fi = ∇Vi, which, after the application of the chain rule, takes on
the form

Fi = ∑
j(j 6=i)

V ′a
(∣∣∣∣∆~zi,j

∣∣∣∣) ∆~zi,j∣∣∣∣∆~zi,j
∣∣∣∣ + V ′r

(∣∣∣∣∆~zi,j
∣∣∣∣) ∆~zi,j∣∣∣∣∆~zi,j

∣∣∣∣ . (2.3)

The above force Fi is the control for each element in the swarm. Nguyen
et al. (2005) used this control model on a collection of propeller-driven
robots. To implement the model, the virtual force Fi was equated to the force
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Figure 2.1 The Lagrangian frame, represented by the ξζ-axis, is offset by θ
from the Eulerian frame, represented by the xy-axis. The figure was obtained
from Nguyen et al. (2005).

generated by each robot, thereby causing the robots to behave according to
the model. The process of equating the virtual force to that generated by
each robot is given in Section 2.3.

2.3 Force Balancing

The model proposed by Nguyen et al. (2005) equates Equation 2.3 to the
forces generated by robots used for experimentation, with a small modifi-
cation. To properly describe this modification, let ~zi be the location of the
ith element, ~wi its velocity, and m its mass. Furthermore, we define a La-
grangian, right-hand oriented coordinate system ξζ (Figure 2.1), where an
angle θ denotes the offset of the ξ-axis from the x-axis in the Eulerian frame.
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Figure 2.2 Depicted is the effect of increasing the self-propulsion α term of the
balance law in Equation 2.5. From left to right, the values for α in the graphs are
0.003, 0.03, 0.1, and 0.5. The swarm changes from rotating as a rigid body to
rotating as a ring,; that is, a rigid body with a center area unoccupied by swarm
members. The figure was obtained from Chuang et al. (2007).

Then

d~zi

dt
= ~wi

m
d~wi

dt
= αξ̂i − β~wi

+ ∑
j(j 6=i)

[
V ′a
(∣∣∣∣∆~zi,j

∣∣∣∣) ∆~zi,j

∇∆~zi,j
+ V ′r

(∣∣∣∣∆~zi,j
∣∣∣∣) ∆~zi,j

∇∆~zi,j

]
. (2.4)

The additional term α is a magnitude for a self-propulsion force. By
adding such a term, Nguyen et al. (2005) take into account that the robots
always generate some constant force in the ξ̂ direction and that the force
due to the potential is added to it; β is a coefficient which takes into ac-
count the frictional forces experienced by the robots. The behaviors of sys-
tems with interaction forces such as those in Equation 2.4 are discussed by
D’Orsogna et al. (2006) and Chuang et al. (2007). Changing the parame-
ters of the intraswarm interactions alters the macroscopic behavior of the
swarm, as might be expected. For example, Chuang et al. (2007) present
the results of varying α in magnitude from 0.003 to 0.5 for a swarm com-
posed of 500 individuals. In proceeding from relatively low to high values
of α, the swarm moves from rotating as a rigid body to rotating as a mill, as
shown in Figure 2.2. It should be noted that the force interaction law used
by the authors (Equation 2.5) is slightly different than that in Equation 2.4.
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The force balance is instead

m
d~wi

dt
= αξ̂i − β ||~wi||2 ~wi

+ ∑
j(j 6=i)

[
V ′a
(∣∣∣∣∆~zi,j

∣∣∣∣) ∆~zi,j∣∣∣∣∆~zi,j
∣∣∣∣ + V ′r

(∣∣∣∣∆~zi,j
∣∣∣∣) ∆~zi,j∣∣∣∣∆~zi,j

∣∣∣∣
]

, (2.5)

where Va(∆~zi,j) = Cae−
∆~zi,j

la and Vr(∆~zi,j) = Cre−
∆~zi,j

lr ; Ca, Cr, la, and lr are
parameters of the potential functions which can be adjusted to change the
magnitude and range of Va, Vr. The only difference, however, is in the drag
term. Instead of directly scaling with the velocity of a particle, in Equa-
tion 2.5 the drag term is scaled with the velocity cubed. The resulting be-
haviors from Equation 2.5 depend not only on the form of the forces, but
on the parameters which govern the equations. Hence, it is expected that
changing these parameters would change the macroscopic behavior of the
swarm.

2.4 Swarm Behaviors

As noted above, changes to the parameters in the potentials between el-
ements determines the type of overall swarming pattern or stability the
group will have, as seen in Figure 2.2. In broader terms, the VARP method
is an example of a control scheme where the microscopic interactions of
individuals give rise to perceived macroscopic behavior of the swarm, as
was discussed in Section 1.1. The behavior of swarms obeying potentials
such as those in Equation 2.5 has been classified according to the parame-
ters governing the potentials in the work of D’Orsogna et al. (2006). This
classification is based on the concept of H-stability: for a set of N interacting
particles, the total potential energy U is said to be H stable if there exists a
constant B ≥ 0 such that U ≥ −NB. Non–H-stable systems are also called
catastrophic.

H-stability of the potential used in the VARP method is shown in Fig-
ure 2.3, as a function of l = lr/la and C = Cr/Ca. The phase transitions be-
tween stability define regions where the swarms exhibit particular macro-
scopic behaviors. In region I, for example, the particles form multiparticle
clumps, and in each clump they move parallel to each other. On the other
hand, swarms in region I I form rotating rings with mean radius R depen-
dent on the parameter values. Thus, we see how changing microscopic
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Figure 2.3 The figure depicts the phase transition diagram between regions of
H-stability of swarms under the VARP model. Each region in the diagram has
an associated macroscopic behavior that the swarm exhibits. The figure was
obtained from D’Orsogna et al. (2006).
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behavior in the swarm via adjustment of parameters governs the macro-
scopic behavior of the group. Moreover, H-stability is an analytical tool
that sufficiently classifies these macroscopic behaviors.





Chapter 3

Control of Swarms Through
the Abstraction Method (in
Two Dimensions)

While the VARP method is an example of a control scheme where the mi-
croscopic interactions of individuals give rise to perceived macroscopic be-
havior of the swarm, it is possible to devise controls for individuals by first
defining the macroscopic behavior or characteristics of the swarm. Such a
method has been implemented by Belta and Kumar (2004). The approach
has the following steps:

1. Characterize the swarm by its shape and position;

2. Define a map between the collective microscopic states of the swarm
and the characterization in the previous step; and

3. Derive controls for individual elements based on the map in step 2.

The method outlined above relies on concepts from differential geometry,
so we will first briefly introduce relevant definitions. Then, we will explain
the control derivation and discuss the results and relevance of Belta and
Kumar’s work.

It must be made very clear that this chapter summarizes some of the
original work of Belta and Kumar (2004).
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3.1 Control Derivation

In their derivation of the control method via abstraction, Belta and Kumar
(2004) assume that every member, or agent, of a group will be fully actu-
ated: that is, the agent will be able to propel itself in any desired direction.
Further, all movement will take place in R2. Each agent has a position vec-
tor zi ∈ Zi = R2 with respect to a single reference frame, with i = 1, . . . , N.
Let this frame be denoted as {M}. Thus, the control ui ∈ Ui = R2 for each
member is defined as

ui = żi. (3.1)

Equation 3.1 simply means that the instantaneous change of position of the
element; that is, its velocity, is governed by a control vector representing
the direction of heading and speed that the agent must have. The position
and velocity of each agent in the swarm completely defines its state. When
put together, all ui and all zi form a 2N dimensional space, since the vectors
u = (u1, . . . , uN), z = (z1, . . . , zN) are each in R2N . Hence, each z ∈ Z and
u ∈ U where we define

Z =
N

∏
i=1

Zi, U =
N

∏
i=1

Ui. (3.2)

Further, because of Equation 3.1, u = (ż1, . . . , ˙zN) ∈ TzZ, the tangent
space of Z at z, as given in Definition A.13. In general, for the tangent bun-
dle TZ (Definition A.14) of the manifold Z, any vector field XZ belonging
therein (XZ ∈ TZ) is defined by Belta and Kumar as a behavior.

With this notation, we can go on to describe the derivation of the control
law.

3.1.1 Swarm Characterization

At any instant in time, the state of the swarm is given by some z ∈ Z and
its control by some u ∈ U. On a macroscopic level, the swarm can also be
described by its gross shape, position and orientation. Hence, the state of
the swarm can be described by assigning to each z ∈ Z (through a map φ
described in Section 3.2) some element in a differentiable manifold (G× S)
where G captures the pose of the swarm and S its shape. We require that
G and S to be differentiable manifolds because we will want to solve for
ui in terms of tangents on the lower-dimensional G and S. The goal of the
derivation is to devise a way to control the shape and pose (position and
orientation) of the swarm independently.
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Since the positions of swarm elements are vectors in R2, each element r
in the group of rotations SO(2) can be represented by a matrix parameter-
ized by a rotation angle θ so that

SO(2) 3 r(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (3.3)

Since each element in SO(2) is uniquely determined by θ, SO(2) is
homeomophic to [0, 2π) via φ(r(θ)) = θ. Since [0, 2π) is homeomorphic to
SO(2), we can find a collection of charts (φ, Ui) such that SO(2) = ∩∞

i=1Ui.
Further, for any Ui ∩Uj 6= ∅, φ ◦ φ−1 is the identity map, which is differen-
tiable. Thus, by Definition A.9, SO(2) is a differentiable manifold. Further,
since det [r(θ)] = 1 for any θ, r(θ) is invertible. Namely,

r(θ)−1 =

(
cos θ sin θ
− sin θ cos θ

)
.

Note that the product of two elements in SO(2) results in yet another
element of SO(2):(

cos θ − sin θ
sin θ cos θ

)(
cos ψ − sin ψ
sin ψ cos ψ

)
=

(
cos(θ + ψ) − sin(θ + ψ)
sin(θ + ψ) cos(θ + ψ)

)
.

Similar results hold for inverses:(
cos θ sin θ
− sin θ cos θ

)(
cos ψ sin ψ
− sin ψ cos ψ

)
=

(
cos(θ + ψ) − sin(θ + ψ)
− sin(θ + ψ) cos(θ + ψ)

)
.

Since sin and cos are infinitely differentiable, products of rotations and
their inverses are smooth operations. Hence, SO(2) is a real Lie group ac-
cording to Definition A.18.

The set of translations T in R2 are also a Lie group. This is evident from
the fact that for any t ∈ T, v ∈ R2,

t(v) = v + t′,

where t′ ∈ R2 and is unique to t. Because translations constitute vector
addition in R2, they are a Lie group, as R2 is a manifold with the identity
map for all its charts.

Together, G = SO(2)× T is a group consists of a pairs of rotations and
translations. Here G forms a Lie group under the product topology where
open sets in G are pairs of open sets in SO(2) and T. By construction, G has
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any topological and differentiable property shared by T and SO(2) through
a simple direct product. Hence, G is a Lie group.

Specifying the shape as a member of another group S, we have that the
state of the swarm a is an element of the direct product

a ∈ A = G× S. (3.4)

Belta and Kumar (2004) require that the dimension n of A is independent
of the number of robots N. Having loosely described G, and implicitly the
map from Z to G, we can begin to define properties of the map φ : Z →
(G× S).

3.1.2 Mapping

As described in Section 3.1.1, there are two ways of describing the state of
a swarm: one microscopically via Z, and one macroscopically via G× S. A
map between these two spaces having certain properties (to be elaborated
below) will make it possible to derive controls for agents in the group. With
this in mind, let

φ : Z → G× S with φ(z) = a = (g, s) = (φg, φs). (3.5)

The precise definition will be given in Section 3.2, but for now we focus
on the properties of φ. We require that φ is a submersion (Definition A.17),
and that it is invariant to permutations of the elements of the swarm. The
importance that φ has a surjective differential will become important, be-
cause derivations for controls of elements in the swarm will rely on dφ,
the differential of φ (Definition A.16). Moreover, we want the controls for
shape and pose to be independent. This means that φs is invariant under g;
that is,

φ(ḡz) = (ḡg, s). (3.6)

In other words, if ḡ is a translation, applying a translation to the swarm
will affect only its pose and not its shape. Since all movement of the swarm
takes place in R2, we can say with greater generality that G ⊂ GL2(R),
where GL2(R) is the group of real-valued 2× 2 invertible matrices. Equa-
tion 3.6 therefore shows that φ is left-invariant.

3.1.3 Abstraction Behavior

Belta and Kumar define an abstract behavior to be any vector field TA ∈ TA.
Note that the submersion condition for φ guarantees the surjectivity of dφ
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at any z ∈ Z. This means that for any ȧ ∈ Ta A, there will be a vector
ż ∈ TzZ such that

dφż = ȧ. (3.7)

Recall that we require that the dimensionality of A is constant and does not
scale with the size of the swarm N. As the dimensionality of the tangent
spaces is the same as that of corresponding manifolds, in general, Equa-
tion 3.7 is an underdetermined system.

Belta and Kumar solve this system by minimizing the norm of ż under
the constraint of 3.7. They give the solution to minż żT ż under the constraint
as

ż = dφT
(

dφdφT
)−1

ȧ, (3.8)

which is a solution to Equation 3.7.
Since φ is a submersion, dφ is a surjective map (and also a linear trans-

formation), meaning that it is full-row rank, which implies that
(
dφdφT) is

invertible. Writing dφT =
(

dφT
g , dφT

s

)
, aT = (gT, sT),

dφdφT = (dφg, dφs)
(

dφT
g , dφT

s

)
=

(
dφgdφT

g + dφgdφT
s , dφsdφT

g + dφsdφT
s

)
.

Now if we let dφgdφT
s = 0,

dφdφT =
(

dφgdφT
g , dφsdφT

s

)
. (3.9)

Thus the assumption assures us that dφdφT cab be decomposed into g and
s components. Hence Equation 3.8 becomes

ż = dφT
g (dφgdφT

g )
−1 ġ + dφT

s (dφsdφT
s )
−1ṡ, (3.10)

which is a general form of the control for the entire swarm. To get controls
for each individual element zi, the vector in Equation 3.10 is projected onto
zi. This projection is naturally dependent on the choice of φ.

3.2 Results

In their work, Belta and Kumar define a map φ having the required prop-
erties. The map φ is based on physical qualities of the swarm. Particularly,

φ(z) = ((R, µ), (s1, s2)), (3.11)
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where

µ =
1
N

N

∑
i=1

zi ∈ R2, (3.12)

which is a position average of the swarm. Further, if we write zi = (xi, yi),
R ∈ SO(2) is a rotation that is defined by the equation

N

∑
i=1

xiyi = 0, (3.13)

which can be parameterized by a single variable θ. We can then define the
position of each member of the swarm with R, µ by defining ri where

ri = (xi, yi)
T = RT(zi − µ), i = 1, . . . , N. (3.14)

The shape variable s = (s1, s1) is defined by

s1 =
1

N − 1

N

∑
i=1

x2
i ,

s2 =
1

N − 1

N

∑
i=1

y2
i . (3.15)

Thus, the shape variable is a measurement of the distribution of elements
in the swarm along the axes of the world frame {M}.

3.2.1 The Map Differential dφ

As can be seen in Equations 3.8 and 3.10, the derivation of the individual
control law requires that we have the differential of the map φ dφ and also
dφT. As seen in Definition A.16, a differential is defined as a map between
the tangent spaces of two manifolds. In local coordinates, we see that φ is
a function of µ, θ, s1, and s2, so that dφ = (dµ, dθ, ds1, ds2). To find these
differentials, it is useful to introduce some useful notation giving rise to a
more natural decomposition. We let

E1 =

[
0 1
1 0

]
,

E2 =

[
1 0
0 −1

]
,

E3 =

[
0 −1
1 0

]
, (3.16)
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H1 = I2 + R2E2,

H2 = I2 − R2E2,

H3 = R2E1, (3.17)

using the parameterization for R in Equation 3.3. All of the Hi matrices
are symmetric, which will be important in finding dφT. This notation in
general is useful when dealing with the position vectors of members of the
swarm under the transformation yielding ri (Equation 4.2). First we note
that

∑ xiyi = 0⇔ 2 ∑ xiyi = 0.

Observe that

2 ∑ xiyi = ∑(xi, yi)(yi, xi)
T (3.18)

= ∑(RT(zi − µ))T(yi, xi)
T (3.19)

= ∑(zi − µ)TRE1(xi, yi)
T. (3.20)

Further, since (xi, yi)
T = RT(zi − µ), and RRT = I, the sum can be ex-

pressed as ∑(zi−µ)TRE1RT(zi−µ). A simple calculation shows that RE1RT =
R2E1 = H3 so that

2 ∑ xiyi = ∑(zi − µ)T H3(zi − µ) = 0. (3.21)

This conversion is then used to find the differentials of s1 and s2, which
in turn take on similar forms

s1 =
1

2(N − 1)

N

∑
i=1

(qi − µ)T H1(qi − µ),

s2 =
1

2(N − 1)

N

∑
i=1

(qi − µ)T H1(qi − µ). (3.22)

The condition expressed in Equation 3.21 gives a solution for θ. If we
let zi − µ = (ai, bi)

T and observe that

H3 =

[
0 cos 2θ

cos 2θ sin 2θ

]
,

Equation 3.21 becomes

N

∑
i=1

(a2
i − b2

i ) cos 2θ +
N

∑
i=1

(aibi) sin 2θ = 0,
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which implies that

−∑N
i=1(a2

i − b2
i )

∑N
i=1(aibi)

=
sin 2θ

cos 2θ
= tan 2θ,

which is a unique solution for θ.

3.2.2 Spanning Rectangle

As mentioned above, µ can be viewed as the centroid, or “average” center,
of the swarm. In a similar physical vein, Γ is the inertia of the system where

Γ = −(N − 1)E3ΣE3, (3.23)

with

Σ =
1

N − 1

N

∑
i=1

(zi − µ)(zi − µ)T.

To see why this is so, we only need to observe the formula for inertia I
of an N body, point-mass system,

I =
N

∑
i=1

mit2
i , (3.24)

where mi is the mass of the element i and ti is the distance between the
centroid of the system to the location of element i. The vector (zi − µ)
extends from the centroid to zi, and (zi − µ)(zi − µ)T is the inner product
of this vector with itself; that is, the squared distance from the centroid to
the element.

If {W} is the virtual frame with pose g = (R, µ) in {M}, then ri, as
defined in Equation 3.14, is the expression of zi − µ in the virtual frame, so
that the inertia tensor of the system of points ri in {W} is diagonal. (N −
1)s1 and (N − 1)s2 are the eigenvalues of the tensor and are related to the
distribution of robots along the axis of virtual frame {W}. Further, these
eigenvalues present an upper bound on the distribution of the positions of
elements in the swarm, since for any i = 1, . . . , N,

|xi| ≤
√
(N − 1)s1, |yi| ≤

√
(N − 1)s2.

This result shows that, based on the map φ, the controls for each ele-
ment of the swarm cause the ensemble of agents to move within a rectangle
whose with and height are dependent on parameters of φ. By controlling
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these parameters and others associated with the movement of the swarm
elements, Belta and Kumar demonstrate the capabilities of the abstraction
method. They are able to drive a group of ten robots through a tunnel by
implementing their controls in numerical simulations, as seen in Figure 3.1.

3.3 Relevance of the Abstraction Method

The abstraction method presented in this chapter is related to the VARP
method described in the previous chapter, with notable differences. First,
given a large number of robots, the abstraction method allows for a solution
of the motion-generation/control problems on a smaller dimensional space
than R2N . Second, the dimension of the control problem is independent
of the number of agents and independent of the possible ordering of the
robots. Finally, the abstraction method is one in which the macroscopic
swarm behavior dictates the controls of individual elements, the inverse of
the effect of the VARP method. Just as in the VARP approach, behaviors
using abstraction control can be characterized according to parameters in
the model, as we saw in the case of the bounds on the swarm distribution
using the rectangular box.
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Figure 3.1 By controlling the parameters that determine the dimensions and
position of the spanning rectangle, the swarm is guided through a narrow tunnel.
The figure obtained from Belta and Kumar (2004).



Chapter 4

New Control Law

As outlined in Chapter 2, the VARP method generates a control law in-
ducing the macroscopic behaviors depicted in Figure 2.3. These behaviors
are most generally characterized by circular motion about a central point.
Particularly, the regime of H-stability generates behavior of disk-like for-
mations revolving about a central point (Figure 2.2).

We want to design a control law which mimics the H-stability behavior
achieved through the VARP method. In the language of Belta and Kumar,
we want to come up with a function ψ which maps from the space of co-
ordinates of all members of a swarm to a manifold which characterizes the
swarm in a global way. These global characteristics, defined more precisely
in Sections 4.1, 4.2, and 4.3, are limited to the swarm having radial symme-
try and a uniform distribution on a disk. These two characteristics are very
much a first-order approximation to the behavior exhibited in Figure 2.2.

Naturally, one would note that these two specifications do not necessar-
ily guarantee the nature of the motion the swarm elements; it is conceivable
that one could have radial symmetry and a uniform-disk distribution with-
out circular motion about the center of the swarm. However, motion ob-
served under the VARP method is the result of the “self-propulsion” term
which works to cause the entire swarm to move about a center point in
a mill-like pattern. The difficulty in reproducing this result using the ab-
straction method is that the abstraction method fist defines global charac-
teristics which subsequently produce individual controls, and not the other
way around. Further, limiting the control law to tracking only two global
characteristics would make the analysis of results and the behavior due to
the control easier and hence more appropriate for this work. We thus define
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the map ψ as
ψ : Z → (A, X),

such that ψ(z) = (α, χ2) ∈ A × X, with Z defined in Equation 3.2. Here,
α captures the radial symmetry of the swarm, whereas χ2 captures how
the distribution of the swarm compares to a uniform distribution on a disk.
The differentials of ψ (Section 4.4) will yield a control law for the individual
elements, as given in Equation 3.8, provided dψ is of full-row rank. With
this introduction, we begin the precise definition of ψ.

4.1 Radial Symmetry

We wish to find the center of the swarm, and this is done by finding the
average of all positions of elements in the group. Let

µ =
1
N

N

∑
i=1

zi, (4.1)

where zi is the Eulerian coordinate of the ith element and N is the number
of elements in the swarm. Hence, µ is the centroid of the system. Since we
are concerned first with radial symmetry and the disk-like structure of the
system, we transform each zi by a translation, defining

ri = zi − µ. (4.2)

As explained above, we wish to preserve radial symmetry, so we define
a way to measure it, namely,

α =
N

∑
i=1

ri. (4.3)

If indeed the swarm Z is radially symmetric, we will have α = 0. Now,
we move to a characterization of whether Z is a disk.

4.2 Uniform Distribution on a Disk

We let
R = max{ri}, (4.4)

so that, ideally, the swarm is to be uniformly distributed within a circle
with radius R centered at µ.
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It is necessary to take a moment and explain how uniform distribution
works on a disk. Under a simple transformation relative to an arbitrary
axis, we can express each coordinate ri as a pair (Ri, θi) where Ri = ||ri||
and θi is the angle of ri = (xi, yi)

T given by arctan(yi/xi). Because of the
geometry of the circle, we cannot simply require that Ri ∼ U [0, R] and
θi ∼ U [0, 2π]. More precisely, observe that the probability of the radius Ri
of a swarm particle being less than a given a is

P(Ri ≤ a) =
πa2

πR2 ,

which implies that the probability of Ri equaling a is

P(Ri = a) =
∂

∂a

(
πa2

πR2

)
=

2πa
πR2 =

2a
R2 ,

so that the distribution of Ri is certainly not uniform, for it depends on the
value of a. However, this problem is eliminated if we consider R2

i . Namely,

P(R2
i ≤ a2) =

πa
πR2

⇒ P(R2
i = a2) =

∂

∂a2

(
πa2

πR2

)
=

π

πR2 =
1

R2

and so R2
i ∼ U

[
0, R2]. Hence, we can conclude that if (R2

i , θi) ∼ U[0, R2]×
U[0, 2π], then {ri} is uniformly distributed on a disk with center µ and
radius R.

4.3 The χ2 Measurement

A useful way of measuring how a sample compares to a hypothetical dis-
tribution is the χ2-test. Here, if we divide the region [0, R2] × [0, 2π] into
four equal subregions Q1, . . . Q4, the χ2 statistic is

χ2 =
4

∑
j=1

( f j − Nπj)
2

Nπj
, (4.5)

where f j is the observed frequency of samples in region Qj and πj is the
hypothetical probability of a sample being that region (which in this case
is 1/4) and N is the number of samples. If we let g(ri) = (R2

i , θi), we can
count the number of samples in Qj in the following way:

f j =
N

∑
i=1

rT
i f̂ jiri, (4.6)
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where

f̂ ji =


(

0 0
0 0

)
if g(ri) /∈ Qj,(

1/(2x2
i ) 0

0 1/(2y2
i )

)
if g(ri) ∈ Qj.

It is important to note the significance of the form of Equation 4.6. After
all, we could have done something as simple as

f j =
N

∑
i=1

χQj(g(ri))

where χQj is the indicator function of the set Qj, since this form is actually
easier to implement. But the difficulty is that we not only care about χ2 but
also dχ2, and it is difficult to define the derivative of an indicator function
in a meaningful way. On the other hand, given Equation 4.6,

∂ f j

∂zi
=

∂

∂zi

N

∑
i=1

rT
i f̂ jiri

=
N

∑
i=1

∂

∂zi
(zi − µ)T f̂ ji(zi − µ)

= IT f̂ ji(zi − µ) + (zi − µ)T f̂ ji I

= f̂ ji(zi − µ) + (zi − µ)T f̂ ji

= f̂ jiri + rT
i f̂ ji.

Immediately we can see that the dimensionality of the above expression is
not consistent, as f̂ jiri is a column vector, whereas rT

i f̂ ji is a row vector. This
inconsistency is not entirely disturbing, as f j is a scalar value resulting from
the products of matrix elements. We can reconcile this difficulty, recogniz-
ing that ( f̂ jiri)

T = rT
i f̂ ji so that the entries in the two vectors are the same.

Hence, we set
∂ f j

∂zi
= 2rT

i f̂ ji, (4.7)

since this preserves the absolute value of the partial derivative. Thus,

∂χ2

∂zi
=

∂

∂zi

4

∑
j=1

( f j − Nπj)
2

Nπj
=

4

∑
j=1

∂

∂zi

( f j − Nπj)
2

Nπj

=
4

∑
j=1

2( f j − Nπj)

Nπj

∂ f j

∂zi

=
4

∑
j=1

2( f j − Nπj)

Nπj
2rT

i f̂ ji =
4

∑
j=1

4( f j − Nπj)

Nπj
rT

i f̂ ji.
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Equipped with ∂χ2/∂zi we are now able to find the differential of ψ and
so derive control law for the swarm.

4.4 The Differential dψ

In this section we find find dψ, as it is required for the derivation of the
control law given in Equation 3.8. The formal definition of a differential
is given in Definition A.16. However, because of the linear properties of
derivatives, the differential of a map is a linear transformation from one
tangent space to another. The entries in the matrix encoding this linear
transformation are the partial derivatives of the function, in this case ψ,
with respect to coordinates given by the coordinate chart of the map. Since
Z = R2N , Z has global coordinates, so that dψ is simply the Jacobian of ψ:

dψ =

(
∂α
∂z1

· · · ∂α
∂z2N

∂χ2

∂z1
· · · ∂χ2

∂z2N

)
.

Having already obtained the partial of χ2 with respect to zi, we set

∂χ2

∂zi
= Mi =

4

∑
j=1

4( f j − Nπj)

Nπj
rT

i f̂ ji =
4

∑
j=1

4( f j − Nπj)

Nπj

(
1

2xi
,

1
2yi

)
.

From the above expression, we can see that Mi depends on the inverses of
the coordinates of zi as well as the number of elements in the quadrant Qk
that zi belongs to. The differential of α is calculated similarly:

∂α

∂zi
=

∂

∂zi

N

∑
i=1

ri =
∂

∂zi

N

∑
i=1

(zi − µ)

=
N

∑
i=1

∂

∂zi
(zi − µ)

= I.

With expressions for dχ2 and dα, we can express dψ as the matrix

dψ =

(
I · · · I

M1 · · · MN

)
. (4.8)
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4.5 The Control Law

As discussed earlier, the control law for the swarm is directly dependent
on the map ψ, or more precisely on its differential (Equation 3.8). In this
section we use Equation 3.8 to derive the control law for the swarm.

With the map ψ : Z → A × X, the differential of ψ is a linear map
from the tangent bundle of Z to the tangent bundle of A, namely if ż is the
derivative of a parametrized curve on Z,

dψż = (α̇, χ̇2). (4.9)

Since dψ is a matrix, the above expression is a linear system, so that if
dψ is full row rank, we can use the expression in Equation 3.8 to find ż in
terms of (α̇, χ̇2). In other words, the control problem is no longer solved in
R2N but rather in A×X = R2. Put in yet another way, the behavior of all N
elements in the swarm is determined solely by the values of the derivatives
of α and χ2.

Letting

Mi = (mi ni),
N

∑
i=1

Mi = (a b),
N

∑
i=1

Mi MT
i = c, D = c− a2

N
− b2

N
,

calculation shows that

dψT(dψdψT)−1 =



1
N + a2

N2D −
am1
ND

ab
N2D −

bm1
ND

−a
ND + m1

D
ab

N2D −
an1
ND

1
N + b2

N2D −
bn1
ND − b

ND + n1
D

...
1
N + a2

N2D −
amN
ND

ab
N2D −

bmN
ND

−a
ND + mN

D
ab

N2D −
anN
ND

1
N + b2

N2D −
bnN
ND − b

ND + nN
D

 .

(4.10)
And since q̇ = dψT(dψdψT)−1 ȧ, the individual control laws are given

by

żi =

(
1
N + a2

N2D −
ami
ND

ab
N2D −

ani
ND

)
α̇1 +

(
ab

N2D −
bmi
ND

1
N + b2

N2D −
bni
ND

)
α̇2

+

( −a
ND + mi

D
− b

ND + ni
D

)
χ̇2. (4.11)

Equation 4.11 is decomposed according to contributions from the val-
ues of derivatives of the two parameters (α has two components). The nu-
merical implementation of the results depends on how we choose to define
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α̇ and χ̇2 based on values of α and χ2. Section 4.6 details the way these
derivatives are defined.

4.6 Implementation and Results

To see the behaviors induced by the control law in Equation 4.11, we use
a numerical implementation of the ODE composing the law. Here, the
derivatives in question are żi, α̇, and χ̇2, denoting the derivatives of param-
eterized curves, where the path of zi is determined by the paths of α and χ2.
The parameterization of α and χ2 is defined with respect to time; that is,
α = α(t), χ2 = χ2(t), so that α̇ = dα/dt and ˙chi2 = dχ2/dt. This means that
zi = zi(t), and żi = dzi/dt. For the sake of simplicity, the parameterized
path for α and χ2 is defined by the goal conditions αg and χ2

g, so that the re-
spective derivatives are just weighted differences between the current and
goal values.

Numerical experiments like the one done here rely on a discretization
of the domain and range of the ODE, that is, they rely on a discretization of
the parameter t and values for zi. The implementation of this method relies
on simple forward-Euler approach, given by

zn+1
i = zn

i + żn
i dt, (4.12)

where the superscript indicates the discretized timestep. Given any time n,
we have the global state of the swarm zn = (zn

1 zn
2 . . . zn

N)
T, so that we find

both α and χ2 for that time. Then, using the goal conditions for the swarm
αg, χ2

g we calculate the derivatives α̇, χ̇2 according to the expressions

α̇1 = kα1(α1,g − α1), (4.13)
α̇2 = kα2(α2,g − α2), (4.14)

χ̇2 = kχ2(χ2
g − χ2), (4.15)

where kα1 , kα2 , kχ2 are positive nonzero constants. Simulations were run for
kα1 = 1, kα2 = 1, kχ2 = 1000 and dt = 0.01. The constant for χ̇2 is of much
greater magnitude than the other two, because O(1000) was the order mag-
nitude which produced tractable behaviors. With smaller constants the ini-
tial conditions remained constants, and with greater order magnitudes po-
sitions of elements in the swarm became unbounded. The initial condition
for the first simulation consisted of 100 uniformly distributed points on the
square [0, 3] × [0, 3]. The initial condition and final conditions after 1000
timesteps is given in Figure 4.1.
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There were four designated quadrants for measuring the χ2 distribu-
tion, given in the form of a direct product of the angle and squared radius
range

QI = [0π]× [R2/2, R2]

QII = [0π]× [0, R2/2]
QIII = [−π0]× [0, R2/2]
QIV = [−π, 0]× [R2/2, R2].

Five clusters form, and it seems that the arrangement of the outer ones
might suggest the existence of an internal axis. It is also important to note
that although the α parameter was 0 throughout the simulation, the χ2

value never approached zero, as can be seen in Figure 4.2. The oscillations
are due to the constant change of positions of the inner cluster. The outer
clusters stay stationary as time increases.

4.6.1 Uniform Disk Initial Condition

We test the performance of the control law in the case where the initial con-
dition is composed of 1000 points uniformly distributed on the unit disk,
as seen in Figure 4.3, to see if the code implementing the control law could
detect if the swarm did achieved a uniform disk distribution with radial
symmetry. If the code works properly, such initial conditions would cause
the simulation to terminate almost immediately, and the original positions
for the swarm elements will not be disturbed.

After fourteen numerical timesteps with the above parameters, the de-
sired goal of having α ≈ 0 and χ2 ≈ 0 are achieved, with the final configu-
ration being as seen in Figure 4.4.

The fact that the algorithm arising from the control law recognizes data
which has a uniform disk distribution shows that the algorithm works on
a basic level. However, the true test comes when the initial condition has a
distribution different than the one which is the goal of the law.

4.6.2 Uniform Square Initial Condition

This part of the simulations is done with an initial condition consisting of
1000 points uniformly distributed on a unit square centered at (0.5, 0.5).
We observe a more dynamic behavior, as seen in Figure 4.5. Most notable
of the features of the system in Figure 4.5 is the formation of five distinct
accumulations of swarm elements: four formations along the diagonals of
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the coordinate axes and a central, radially symmetric formation. The rest
of this section will explain how the control law generates these dynamics.

The Initial Stage

What is referred to here as the initial stages are the system states for time-
steps with n < 1000. The early stage of the control solution is characterized
by a lack of the diagonally aligned groups. Further, most elements are con-
tained in QII and QIII, since there are relatively low number of elements
that are outside of the original formation. The occurrence and accumula-
tion of such outliers is a numerical artifact of the implementation of the
control law. It is appropriate to note that for this initial condition type the
parameter α ≈ 0 so that α̇ ≈ 0. On the other hand, the group definitely
does not have a uniform disk distribution, so that χ̇2 << 0 (since χ2

g = 0).
Hence, the control law is given by

ż =

( −a
ND + mi

D
− b

ND + ni
D

)
χ̇2 =

(
Nmi−a

ND
Nni−b

ND

)
χ̇2. (4.16)

Recall that

(mi , ni) = 4
( f j − Nπj)

Nπj

(
1

2xi
,

1
2yi

)
,

and that

a =
N

∑
i=1

mi b =
N

∑
i=1

ni.

As might be noted, the symmetry of the swarm should imply that a, b ≈ 0,
since both are essentially summations over the coordinates of all points
in the group. However, if there is some small xi or yi that does not have
an exact mirror image, then 1

xi
would weigh the entire summation greatly,

forcing its absolute value to blow up. And it is this precise phenomenon
that causes the formation of outliers. For the control law, we have

ż =

(
Nmi−a

ND
Nni−b

ND

)
χ̇2 =

(
(N−1)mi−∑j 6=i mj

ND
(N−1)ni−∑j 6=i nj

ND

)
. (4.17)

Hence we see that the occasional elements whose xi or yi coordinates be-
come very small induce a great shift in the corresponding control velocity,
as

(N − 1)mi >> ∑
j 6=i

mj ⇒ (N − 1)mi −∑
j 6=i

mj ≈ (N − 1)mi.



32 New Control Law

In this manner we see that elements which are found close to the axes
centered at µ are flung far out from the initial group in the consequent
timestep. It is important to note that this process, although determined
by the control law, is essentially random, as the initial positions of the
group elements are generated randomly. This is confirmed by observing
the values for a and b over the course of the simulation, as pictured in
Figure 4.6.2, since the spikes in the graphs correspond to elements with
coordinates close to zero. It should be observed that each spike is quickly
reduced, which accounts for the control law correcting the position as de-
scribed above.

The Evolved Stage

The evolved stage of the solution is characterized by the formation and
separation of the diagonal groups. The dynamics of the evolved stage are
determined by the distribution of elements in the four quadrants and the
positions of group elements. First, we observe that as in the initial stage
of solution, the values of a and b tend to quickly correct themselves from
one timestep to the next (Figure 4.6.2). Hence, over time, a and b do not
affect the behavior of swarm elements. Thus, the direction of control for
each element is simply determined by (mi , ni)χ̇2, as the product ND > 0.

In the evolved stage of the solution, there are more points accumulated
further away from the center of the group µ so that there are more elements
in QI and QIV. Hence, f1 and f4 are greater than during the initial stage.
However, since the bulk of the group is still in QII and QIII, the coeffi-
cients

f1 − Nπ1

Nπ1
,

f4 − Nπ4

Nπ4
< 0.

And since for elements in QI and QIV

mi = 4
( f1or4 − Nπ1or4)

Nπ1or4

1
2xi

ni = 4
( f1or4 − Nπ1or4)

Nπ1or4

1
2yi

,

(mi , ni) have opposite signs of (xi , yi). But because χ̇2 < 0, (mi , ni)χ̇2

has the same signs as (xi , yi) for elements in QI and QIV. For elements
in QII, QIII, signs of (mi , ni)χ̇2 are opposite of (xi , yi). Thus, we can see
why the the outer groups align with the diagonals: only with such an ap-
proximate position are influences of mi and ni equalized and keep them
moving away from µ. On the other hands, elements in QII, QIII are at-
tracted to µ but upon reaching proximity to one of the axes they are shot
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out. If their distance from µ is greater than R2/2, then they join the outer
diagonal groups. However, as R2 grows with time due to the repulsion
of the outer groups from µ this becomes increasingly unlikely. This dy-
namic is demonstrated in Figure 4.8, where the green circle is of radius
R2/2, thereby denoting the boundary between QI ∪QIV and QII ∪QIII.
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a. Initial condition consisting of 100 points uniformly distributed on a square
with side length 3, centered at (1.5, 1.5).

b. Depicted is the swarm distribution after 1000 timesteps. Five clusters
form, and the arrangement of the four outer clusters might suggest the
existence of an internal axis, as they are aligned along the diagonals.

Figure 4.1 Initial and final conditions for 100 points over 1000 timesteps.
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Figure 4.2 Plotted are χ2 values for 1000 timesteps for an initial condition
of 100 points uniformly distributed on a square with side length 3, centered at
(1.5, 1.5). Note that the value of the parameter never approaches 0 and exhibits
very discontinuous behavior.

Figure 4.3 Shown is an initial condition consisting of 1000 points uniformly
distributed on the unit disk.
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Figure 4.4 A system initially consisting of 1000 points uniformly distributed on
the unit disk has the above final condition (n = 11). The algorithm terminates
without making major changes to the initial condition.
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a. n = 1000 b. n = 2000

c. n = 3000 d. n = 4000

Figure 4.5 Progressive results for initial condition of 1000 points on the unit
square. Note the emergence of five distinct clusters and the radial boundary
separating the center cluster from the outer ones.
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a

b

Figure 4.6 Values for a (a) and b (b) for 1000 timesteps for the initial condition
of 1000 points uniformly distributed on the unit square.
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a

b

Figure 4.7 Values of a (a) and b (b) for 10000 timesteps for the initial condition
of 1000 points uniformly distributed on the unit square. For both figures, large
value spikes are reduced quickly within the next timestep. This behavior results
from the corresponding swarm element being removed far from the axes by the
control law.
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a. n = 1000 b. n = 2000

c. n = 3000 d. n = 4000

Figure 4.8 Progressive results for initial condition of 1000 points on a unit
square. The green circle indicates the boundary between QI ∪ QIV and
QII ∪ QIII, which distinctly emerges after n = 2000. Elements outside of
the boundary move away from the swarm center, whereas elements within the
boundary are drawn towards the center of the swarm.
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Future Work

In Chapters 2 and 3 we have briefly described two methods for controlling
swarms. The VARP method in Chapter 2 achieves global control by alter-
ing particle interaction laws, whereas the abstraction method in Chapter 3
sets controls of agents in a swarm by first defining its macroscopic charac-
teristics.

Further direction for exploration could be to address the failures of the
control method derived from the ψ function and more specifically deter-
mine how to correct these failures. The behavior seen with the “square” ini-
tial condition essentially arises from the boundary between the two groups
of quadrants. A greater number of quadrants for 1000 points contained in
the initial condition would, on average, assign a lesser number of elements
per box, thereby making the discontinuities of the gradient of the magni-
tude of the coefficients ( f j−Nπj)/(Nπj) of smaller magnitude. This might
induce a less drastic shift in behavior from one radial region to the next.

On a more fundamental level, the way in which the χ2 parameter is
computed is another factor that drastically affects the observed behavior.
The large values of the like of 1/(2xi) are numerical artifacts that may not
necessarily reflect the direction of the control law due to the finite nature
of the implementation. The control method itself could be improved if the
function for the parameter χ2 has first-order derivatives.





Appendix A

Definitions

This section states the topology and differential geometry definitions that
are used in this work. All definitions have been obtained from Isham (1989)
and Isidori (1995).

Definition A.1 (Topology). Let S be a set. A topology on S is a collection of
subsets of S, called open sets, satisfying the axioms

i) The union of any number of open sets is open;

ii) The intersection of any finite number of open sets is open; and

iii) The set S and the empty set are open.

Definition A.2 (Topological space). A set S with a topology is called a topo-
logical space.

Definition A.3 (Basis). A basis of a topology on a set S is a collection of
open sets, called basic open sets with the following properties

i) Elements of S are the unions of open basic sets;

ii) A nonempty intersection of two basic open sets is a union of open
basic sets.

Definition A.4 (Homeomorphism). Let S1 and S2 be topological spaces and
let F be a map F : S1 → S2. The map F is continuous if the inverse image of
every open set in S2 is an open set in S1. The mapping F−1 is continuous if
the image of every open set in S1 is an open set in S2. F is a homeomorphism
if it is a continuous, open bijection.
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Definition A.5 (Neighborhood). A neighborhood of a point p in a topological
space is any open set that contains that set.

Definition A.6 (Locally Euclidean space). A locally Euclidean space X of di-
mension n is a topological space such that, for each p ∈ X, there exists a
homeomorphism φ mapping some neighborhood of p onto a basic open set
in Rn.

Definition A.7 (Manifold). A manifold N of dimension n is a topological
space which is locally Euclidean of dimension n, has a countable basis, and
any two different points p1 and p2 have disjoint neighborhoods.

Definition A.8 (Coordinate chart). A coordinate chart of a point p in an n-
dimensional manifold N is a pair (φ, U), where U ⊂ N is a open set con-
taining p and φ is a homeomorphism from U to Rn.

Definition A.9 (Differentiable manifold). A differentiable manifold M is a
manifold with a differentiable structure defined in the following way: for
M, there exists a collection of charts (φi, Ui), where Ui ⊂ M and ∪i=1Ui =
M. Further, for every pair where Uj ∩Ui 6= ∅, φi ◦ φ−1

j and φj ◦ φ−1
i are both

differentiable.

Definition A.10 (Parameterized curve). A parameterized curve on a manifold
M is a smooth; that is, C∞, map σ from some open interval (−ε, ε) of the
real line to M.

Definition A.11 (Tangent). Two curves σ1 and σ2 are tangent at a point p in
M if

i) σ1(t) = σ2(t) = p; and

ii) In some local coordinate system (x1, . . . , xm) around the point the two
curves are “tangent” in the usual sense as curves in Rm.

Definition A.12 (Tangent vector). A tangent vector at p ∈ M is an equiva-
lence class of curves in M where the equivalence relation is that two curves
are tangent at the point p. We write the equivalence class of a particular
curve σ as [σ].

Definition A.13 (Tangent space). The tangent space Tp M to M at the point p
is the set of all tangent vectors at the point p.

Definition A.14 (Tangent bundle). The tangent bundle TM is defined as
TM :=

⋃
p∈M Tp M.
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Definition A.15 (Differentiable map). Let F be a mapping between two
manifolds N and M. For each n ∈ N and m = F(n) ∈ M, let the coordi-
nate charts (φ, U) and (ψ, V) correspond to n and m respectively. If there
exists a differentiable, bijective map between φ(U) and ψ(V), then F is a
differentiable map (between manifolds).

Definition A.16 (Differential). Let f : M → N be a differentiable map
between two manifolds M and N. The differential of f at point p ∈ M is
defined as the map

d fp : Tp M→ Tf (p)N

in the following way. For v ∈ Tp M and λ ∈ C∞(F(p)),

(d fp(v))(λ) = v(λ ◦ f ).

Definition A.17 (Submersion). Let f : M → N be a differentiable map
between two manifolds N and M. The map f is a submersion at point p ∈ M
if d fp is a surjective linear map.

Definition A.18 (Real Lie group). A real Lie group G is a set that

i) Has structure of a group, with an invertible operation and identity;

ii) Is a differentiable manifold with the properties that taking the prod-
uct of two group elements, and taking the inverse of a group element,
are smooth operations.
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