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Reflective Essay 
 

My mathematics thesis project is perched at one of the many intersections of 
biochemistry and mathematics. In it, I apply concepts from topology to study the underlying 
structures of large biological molecules. Topologists are generally interested in whether one shape 
can be continuously deformed into another in space. To them, a coffee cup, doughnut, and CD 
are all equivalent because all three have a single hole and can be deformed from one to another 
without requiring tearing or gluing. Biochemists, on the other hand, are intrigued with the 
structure of proteins. Most traditional biochemists would chuckle at the notion of abstractly 
considering a highly ordered protein as a mere stretchy shoestring. In my thesis, however, I think 
about proteins as just that: deformable, shoestring-like mathematical objects that in rare cases 
contain knots, links, or other forms of topological complexity. Much to the surprise of classical 
biochemists, considering a protein in this way can yield valuable information about its stability 
and function.  

It was my goal to present this thesis in such a way that it would be accessible to experts in 
both fields. The “bilingual” nature of my project called for a multiple-pronged approach to 
parsing through the literature across disciplines. The resources from the Claremont Colleges 
Library, such as the wide range of online database access, incredibly helpful library staff, and 
useful online guides, enabled me to seamlessly synthesize mathematics and biochemistry 
literature into a comprehensive final report that integrates perspectives across these disparate 
fields and offers new insights. 

Firstly, my project would not have been possible without access to the online resources 
made available to me by the library.  The mathematics component of my research relies heavily 
on MathSciNet, a database created by the American Mathematical Society. Access to the articles 
posted on MathSciNet requires a hefty single subscriber rate for individuals outside of a 
consortium of over $12,000. Without the library’s support, this resource would simply be 
inaccessible to me. A second essential database to my project is SciFinder, a database that gives 
me unparalleled access to references published in the sciences. Just as in the case of MathSciNet, 
SciFinder would be inaccessible to me without the library’s support as a result of its $3,000 
individual subscription cost.  
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MathSciNet and SciFinder not only assisted me in finding the relevant resources for my 
topic and directed me to the citations of a given reference, but also showed me which more 
recent works have cited a given article. This enabled me to access the most recent literature about 
the underlying topological structures of proteins. While many of these more recent articles 
contained crucial information for my project, I was unable to find them using simple search 
methods such as Google Scholar, likely due to their relatively low citation numbers. This new 
information not only ensured that my thesis includes the most relevant, up to date information, 
but also helped shape the direction of my project. For example, using SciFinder, I came across a 
paper that I had previously not seen entitled “Protein knots and fold complexity: some new 
twists” by William Taylor. In this paper, Taylor argues why one specific knot is not observed 
within protein structures, while another similar one is observed. In my thesis, we use his 
argument as the basis for a section on hypothetical protein structures to propose how a protein 
could obtain this missing knot type.  
 It was not only the library’s online database access that assisted me with this research 
project, but also my very positive interactions with the library’s staff. In fact, I only became 
introduced to SciFinder as a result a workshop presented by Librarian Sean Stone to my Organic 
Chemistry class. During that workshop, I learned the power of the library’s tools offered us when 
making complex queries to the previously imposing scientific literature base. Were it not for the 
helpful step-by-step guidance of Mr. Stone during that workshop I am sure that I would be less 
capable of searching through the enormous body of relevant literature. 

Another extremely helpful service that the library offers is the online chat feature. The 
majority of my mathematics thesis was completed over winter break while I was off campus. 
Although I initially struggled obtaining off-campus access to the library’s resources, I soon 
realized that the library’s assistance was at my fingertips with the “Ask Us” chat feature built 
right into the library’s website. An anonymous staff member quickly assisted me with off campus 
access, giving me access to all the invaluable articles that I would normally have access to while 
on campus.  

Besides the many ways the library staff helped me one-on-one, their informative online 
guides provided crucial information even when in-person help wasn’t available. Just as chemists 
and mathematicians have different ways of thinking about three dimensional objects, they also 
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have different ways of presenting their results. Chemists typically use the straightforward and 
practical Microsoft Word to format their documents and EndNote for citation purposes, 
whereas mathematicians generally use the involved, yet stunning LaTeX and BibTeX for 
formatting and citing, respectively. As this was a mathematics thesis, I opted to use LaTeX and 
BibTeX, despite being relatively unfamiliar with how to cite my references in this new format. 
Luckily for me, Librarian Sam Kome created an extremely useful online guide entitled “Getting 
BibTeX Citations,” which greatly simplified this processes by describing how to import citations 
directly into the BibTeX citation manager.  

The dozens of citations in my thesis echo the library’s crucial role in its creation. Beyond 
guiding me to these references, the library shaped the direction of my thesis and assisted me in 
its final presentation. The library’s resources, friendly staff, and wonderful informative online 
guides have enabled me to produce a work of which I can be proud.  
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Abstract

For DNA molecules, topological complexity occurs exclusively as the result
of knotting or linking of the polynucleotide backbone. By contrast, while a few
knots and links have been found within the polypeptide backbones of some protein
structures, non-planarity can also result from the connectivity between a polypeptide
chain and attached metal structures. In this thesis, we survey the known types of
knots, links, and non-planar graphs in protein structures with and without including
such bonds between proteins and metals. Then we present new examples of protein
structures containing Möbius ladders and other non-planar graphs as a result of
these bound metal atoms. Finally, we propose hypothetical structures illustrating
specific disulfide connectivities that would result in the key ring link, the Whitehead
link and the 51 knot, the latter two of which have thus far not been identified within
protein structures.
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CHAPTER 1

Introduction

Until two decades ago, the underlying form of all native protein structures was
assumed to be topologically linear. This was in contrast to DNA molecules whose
polynucleotide backbones had been known for a decade to exist in both linear and
closed circular knotted and linked forms [4, 5, 35]. In 1994 and 1995, Liang and
Mislow [8, 9, 10] showed that if cofactors (non-protein chemical compounds) and
disulfide bonds (strong bonds between nonadjacent regions of a protein) are taken
into account when evaluating the topological form of protein structures, then these
structures may indeed contain knots, links, and even non-planar graphs. More
recently, even when considering only the polypeptide backbones of proteins, some
knots and links have been identified [3, 12, 15, 23, 30, 31, 34].

Why some proteins contain these non-planar features has been a question since
their discovery. The fact that features such as knots and non-planar spatial graphs
have been highly preserved throughout evolution suggests that they may play a
crucial role in enzymatic activity. For example, in one protein, ubiquitin hydrolase,
the 5 fold knot is highly conserved from human to yeast forms, thus suggesting its
importance [27]. In cases when a protein loses or gains a knot through the process
of evolution, a change in function of the protein is observed. Furthermore, proteins
containing knots and links have been observed to have increased stability [34].

We are interested in studying the topological complexity of the underlying
structures of proteins. We define an object to be topologically complex if it is
non-planar in the sense that even assuming complete flexibility and elasticity, it
cannot be deformed into a plane. For example, a knotted circle is non-planar
and hence is indeed a type of topological complexity. Understanding how such
non-planarity arises in proteins may offer valuable insight into protein stability,
folding mechanisms, and degradation pathways.

In order to evaluate their topological complexity, we model protein structures as
completely flexible objects. While a protein molecule is in fact only partially flexible
about its peptide bonds, if we can show that a completely flexible model cannot
be deformed into a plane, then the protein, with less flexibility than the model,
also cannot attain a planar conformation. Thus, for the purpose of identifying
non-planarity within protein structures, we can assume complete flexibility, even
though this is not physically accurate. Figure 1 illustrates how, for a given a protein
with a structured geometric shape, we associate a flexible model that we refer to
as its underlying topological structure. Because the backbone of the protein in the

7



8 1. INTRODUCTION

figure contains neither disulfide bonds nor other cofactors connecting non-adjacent
regions, its underlying topological structure is an open linear path.

Figure 1. We represent the protein ribbon diagram on the left by
a flexible underlying topological structure, shown on the right.

In Chapter 2, we present a survey of non-planar topological structures that
have been previously identified within proteins. Then in Chapter 3, we present new
examples of proteins containing the non-planar graphs K3,3 and K5 as well as some
containing Möbius ladders as a result of covalently-bound cofactors. Finally, in
Chapter 4, we propose hypothetical protein structures whose covalent bonding would
result in a 3-component key ring link, the Whitehead link, and the 51 knot, the
latter two of which have not been previously identified in the underlying structures
of proteins.



CHAPTER 2

Survey of Known Non-Planar Protein Forms

1. Knots

Mathematicians define a knot as a circular path in three dimensional space.
See, for example, the image on the left side of Figure 2. The requirement that the
path be circular is so that the knot is topologically trapped within the figure. By
contrast, a knot which is contained in an open linear segment (as shown on the right
in Figure 2) can be removed by unthreading.

Figure 2. The knot on the left is trapped in a circular path,
whereas the knot on the right can be unknotted by a deformation.

While the polypeptide backbones of protein structures are normally open
segments rather than circular paths, if a knot is deeply embedded in a protein
structure, then from a biochemical viewpoint, it is reasonable to assume it is trapped
within the structure. This assumption generally holds as a result of the knot’s
location in a valley of the potential energy landscape. In particular, the energy
required for the termini, usually near the protein surface, to unthread the knot is so
prohibitively large that this event generally does not occur. However, it is a difficult
problem to create a model of such a knotted open segment in which the knot is
topologically trapped within the model and can be uniquely identified.

Many approaches have been developed to creating such a topological model
[1, 6, 13, 22, 28, 33]. One such approach is to extend the termini indefinitely
in opposite directions [7]. We illustrate this by adding arrows at the ends of the
linear segment as shown in Figure 3. However, if one or both of the termini are
near the tangling of the knot, then different knots can be trapped in the structure
depending on how the ends are extended [17, 19, 25]. For example, in the right
image of Figure 3, if we extend the bottom endpoint under the arc we will get a
trefoil knot, but if we extend it over the arc we will get the unknot.

9



10 2. SURVEY OF KNOWN NON-PLANAR PROTEIN FORMS

Figure 3. For the image on the left we can extend the endpoints of
the segment indefinitely so that the knot is trapped and is uniquely
determined. But for the image on the right, we may obtain either
a knot or an unknot depending on how we extend the bottom
endpoint.

Another approach to modeling a knotted linear protein structure is to place
it in the center of a large sphere. The termini are then extended to the spherical
boundary of the ball and joined by an arc on that boundary to create a closed loop
(see Figure 4) [13, 28]. However, the same problem can occur that we saw on the
right side of Figure 3 when we extended the ends indefinitely. In particular, different
knots may be obtained depending on how the arcs are extended to the boundary
of the ball. To resolve this problem, Millett and others [11, 16, 18, 20, 21] have
proposed a statistical approach in which they assign different probabilities to each
of the possible knots they obtain in this way. Then, only the knot with the highest
probability is considered to occur in the given protein structure.

Figure 4. One way to determine whether a protein contains a knot
is by placing the protein in a large sphere, extending the termini
to the spherical boundary and joining them by a closed arc along
the surface of the sphere. Here, this concept is illustrated by a
red trefoil-like, unknotted structure (solid red line) that is placed
inside a sphere. By extending its termini to the boundary of the
sphere, and joining the ends by an arch along the sphere’s surface
(red dashed lines) we see that we can view this structure as a knot.

Whatever method is taken to modeling and characterizing knots in proteins,
amongst the tens of thousands of known structures, only a few hundred have been
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found to contain knots. Furthermore, every one of the known knotted proteins is
deformable to one of the knots 31, 41, 52 and 61, illustrated in their circular forms
in Figure 5.

3
13

1
4
1

5
2

6
1

Figure 5. These are the only knot types that have been identified
in protein structures to date.

Topologists refer to each knot by a number together with a subscript. The first
number indicates the minimum number of crossings required in any illustration
of the knot. Since this number does not necessarily uniquely determine the knot,
the subscript is then used to distinguish knots with the same minimum number of
crossings. While the trefoil knot 31 and the figure eight knot 41 are the only knots
containing three and four crossings respectively, there are two distinct knots 51 and 52
containing five crossings and three distinct knots containing six crossings. For knots
which are topologically distinct from their mirror image, the same pair of numbers
is used to refer to both the knot and its mirror image. Of the knots illustrated in
Figure 5, the figure-of-eight knot 41 is the only one which is topologically equivalent
to its mirror image. Figure 5 illustrates both mirror forms of the 31 knot, since both
have been identified in proteins. The 52 and 61 knots have each only been found in
proteins in the form illustrated in the Figure (see [24]).

5
1

Figure 6. This five crossing knot that has yet to be found in a
protein structure.

It is perhaps surprising that the relatively simple knot 51 knot (illustrated in
Figure 6) has yet to be found in any protein structure. Taylor has hypothesized that
this knot is an unlikely motif in protein structures, because a rate limiting “double
threading” event would be required for its formation [32]. Taylor contrasts this
with the 52 knot, which could be the result of threading one end of the backbone
through a twisted hairpin, and then connecting the termini with an arc to create a
closed loop as in the model introduced by Millet and others (discussed above). We
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illustrate this in Figure 7. In Chapter 3, Section 3, we discuss how the 51 knot may
hypothetically occur in a protein structure with and without considering disulfide
bonds.

5
2

C

C

N

N

N C

Figure 7. The 52 knot could be the result of threading one end
of the backbone through a twisted hairpin as illustrated.

The first knotted protein structures to be identified were metalloproteins ascor-
bate oxidase and human lactoferrin, which were found by Liang and Mislow to
contain the trefoil knot 31 [8]. The existence of these knots relied on the covalently
bound metal atoms and disulfide bonds of the protein. For example, we can see in
Figure 8 that the trefoil knot found in ascorbate oxidase makes use of the thick grey
segments representing disulfide bonds.

508

106

19 201450

62

81

538

Y

Y

X

Y

=Cu(II)
X

Y

=

=

N

N

N
N

3
1

Figure 8. The trefoil knot contained in ascorbate oxidase makes
use of the thick grey segments representing disulfide bonds.

More recently, nearly forty proteins have been identified which have knots
entirely formed by their polypeptide backbones. The trefoil knot is by far the most
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common knotted motif reported in protein backbones, and is known to exist in
proteins in both the left- and right-handed forms [31]. By contrast, only a few
proteins are currently known to contain the 41 knot, and only individual examples
of the 52 and 61 knots, respectively, are known [34].

In 2006, the first knot with five crossings was identified in the backbone of a
protein by Virnau et. al. This 52 knot is contained in the structure of ubiquitin
hydrolase, a protein responsible for rescuing proteins from degradation. It is
believed that the complex knotted structure of this protein helps protect it against
degradation. This theory is supported by the fact that protein degradation is
generally initiated by an event in which proteins are threaded through a narrow pore
to remove their ordered structure. It is plausible that the steric bulk from a knot
may block the protein from being threaded through such a pore, thus potentially
preventing the ultimate degradation of the molecule. Further experiments must be
carried out to validate this theory. [34]. The most complex protein knot that has
been found to date is a Stevedore’s knot 61, which was identified in 2010 [2].

Table 1 gives a list of the knots, links, and non-planar graphs found in proteins
to date and a brief description of how they arise (e.g., from the backbone, from
cofactors, etc.). We explain more about the links and spatial graphs in this table in
later chapters of this thesis. Note that the table provides a summary of the types of
topological diversity that have been identified in protein structures, but does not
provide a comprehensive list of all proteins that contain non-planar features. More
extensive lists of knotted proteins can be found elsewhere [24, 31, 34, 37].

2. Links

We now define a link as two or more disjoint circular paths in three dimensional
space which cannot be separated from each other. Here, by “separated from each
other” we mean that there is no deformation of the link so that the two rings lie
on opposite sides of a plane in R3. For example, the pair of circles on the left in
Figure 9 is linked, whereas the pair of circles on the right is unlinked because the
pair can be deformed so that one circle is on either side of a vertical plane. The
most common type of protein linking has the form of the Hopf link, which consists
of two circles linked together only once as illustrated on the left of Figure 9.

planeHopf link unlinked circles

Figure 9. The pair of circles on the left is a Hopf link, but the
pair of circles on the right is unlinked.
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Table 1. Selected Examples of Topological Complexity Previously
Found in Protein Structures

Knots

31
cofactors used: ascorbate oxidase, human
lactoferrin
backbone only: hypothetical protein,
plasmid pTiC58 VirC2,
N-succinyl-L-ornithine transcarbamylase,
methyltransferase domain of human TAR
RNA binding protein, alpha subunit of
human S-adenosyl-methionine synthetase,
human carbonic anhydrase II, ribosomal
80S-eEF2-sordarin complex

[8, 10, 37,
24, 30, 34]

41 backbone only: acetohydroxy acid iso-
meroreductase, photosensory core domain of
aeruginosa bacteriophytochrome

[31, 37, 24]

52 backbone only: ubiquitin hydrolase [24, 37]

61 backbone only: α-haloacid dehalogenase [24]

Links

Hopf dimeric citrate synthase from P. aerophilum
(two subunits are linked by two intramolecular
disulfide bonds), bovine mitrochondrial
peroxiredoxin III (two interlinked rings, each
consisting of twelve subunits), tuna
cytochrome c (the porphyrin makes up one
ring and the protein backbone together with
central heme iron atom make up another)

[3, 37, 10]

Key Ring Cytochrome c3 from Desulfovibrio vulgarism
Miyazaki

[10]

Chain Mail bateriophage, HK97 (72-component linked
chain mail)

[36, 37]

Non-Planar Graphs

K3,3
Fe4S4 cluster of chromatium high potential
iron protein

[9]

K5
Fe4S4 cluster of chromatium high potential
iron protein

[9]
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The Hopf link has been found in protein structures in several distinct ways
including the linking of two polypeptide chains via intramolecular disulfide bonds,
the linking of multi-subunit macromolecular non-covalent rings [3, 37], and linking
resulting from the inclusion of porphyrin cofactors in tuna cytochrome c [10]. These
three different forms of protein Hopf links are illustrated in Figure 10.

N

N

R

N

R

N

Fe

Figure 10. Examples of Hopf links in protein structures. Left:
dimeric citrate synthase from P. aerophilum in which two subunits
are linked as a result of intramolecular disulfide bonds, shown in
red. Center: bovine mitrochondrial peroxiredoxin III in which two
interlinked rings, each consisting of twelve subunits, form the Hopf
link. Right: tuna cytochrome c in which the porphyrin makes up
one ring (purple) and the protein backbone together with central
heme iron atom make up another (green).

One way to describe the linking between two closed curves in three-dimensional
space is with linking number. Intuitively, the linking number represents how many
times one curve winds around the other. Before we can compute the linking
number however, we must first introduce oriented links, or links with an arrow
assigned to each component to indicate a particular direction. When a link has
oriented components, its crossings can be identified as negative or positive crossings.
A positive crossing corresponds to a right handed twist and a negative crossing
corresponds to a left handed twist, as shown in Figure 11.

Thus, we can define linking number as follows: Let L1 and L2 be components
of an oriented link projection L. The linking number of L is one half the number
of positive crossings between L1 and L2 minus the number of negative crossings
between L1 and L2. Interestingly, the links presented in Figure 10 all have linking
number ±1. This is what defines a Hopf Link.

Positive Crossing Negative Crossing

Figure 11. A positive crossing and a negative crossing.
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Other types of links can be found as a result of multiple heme cofactor binding.
Heme is a small chemical compound that takes the form of an organic ring with an
iron atom in its center. For our purposes, we can visualize it as a simple ring, as
shown in purple in Figure 12. In particular, by treating each of a protein’s heme
cofactors as its own ring, cytochrome c3 can be seen to contain a five-component link
[8]. By omitting the pink arcs in Figure 12, we obtain the key ring link illustrated
on the right. The linking number between a purple and green component will be
±1, whereas the linking number between any two purple components will be 0.

Fe

Fe

Fe

Fe

100

C

N

106

105

83

82

79

70

52
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46

35

34

33

30

25

22

Figure 12. Cytochrome c3 from Desulfovibrio vulgarism Miyazaki
and its underlying five-component key ring link.

Perhaps the most fascinating example of linking in protein structures is the
linking that exists to protect the bateriophage, HK97. On the exterior of the
bacteriophage, 72 rings link together to form a chainmail protective capsid, illustrated
in Figure 13. This structure is made up of 12 pentagonal rings and 60 hexagonal
rings linked together to form a spherical shape with icosahedral symmetry, meaning
that it has 60 rotational symmetries. Each pentagonal component is linked to five
other components such that each link formed has linking number ±1. Similarly, each
hexagonal component is linked to six other components, such that each link formed
has linking number ±1. These components come together to create a protective
surface that is relatively thin, and it is believed that the topological linking adds
stability to the capsid [36, 37].
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Figure 13. A chain mail protein link made up of 12 pentagonal
rings and 60 hexagonal rings in a spherical shape with icosahedral
symmetry.

Whether a protein link contains two, five, or 72 components, linking seems to
greatly increase stability of the resulting structure, likely by reducing the entropy of
the unfolded state [37]. As more examples of topological links are discovered in the
underlying structures of proteins, it will be fascinating to study the mechanism of
their formation.

3. Spatial Graphs

As we saw above, protein structures can be non-planar because they contain
a knot or link. However, these are not the only types of topological non-planarity
that can exist within proteins. In particular, non-planar graphs have been found in
certain proteins that contain metal clusters. In order to determine whether such a
structure contains a non-planar graph, we represent the structure as a graph in three
dimensional space where vertices represent atoms or groups of atoms and edges
represent bonds. For example, Figure 14 illustrates a spatial graph representing the
Fe4S4 cluster.

N

N

N

N

R
Fe

R

S

Fe

S

S

SR

S

Fe

S

R

Fe

S

Figure 14. A spatial graph representing the Fe4S4 cluster.

We begin by introducing the following two important families of graphs.
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Definition. A complete graph on n vertices, denoted by Kn, is a graph in
which every pair of vertices is connected by an edge.

We are particularly interested in the complete graph on five vertices K5 (il-
lustrated in Figure 15) because it is the smallest complete graph which cannot lie
entirely in a plane.

5

1

2

4

3

K
5

Figure 15. The complete graph on five vertices K5.

Definition. A complete bipartite graph Km,n on two sets of vertices, one
containing m vertices and the other containing n vertices, is a graph in which every
vertex in the set of m vertices is connected to every vertex in the set of n vertices,
but there are no edges connecting a pair of vertices both in the same set of vertices.

We are particularly interested in the complete bipartite graph K3,3 (illustrated
in Figure 16) because it is the smallest complete bipartite graph which cannot lie
entirely in a plane.

b c

1 2 3

K
3,3

a

Figure 16. The complete bipartite graph K3,3

Observe that the illustrations in Figures 15 and 16 appear as though some edges
intersect, which is not the case. We have drawn the graphs in this way because
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we are focusing on the connectivity between vertices, rather than on a particular
conformation of the graph in space. When we talk about a graph exclusively in
terms of its connectivity, we refer to it as an abstract graph, whereas when we talk
about a conformation of a graph in space we refer to the graph as a spatial graph.
Thus Figures 15 and 16 represent the abstract graphs K5 and K3,3.

If a non-planar graph is contained in a protein structure, it will prevent the
protein from being deformed into a plane. However, a non-planar graph can play
this role not only if it is a subset of the underlying structure of the protein, but
also if it can be obtained from the underlying structure by collapsing edges and/or
omitting edges or vertices. If the non-planar graph is obtained from a structure in
this way we say it is a minor of the structure. For example, in Figure 17, the graph
on the right is obtained from the graph on the left by collapsing the red edges and
deleting the blue vertices and blue edge. Thus the graph on the right is a minor of
the graph on the left.

Figure 17. The graph on the right can obtained by collapsing the
red edges and deleting the blue vertices and blue edge. Hence the
graph on the right is a minor of the one on the left.

Mislow and Liang used the following well-known theorem to show that certain
protein structures containing cofactors are topologically non-planar [9].

Kuratowski’s Theorem. A graph can lie in a plane if and only if it does not
contain either of the graphs K5 or K3,3 as a minor.

One of Mislow and Liang examples is Chromatium high potential iron protein,
which contains the Fe4S4 cluster [9]. By Kuratowski’s Theorem, showing that the
structure contains either a K5 or K3,3 graph as a minor is sufficient to show the
structure is non-planar. The incorporation of the cluster into the backbone ensures,
in fact, that it contains both of these graphs as we explain below.

The left image in Figure 18 illustrates the underlying graph of Chromatium high
potential iron protein. In order to show that it contains K3,3 as a minor, we need to
identify two sets of three vertices such that every vertex in one set is connected by
a disjoint path to every vertex in the other set. One of these sets of vertices (shown
in green in the central image) will consist of three of the four iron atoms that occur
on the corners of the cube-like metal structure. The other set of vertices (shown
in pink) will consist of two sulfur atoms on the corners of the cube-like structure
together with one sulfur atom from a cysteine residue on the polypetide backbone.
The orange, purple, and black segments form disjoint paths from every green vertex
to every pink vertex. The blue vertices are deleted from the middle graph to obtain
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the K3,3 graph. We illustrate K3,3 as an abstract graph on the right with the same
color coding to demonstrate that the sets of green and pink vertices together with
the orange, purple and black edges do indeed form a K3,3. It now follows from
Kuratowski’s theorem that this protein structure is non-planar.
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Figure 18. The left graph illustrates the cluster connected to
the polypeptide backbone. The numbers in the left graph identify
amino acid connectivity to the backbone. In the middle graph, six
vertices have been partitioned into a pink group and a green group
such that there is a path from every green vertex to every pink
vertex. Thus the structure contains a K3,3 graph, and hence is
non-planar.

In Figure 19, we illustrate that the underlying graph of Chromatium high
potential iron protein also contains K5 as a minor as a result of the same Fe4S4

cluster. In particular, starting with the graph on the left, we collapse the red edges
and delete the blue vertices and blue edges to obtain the graph on the right which
has five vertices numbered 1 through 5 and disjoint paths between every pair of
vertices. Thus, this cluster also contains K5 as a minor. This fact alone is also
sufficient to show Chromatium high potential iron protein is non-planar.
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Figure 19. The left graph illustrates the cluster as it is connected
to the polypeptide backbone. We collapse the red edges and delete
the blue vertices and edges to obtain the K5 graph on the right.





CHAPTER 3

Our Results

1. Non-planarity in Nitrogenase

Nitrogenase is a protein complex that plays a crucial role in the global nitrogen
circulation, catalyzing the reduction of atmospheric nitrogen into biologically avail-
able ammonia. This complex consists of two proteins. The first, often referred to as
the Fe protein contains two subunits connected by an Fe4S4 cluster. The second
protein, often referred to as the MoFe protein, contains a total of four complex
metal clusters: two P-clusters [Fe8S7], shown on the right in Figure 20, which occur
at subunit interfaces and two M-clusters [MoFe7S9C-homocitrate], shown on the
left in Figure 20, which are embedded in the protein. Understanding the structure
of these P- and M- clusters had challenged biochemists for decades. In fact, the
true elemental composition and connectivity was only established in 2011 [29]. We
will show below that as a result of these cofactors, nitrogenase contains several
topologically non-planar structures.
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Figure 20. The M- and P- clusters found in nitrogenase shown
on the left and right, respectively. Thick wedges represent bonds
that are coming out of the page, dashed lines illustrate that the
carbon atom (C) is in the center of the cluster.

The first metal cluster that we consider is the M-cluster. In order to use
Kuratowski’s Theorem to prove the non-planarity of nitrogenase, we show that the
M-cluster contains a K3,3 graph. In particular, in Figure 21, we define one set of
three vertices by labeling the top left sulfur atom, the central carbon, and the top
right sulfur atom by the letters a, b and c, respectively. We define the second set of
three vertices by labeling the top left iron, bottom left iron, and central right iron
atoms vertices by the numbers 1, 2, and 3, respectively. We use purple, green, and
orange to highlight disjoint paths from vertices a, b, and c to every numerical vertex.

23
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Thus the M-cluster contains a K3,3 graph and hence by Kuratowski’s theorem, is
indeed non-planar.
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Figure 21. The M-cluster of nitrogenase contains a K3,3 graph,
and hence is non-planar.

We see as follows that the P-cluster together with the two subunit backbones of
nitrogenase contains both of the non-planar graphs K3,3 and K5 as minors. Figure 22
illustrates two different K3,3 graphs contained in this structure. Notice that these
graphs each make use of part of the pink backbone connected to the cluster. In fact,
the P-cluster together with the two backbones contains additional K3,3 graphs (not
illustrated here).
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Figure 22. The P-cluster together with the pink backbone contains
multiple K3,3 graphs.

In order to see that the graph K5 is also a minor of nitrogenase, we begin with
the colored image on the left in Figure 23. Then we collapse the red edge and delete
the blue vertices, blue edges, and the green and pink arcs of the backbones. Thus
we obtain the purple K5 illustrated on the right as a minor of the graph on the left.
Observe that this K5 makes use of an arc on the pink backbone in order to join
vertex 4 to vertex 5 and an arc on the green backbone in order to join vertex 2 to
vertex 5.
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Figure 23. We collapse the red edge and delete the blue vertices,
blue edges, and the green and pink arcs of the backbones to obtain
K5 as a minor of the structure on the left.

2. Möbius Ladders

Just as a circular path may contain different knots depending on its conformation
in space, an abstract graph can have topologically distinct spatial conformations.
One particular conformation of the abstract graph K3,3 is known as a Möbius ladder
with three rungs. Möbius ladders are noteworthy because they can resemble Möbius
strips.

A Möbius strip is defined as a one-sided nonorientable surface that is obtained
by cutting a closed band into a strip, giving one of the two ends a half-twist and
reattaching the two ends. A Möbius ladder can be defined analogously to a Möbius
strip, except instead of starting with a closed band, we begin with two circles
connected by rungs. We illustrate that the graph K3,3 is equivalent to a Möbius
strip with three rungs in Figure 24. While the figure on the left looks quite different
from the one on the right, it is easy to check that as abstract graphs the two figures
have exactly the same connectivity.

ba

1 2 3

c

1 2 3

a

c
b

Figure 24. A conformation of K3,3 which has the form of a Möbius
strip is known as a Möbius ladder with three rungs.

We saw in Figure 21 that the M-cluster of nitrogenase contains the abstract
graph K3,3. Figure 25 shows that, in fact, the spatial conformation of K3,3 in the
M-cluster from Figure 21 can actually be deformed to a Möbius ladder with three
rungs. We explain the steps of this deformation as follows. The first step pulls
vertex 3 down and towards the right in front of the edge connecting vertices 2 and
c. The second step rounds out the circular path that goes from vertex 1 to vertex b
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to vertex 3 to vertex c to vertex 2 to vertex a and then back to vertex 1 so that it
looks like a sideways eight. In the third step, the edge connecting vertices a and 3
is pulled down below the rest of the figure. The fourth step rotates the entire graph
by 90◦ so that the eight is now vertical. In the fifth step, vertex 2 is slid under the
crossing and up to the left. In the last step the lobes of the eight have been folded
together in the back of the page to create the usual image of a Möbius ladder.
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Figure 25. A deformation of the K3,3 in the M-cluster of nitroge-
nase to a Möbius ladder with three rungs.

Since a Möbius ladder with three rungs is a conformation of the non-planar graph
K3,3 in space, any protein structure containing such a Möbius ladder is necessarily
non-planar. However, just like knowing which particular knot is contained in a
protein structure gives us more information about the structure than knowing that
it contains an unspecified knot, knowing that a protein contains a Möbius ladder
gives us more information about the structure than knowing that it contains an
unspecified conformation of the abstract graph K3,3.

In fact, Möbius ladders can have any number of rungs, and as long as the
number of rungs is at least three the Möbius ladder will necessarily be non-planar.
Figure 26 depicts an iron-sulfur cluster connected to the backbone of a protein
structure which we show as follows contains a Möbius ladder with four rungs. We
begin by illustrating the underlying topological form of the structure on the right of
Figure 26.
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Figure 26. The underlying topological structure of a protein
structure with the Fe4S4 cluster .

In Figure 27 we omit the four purple edges from the cube-like form in the center
and then deform the remaining structure to a Möbius ladder with four rungs.
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Figure 27. A deformation taking a protein structure with an
iron-sulfur cluster to a Möbius ladder with four rungs.

Möbius ladders can also be found in protein structures that do not contain
metal clusters. For example, one class of polypeptides that can easily be shown to
contain Möbius ladders is the family of cyclotides. These small cyclized peptides
(typically about 30 amino acids in length) contain many disulfide bonds, and because
of their head-to-tail cyclization, we can represent them with a circular backbone.
Figure 28 illustrates the highly conserved disulfide connectivity of a cyclotide, along
with its deformation into a Möbius ladder with three rungs. In order to obtain
the Möbius ladder configuration, first edge connecting vertices 1 and 4 is lifted
over and to the right of the structure. Then, the two black lobes are rounded
out such that the top lobe contains vertices 1, 2, and 3, while the bottom lobe
contains vertices 4, 5, and 6. The two lobes are then folded together towards the
back of the page to create the familiar image of the Möbius ladder. The image in
the top left of Figure 28 depicting a typical cyclotide with three disulfide bonds
is often described as a “cysteine knot motif.” This description seems somewhat
inaccurate, since the cyclotide does not actually contain a knot. However, we saw
above that the cyclcotide can be deformed to a Möbius ladder with three rungs,
and hence we can interpret a “cysteine knot motif” to mean that the cylcotide
has a topologically non-planar underlying structure. Because this connectivity is
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Figure 28. This deformation illustrates that the cyclotide “knot
motif” is a Möbius ladder with three rungs.

highly preserved among cyclotides, we can generalize this non-planarity to nearly
all cyclotides that contain this connectivity.

Note that cyclotides have been grouped into two structural categories: Möbius
cyclotides and bracelet cyclotides. Much less common than the bracelet structure,
Möbius cyclotides contain a cis-proline induced backbone twist, making their back-
bones resemble the edge of a Möbius strip (and hence their name makes sense).
However, in fact both the bracelet cyclotides and the Möbius cyclotides contain
Möbius ladders with three rungs as illustrated in Figure 28.

Even for proteins that are not cyclized we can identify knots, links and non-
planar spatial graphs by using a variation on the topological models to trap knots
in open linear protein structures that were introduced by Millett and others [11,
16, 18, 20, 21] (see Section 1). In particular, recall that one approach to modeling
a knotted linear protein structure is to place it in the center of a very large ball,
and then extend the ends of the chains out away from the feature of interest and
connect them by an arc within the boundary of the ball. We can use a variation on
this method for the green protein to identify the structure depicted on the left in
Figure 29 as linked. The purple protein has been cyclized as a result of a disulfide
bond, shown in red. By joining the termini of the green linear protein, we obtain a
diagram of a link.

NN

C
C

N

N

N

C C

Figure 29. Connecting the termini of the green protein allows us
to visualize this structure as a link.
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The idea of connecting the N- and C- termini by an arc that is far from any
features of interest can also enable us to use Möbius ladders to prove non-planarity
of the underlying structures of certain proteins. For example, in Figure 30, we show
that the nerve growth factor together with three disulfide bonds can be deformed
into a Möbius ladder with three rungs. The first step of the deformation is to deform
the edge between vertices 3 and 6 by lifting it over the top arc of the backbone so
that it moves from being in front of the backbone to being behind the backbone, and
to move the edge between vertices 2 and 5 down to the bottom of the diagram. The
second step is to shorten the edges between vertices 1 and 4 and between vertices 3
and 6 causing the backbone to cross over itself. The third step is to reshape the
twisted circle. Finally, in the fourth step we move vertex 2 up and to the right as
we shape the twisted circle into the standard form of a Möbius ladder. Like the
cyclotide, this protein’s disulfide connectivity is also referred to as a “cysteine knot
motif”, which again can be interpreted as referring to its non-planarity.
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Figure 30. A deformation of the underlying topological structure
of the nerve growth factor to a Möbius ladder with three rungs.

The middle steps of the deformations illustrated in Figures 25, 27, 28, and 30
each include a conformation consisting of a deformed circle with three or four red
edges which cross over one another. It might be tempting to assume that any such
conformation can be deformed into a Möbius ladder. But this is not always the
case. To illustrate this, consider the connectivity of chymotrypsin inhibitor from
Taiwan Cobra, shown in Figure 31. Observe that in this case we can deform the
structure so that it lies in the plane of the paper. In particular, this means that in
contrast with Figures 25, 27, 28, and 30, the structure in Figure 31 does not contain
a Möbius ladder.
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Figure 31. A deformation illustrating that not all proteins with
three disulfide bonds contain Möbius ladders. This one, as shown,
can be deformed in to a plane.

3. Hypothetical Structures

In this section, we propose hypothetical structures illustrating how certain
non-planar protein structures might occur. First we consider the 51 knot, which
has not yet been identified in a protein structure. Starting with a protein whose
backbone is in the form of a trefoil knot, Figure 32 illustrates how an additional
threading of one end of the backbone through the loop of the trefoil could result in a
51 knot. Note that the existence of many protein trefoil knots makes this realization
of the 51 knot seem plausible, despite Taylor’s argument that the 51 knot is an
unlikely motif [32].

5
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N

Figure 32. Starting with the trefoil knot, only one threading is
required to obtain the 51 knot.

Another approach to obtaining a 51 knot in a protein structure is to make use
of disulfide bonds. In particular, consider a hypothetical protein structure whose
polypeptide backbone has five disulfide bonds with connectivity 1-6, 2-3, 4-5 and
crossings as illustrated in the image on the left in Figure 33. If we ignore every
other segment on the backbone, we obtain the second figure, which can then be
deformed as illustrated to get the 51 knot.
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Figure 33. A connectivity that could contain the 51 knot.

Along these same lines, in Figure 34 we show that a key ring link with three
components can hypothetically be found in a single protein which has three disulfide
bonds. In particular, consider a hypothetical protein with six cysteine residues on
the backbone with disulfide connectivity 1-6, 2-3, 4-5 and crossings as illustrated.
In this case (as opposed to that of the 51 knot), we need to join the ends of the
backbone into a circle as we did in Figure 29 in order to close the blue ring. Then
by omitting the black edges of the circle we obtain the three component key ring
link as illustrated on the right. Note that this key ring link is different from the one
illustrated in Figure 12 because it uses disulfide bonds rather than cofactors.

A similar construction can be used to create a hypothetical protein structure
containing the Whitehead link, a motif that has yet to be identified in any protein
structure. This link consists of a circular loop that passes through both lobes of
a twisted circle, as shown on the right of Figure 35. Such a structure would be
particularly noteworthy because the two rings are linked yet have linking number of
zero. On the left, we show how this two-component link could hypothetically be
obtained from a protein backbone with three disulfide bonds having 1-6, 2-4, 3-5
disulfide connectivity and crossings as shown. As with the structure in Figure 34,
we need to join the ends of the backbone into a circle in order to close one of the
rings. Again by omitting the black edges of the circle we obtain the desired link.
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Figure 34. Scheme showing a possible connectivity that would
contain a three component key ring link
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Figure 35. Scheme showing a possible disulfide connectivity that
would contain the Whitehead Link.



CHAPTER 4

Conclusion

Topologically complex proteins can offer valuable perspectives for understanding
protein stability, folding mechanisms and degradation pathways. We have shown
that such complexity can be found in protein structures in various ways as the result
of knotting, linking, or non-planar graphs. Not only can the polypetide backbone of
a protein structure be knotted or a pair of backbones be linked, but knots, links,
and non-planar graphs can be found as the result of cofactors and disulfide bonds.

Only four topologically distinct knots have been identified in proteins thus far,
and the links that have been identified in proteins all have relatively simple linking
(i.e. with linking numbers equal to ±1). However, as we saw in our hypothetical
structures in Section 3, there might be many more complex knots and links identified
in proteins if the connectivity of disulfide bonds is considered along with protein
backbones.

Finally, we have seen that proteins containing metal structures can include non-
planar motifs other than knots or links. In particular, nitrogenase contains several
non-planar K3,3 and K5 graphs. Furthermore, Möbius ladders (i.e., ladders in the
form of a Möbius strip) can be found in proteins with metal structures including the
M-cluster of nitrogenase, as well as in proteins without metal structures including
cyclotides. This opens the question of what other interesting spatial graphs might
be found in protein structures if cofactors and cysteine disulfide bonds are included
in the topological analysis.
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29. Thomas Spatzal, Müge Aksoyoglu, Limei Zhang, Susana LA Andrade, Erik Schleicher, Stefan

Weber, Douglas C Rees, and Oliver Einsle. Evidence for interstitial carbon in nitrogenase femo
cofactor. Science, 334(6058):940–940, 2011.

30. Fusao Takusagawa and Shigehiro Kamitori. A real knot in protein. Journal of the American

Chemical Society, 118(37):8945–8946, 1996.
31. William R Taylor. A deeply knotted protein structure and how it might fold. Nature,

406(6798):916–919, 2000.

32. William R Taylor. Protein knots and fold complexity: some new twists. Computational biology
and chemistry, 31(3):151–162, 2007.

33. EJ Janse Van Rensburg, DAW Sumners, E Wasserman, and SG Whittington. Entanglement

complexity of self-avoiding walks. Journal of Physics A: Mathematical and General, 25(24):6557,
1992.

34. Peter Virnau, Leonid A Mirny, and Mehran Kardar. Intricate knots in proteins: Function and
evolution. PLoS computational biology, 2(9):e122, 2006.

35. Steven A Wasserman, Jan M Dungan, and Nicholas R Cozzarelli. Discovery of a predicted dna
knot substantiates a model for site-specific recombination. Science, 229(4709):171–174, 1985.

36. William R Wikoff, Lars Liljas, Robert L Duda, Hiro Tsuruta, Roger W Hendrix, and

John E Johnson. Topologically linked protein rings in the bacteriophage hk97 capsid. Science,
289(5487):2129–2133, 2000.

37. Todd O Yeates, Todd S Norcross, and Neil P King. Knotted and topologically complex proteins

as models for studying folding and stability. Current opinion in chemical biology, 11(6):595–603,

2007.


	Claremont Colleges
	Scholarship @ Claremont
	5-8-2014

	Topological Complexity in Protein Structures
	Gabriella Heller
	Recommended Citation


	Heller-Cover1
	Heller_ReflectiveEssay
	Heller-thesis-cover
	Heller-thesis
	Claremont Colleges
	Scholarship @ Claremont
	2014

	Topological Complexity in Protein Structures
	Gabriella Heller
	Recommended Citation


	Title_Page
	GOGOTHESIS


