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Constructing diabatic states from adiabatic states: Extending generalized
Mulliken–Hush to multiple charge centers with Boys localization
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3Department of Chemistry, Harvey Mudd College, Claremont, California 91711, USA

�Received 25 September 2008; accepted 16 November 2008; published online 22 December 2008�

This article shows that, although Boys localization is usually applied to single-electron orbitals, the
Boys method itself can be applied to many electron molecular states. For the two-state
charge-transfer problem, we show analytically that Boys localization yields the same
charge-localized diabatic states as those found by generalized Mulliken–Hush theory. We suggest
that for future work in electron transfer, where systems have more than two charge centers, one may
benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and
extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization
and propose a generalization of the Boys algorithm for creating diabatic states with localized spin
density that should be useful for Dexter triplet-triplet energy transfer. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3042233�

I. INTRODUCTION

A. Diabatic surfaces

The construction of diabatic potential energy surfaces
from adiabatic surfaces is a crucial step when modeling elec-
tron transfer. In particular, one needs two diabatic states to
represent the initial and final states of the electron transfer
process. Mathematically, diabatic states are usually defined
as those states for which the derivative couplings
���i�r ;R���R�� j�r ;R��r� would be equal to zero.1–3 Here,
��i�r ;R�� and �� j�r ;R�� are eigenvectors of the electronic
Hamiltonian and � �r signifies integration over all electronic
degrees of freedom. Because exactly diabatic states do not
usually exist �as shown by Mead and Truhlar4�, effectively
one has a great deal of flexibility in choosing a definition for
quasidiabatic �or just “diabatic”� states. For a good overview,
see Refs. 5–7. Over the last few decades, several research
groups have proposed different prescriptions for constructing
diabatic states, each with different advantages and disadvan-
tages and with different domains of applicability. Our inter-
est is in designing diabatic states which are relevant to elec-
tron transfer.

Broadly speaking, current approaches for constructing
diabatic surfaces can be divided into three categories. We
will now describe a few of these methods, but we refer the
reader to Ref. 5 for a much more thorough analysis. The first
approach toward diabatization is to calculate the derivative
couplings in the adiabatic basis, and then define diabatic
states as those rotated states with near zero derivative cou-
plings. Baer and co-workers3,8,9 provided an algorithm for
finding these states. We note, however, that computing de-
rivative coupling elements can be very expensive and this

method is usually not applied to molecules with more than a
few atoms. An active area of research is finding ways to
compute derivative couplings more easily.10

A second approach toward diabatization is to avoid cal-
culating derivative coupling elements explicitly, but rather
minimize them implicitly by designing diabatic states with
intuitively desirable mathematical characteristics. Popular
examples of these approaches are block diagonalization11,12

and the fourfold way13–17 �see also Ref. 18�. As conceived by
Pacher et al.,11,12 the block diagaonalization algorithm ro-
tates together a small set of adiabatic states using the unique
transformation that minimizes the distance �in wave-function
space� between the target diabatic states and a reference ba-
sis of nearly diabatic states �which is assumed always avail-
able�. Block diagonalization was implemented within a
CASSCF framework by Domcke et al.19,20

Instead of relying on reference states �as in block diago-
nalization�, Ruedenberg and Atchity16,17 investigated the
configuration interaction expansions for a group of adiabatic
states in a well-defined basis of single-electron diabatic mo-
lecular orbitals �to be constructed�. The authors then defined
diabatic states roughly as those states for which the dominant
configurations were unchanged over the entire potential en-
ergy surface, thus introducing a notion of “configurational
uniformity.” The fourfold way approach of Nakamura and
Truhlar13–15 extended the ideas of Atchity and Ruedenberg
by generalizing and stabilizing the method for constructing
diabatic orbitals, introducing the notion of “molecular orbital
uniformity.” Up until now, the fourfold way has usually been
applied to systems with under ten atoms.

A third approach for constructing diabatic potential en-
ergy surfaces is to invoke a physical observable, often the
dipole operator, in order to characterize diabatic states with-
out worrying about the details of any particular electronic
structure method. Of these methods, the most common is thea�Electronic mail: subotnik@post.harvard.edu.
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generalized Mulliken–Hush �GMH� algorithm by Cave and
Newton,21,22 which was designed for use in electron transfer
calculations. The GMH algorithm uses physical intuition to
construct diabatic states as the initial and final states in an
electron transfer event based on charge separation along a
central direction. While the GMH algorithm has several
drawbacks, most especially its assumption of a central
charge-transfer direction,23 the strength of the GMH algo-
rithm is its computational speed and applicability to large
electron transfer calculations. Electron transfer systems are
large and the calculations can be computationally demand-
ing. Most often theorists have preferred to avoid calculating
diabatic states on the basis of derivative couplings or con-
figurational uniformity, choosing instead to extract electronic
couplings using approximate methods or perturbation
theory.24–31 Our central objective in this paper is to extend
the GMH formalism with Boys localization, so that we can
both construct rigorous diabatic states when there are many
charge centers and also extract electronic coupling elements
for large electron transfer calculations.

B. Generalized Mulliken–Hush theory

The general idea behind GMH theory is to recognize
that, in electron transfer, the diabatic states should corre-
spond to charge localized on different centers �donors and
acceptors�. More specifically, according to standard GMH
theory, one constructs diabatic states as follows:

�1� One calculates all dipole matrix elements of the adia-
batic states.

�2� For the two-state problem, one recognizes that the im-
portant direction is the direction of the dipole moment
of the initial adiabatic state minus the dipole moment of
the final adiabatic state: v�0= ��� 11−�� 22� / ��� 11−�� 22�.
When there are more than two states, GMH theory sug-
gests that one construct v0 as the average over several
different initial and final states. One projects all dipole
matrix elements into the v0 direction, and then one di-
agonalizes the dipole matrix. For the two-state case, the
rotation matrix that comes out of the diagonalization is
the GMH transformation matrix from adiabatic to di-
abatic states.

�3� For the multistate case, one must consider that several
states may have charge on the same center. In that case,
one diagonalizes the Hamiltonian for each same-center
block. The resulting states are the locally adiabatic
GMH diabatic states.

For molecular configurations with two or more charge
centers in a linear or near-linear geometry, GMH theory
works very well at constructing diabatic states. Its generali-
zation to three or more charge centers in a noncollinear ge-
ometry is less satisfying, however, because it does not local-
ize charge very well for bent systems. The source of the
problem is that, for bent systems, there is no unique vector v0

to project dipoles into: the averaging in step No. 2 above is
not detailed enough.

C. Boys localization

We turn our attention to the discipline of electronic
structure theory �EST� where the subject of electronic local-
ization is also encountered, but with a very different purpose.
For localization in EST, one begins with the canonical orbit-
als ��i	 from a Hartree–Fock calculation and one generates
localized orbitals ��i	 for two reasons: �i� chemical
intuition32 and �ii� computational speed-ups when doing lo-
cal correlation theory.33 Mathematically, localized orbitals
are constructed as follows:34–38 We begin with canonical or-
bitals ��1 , . . . ,�n	 and we introduce a rotation matrix U
�UUT=Id�, which mixes the canonical orbitals:

�i = 

j

� jUji, i = 1, . . . ,n . �1�

We force the new orbitals ��1 , . . . ,�n	 to be localized by
insisting that they maximize a localization function. For
Boys localization,35,36,39 we insist the localized orbitals ��i	
maximize

fBoys�U� = fBoys���i	� = 

i,j

���i�R��i� − �� j�R�� j��2. �2�

Note that the localization function fBoys is a quartic function
of the rotational matrix U in Eq. �1�. If we take the derivative
of Eq. �2� with respect to U, we find that, for Boys localiza-
tion, the localized orbitals satisfy40

���i�R��i� − �� j�R�� j�� · ��i�R�� j� = 0, i, j = 1, . . . ,n .

�3�

In practice, for molecules in their ground-state equilibrium
geometry, the Boys localized orbitals are usually either bond-
ing orbitals �centered between atoms� or lone-pair orbitals
�centered around atoms�. It is known that Boys localized
orbitals do not preserve �−� symmetry �resulting, e.g., in
“banana bonds” for benzene41�. This is discussed more in
Sec. III.

D. The connection between GMH and Boys localization

The Boys approach can be extended beyond orbital lo-
calization to state localization. In so doing, one can prove
that under certain approximations, the Boys solution is
equivalent to the GMH result. We demonstrate this now.

The application of Boys localization to adiabatic states
�rather than orbitals� is straightforward. Given Ns adiabatic
states, ��i	, in analogy to Eq. �1�, we may construct a diaba-
tic state representation ��i	, as a function of a rotation matrix
U:

�i = 

j=1

Ns

� jUji, i = 1, . . . ,Ns. �4�

In analogy to Eq. �2�, we define the Boys localized di-
abatic states to be those states which move the charge centers
as far away from each other as possible, maximizing the
localization sum:

244101-2 Subotnik et al. J. Chem. Phys. 129, 244101 �2008�

Downloaded 23 Feb 2011 to 134.173.131.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



fBoys�U� = fBoys���i	� = 

i,j=1

Ns

���i��� ��i� − �� j��� �� j��2.

�5�

In Sec. II, we will show analytically that the GMH ap-
proach for two-state problems is an approximation to the
Boys localization of electronic states. Afterwards, we will
employ Boys localization to localize charge-transfer states
for �i� benzene surrounded by three p-benzoquinone mol-
ecules and �ii� a square of He atoms with a net positive
charge, He4

+. These chemical examples demonstrate how
Boys localization extends the GMH model to charge-transfer
systems with more than two charge centers. In the future, we
believe that Boys localization will be a useful tool for com-
putational chemists calculating coupling elements and rates
of electron transfer.

II. MIXING TWO ADIABATIC STATES

We now show that, for the two-state system, the GMH
formalism21,22 is an approximation derivable from the Boys
localization formalism.35,36,38,39

A. A quick derivation of the GMH result

Suppose that, using standard techniques from quantum
chemistry, we have generated two adiabatic states ��1 ,�2�
with dipole matrix elements �� 11, �� 22, and �� 12. The GMH
formalism defines diabatic states ��A ,�B� by rotating the
adiabatic states through an angle �:

�A = cos � �1 + sin � �2, �6�

�B = − sin � �1 + cos � �2. �7�

The dipole matrix elements for these new diabatic states
are

�� AA = ��A��� ��A� �8�

=cos2 ��� 11 + sin2 ��� 22 + 2 cos � sin ��� 12, �9�

�� BB = ��B��� ��B� �10�

=sin2 ��� 11 + cos2 ��� 22 − 2 cos � sin ��� 12, �11�

�� AB = ��A��� ��B� �12�

=�cos2 � − sin2 ���� 12 − cos � sin ���� 11 − �� 22� �13�

=cos 2��� 12 − 1
2sin 2���� 11 − �� 22� . �14�

Because the direction of interest is assumed to be along
�� 11−�� 22 the next step replaces all dipole elements in Eqs.
�8�–�14� with their projections in the v�0 direction �where v�0

= ��� 11−�� 22� / ��� 11−�� 22� and the projections are denoted be-
low by a superscript v�. When we project Eq. �14� into the v�0

direction, we get

�AB
v = cos 2��12

v − 1
2sin 2���� 11 − �� 22� . �15�

Finally, one defines the GMH states as those diabatic
states satisfying �AB

v =0. This requires

tan 2� =
2�12

v

��� 11 − �� 22�
, �16�

sin 2� =
2�12

v

���� 11 − �� 22�2 + 4��12
v �2

. �17�

This implies that

�HAB� = ���A��� ��B�� �18�

=�cos 2�H12 − 1
2sin 2��H11 − H22�� , �19�

�HAB� =
��12

v ��H11 − H22�
���� 11 − �� 22�2 + 4��12

v �2
. �20�

Here, we have set H12=0 because we are working in an
adiabatic basis.

Equation �20� is the exact GMH formula for the cou-
pling element, HAB. For linear systems, one often approxi-
mates that �� 12 is along the direction of �� 11−�� 22, and one
may then replace

��12
v �2 � ��� 12�2. �21�

This leads to an approximate GMH result that is often
used in calculations:

�HAB� =
��12��H11 − H22�

���� 11 − �� 22�2 + 4��12�2
. �22�

B. Boys localization according to 2Ã2 Jacobi sweeps

We will now derive the same result from Boys localiza-
tion. Boys localization is defined by Eq. �5� above, which is
to be maximized by rotating all of the relevant states. Edmis-
ton and Ruedenberg35 decided to maximize functions such as
Eq. �5�, which are quartic in the rotation matrix, by doing
so-called two-by-two “Jacobi sweeps” over pairs of states.
As Edmiston and Ruedenberg showed, for the case of two
states, such functions can be maximized exactly. Moreover,
in order to maximize the function globally for many states,
which can be spread out over arbitrarily many charge cen-
ters, one can iteratively maximize over all pairs of orbitals
until total convergence. Although Edmiston and Ruedenberg
initially worked on a different localizing function, Kleier et
al.38 showed the direct application of this approach to Boys
localization. When using Jacobi sweeps, maximizing the
Boys function is usually very rapid, regardless of the number
of charge centers.

For the two-state problem, the solution for the angle �
�defined in Eq. �6�� can be written most compactly as
follows:35,38

F = ��� 12�2 − 1
4 ��� 11�2 − 1

4 ��� 22�2 + 1
2�� 11 · �� 22 �23�

= ��� 12�2 −
��� 11 − �� 22�2

4
, �24�

244101-3 Boys localized diabatic states J. Chem. Phys. 129, 244101 �2008�
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G = �� 12 · ��� 11 − �� 22� , �25�

cos 4� =
− F

�F2 + G2�1/2 . �26�

This defines the diabatic states using the Boys formal-
ism. We may now compute the new Hamiltonian matrix el-
ement that couples diabatic states A and B �again using the
fact that H12=0 since �1 and �2 are adiabatic states�:

�HAB� = ���A�H��B�� �27�

= ��cos2 � − sin2 ��H12 − cos � sin ��H11 − H22�� �28�

= 1
2 �sin 2���H11 − H22� �29�

=
1

2�2
�1 − cos 4��H11 − H22� �30�

=
1

2�2
�1 +

F

�F2 + G2�1/2 �H11 − H22� �31�

=
1

2�2�1 +

��� 12�2 −
��� 11 − �� 22�2

4



��� 12�2 −
��� 11 − �� 22�2

4
�2

+ ��� 12 · ��� 11 − �� 22��2�1/2 �H11 − H22� . �32�

Equation �32� is the exact coupling element of the diaba-
tic states constructed by Boys localization. This messy ex-
pression can be simplified, however, if we invoke the GMH
approximation that the only important direction is along v�0

= ��� 11−�� 22� / ��� 11−�� 22�. More specifically, if we assume, as
in Eq. �21� that �� 12

v ��� 12, then the equations simplify
greatly.

It follows then that

G2 = ��� 12 · ��� 11 − �� 22��2 �33�

���� 12
v �2��� 11 − �� 22�2 �34�

= ��� 12�2��� 11 − �� 22�2, �35�

�F2 + G2�1/2 = ��� 12�2 +
��� 11 − �� 22�2

4
, �36�

�HAB� �
��� 12��H11 − H22�

���� 11 − �� 22�2 + 4��� 12�2
. �37�

The information thrown away in going from Eq. �32� to
Eq. �37� comes from the different possible geometries and
positioning of the acceptor and the donor. When we can
safely approximate that �� 12 and �� 11−�� 22 are in the same
direction, there is an equivalence between GMH diabatiza-
tion and Boys localization for the two-state system. This
should be the case for small systems with two charge centers,
such as Zn2H2O+, considered earlier by Cave and
Newton,21,22 as well as other charge-transfer systems with an

obvious and dominating charge-transfer direction. Where
there is cylindrical symmetry going from the donor to accep-
tor, GMH and Boys give exactly the same coupling element.
However, for more complicated systems without symmetry,
there must be differences between the Boys and GMH ap-
proaches, even for two-state systems. This will be investi-
gated in a future paper.42

III. DISCUSSION

A. Extension to multiple charge centers and caveats

Unlike the GMH algorithm, the procedure for construct-
ing Boys localized diabatic states can be naturally extended
to arbitrarily many diabatic states and charge centers which
are in a noncollinear geometry. Mathematically, the funda-
mental difference between GMH theory and Boys localiza-
tion is that Boys localization is a quartic function of the
rotation mixing states, while GMH theory is quadratic. As
written down more precisely above, Boys localization is de-
fined by

�� AB · ��� AA − �� BB� = 0, �38�

while the GMH formalism is defined �roughly speaking� by

�� AB · ��� 11 − �� 22� = 0. �39�

Thus, GMH is easier to solve—it requires only
diagonalization—while Boys localized states must be solved
iteratively. The advantage of Boys localization, however, is
that Boys localized states can treat charge localized on mul-
tiple centers in any geometric configuration. Moreover, like

244101-4 Subotnik et al. J. Chem. Phys. 129, 244101 �2008�
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GMH theory, the Boys algorithm requires only dipole matrix
elements and can be solved with lightning speed relative to
the prerequisite electronic structure calculations needed to
calculate the dipole matrix elements. To find the Boys local-
ized states, as originally prescribed by Edmiston and
Ruedenberg and described thoroughly in Ref. 38, one maxi-
mizes the localization function over all pairs of orbitals, it-
erating until convergence. The nuts and bolts of this “Jacobi
sweeps” algorithm have been implemented in most standard
quantum-chemistry packages, including Q-CHEM.43 Thus,
there are few obstacles preventing the use of Boys localiza-
tion to calculate charge-transfer coupling HAB for compli-
cated molecular geometries with noncollinear charge centers.

We now mention, however, one big difference between
Boys localized orbitals and Boys localized states. For Boys
localized orbitals, one always wants as much localization as
possible because single-electron density describes bonds and
lone pairs, and these quantities ought to be locally distributed
around atoms. For Boys localized states, however, we want
electronic configurations that represent asymptotic limits of
electron transfer. This does not translate into as much local-
ization as possible. Rather, a diabatic charge-transfer state
should keep the Hamiltonian as diagonal as possible while
maintaining the charge-transfer quality of the wavefunction.
Thus, for cases where we have more diabatic states than
charge centers, we should isolate all diabatic states with
charge localized on the same center, and then diagonalize the
Hamiltonian sub-block for these states �just as for GMH
theory�. Of course, for cases where the number of adiabatic
states is equal to the number of charge centers, we should
find that the Boys localized diabatic states localize charge as
physically as possible, one state per charge center. This com-
pletes the recipe for how Boys localization can be applied to
adiabatic states.

In a future paper,42 we will thoroughly investigate the
quality of diabatic states produced by this Boys localization
routine for electron transfer. While we can be confident that
the Boys routine will generate localized diabatic states, it is
possible that the routine will localize charge too efficiently,
breaking important symmetries along the way. If so, it may
be fruitful to consider another popular routine in quantum
chemistry for localizing single-electron orbitals that can be
applied to localizing states, namely, the Pipek–Mezey �PM�
approach.37 For orbitals, the PM approach is based on maxi-
mizing the square of the Mulliken populations on each
atom.44 For the single-electron picture, Boys orbitals and PM
orbitals are usually similar, but PM orbitals usually preserve
�−� separation, while Boys orbitals do not. The PM ap-
proach may not be easily extended to n-electron states be-
cause of the nonorthogonal atomic basis, but if we consider
Lowdin populations instead of Mulliken populations, then
the approach can certainly be extended to n-electron states.
We note that the Boys and PM functions are both quartic
functions of the rotation matrix. We wonder what, if any, will
be the differences between these algorithms when they are
applied to diabatic states. Will one give diabatic states that
are more physical than the other?

B. Extension to triplet-triplet Dexter transfer

By maximizing Eq. �5�, we create diabatic states that
have localized charge density and, thus, are natural for elec-
tron transfer calculations. We now argue that with a small
modification to Eq. �5�, we can also construct diabatic states
that will be appropriate for triplet-triplet Dexter energy
transfer.45 Triplet-triplet transfer arises when an excited do-
nor in a triplet state transfers its energy and spin to an ac-
ceptor which is originally in its ground singlet state: D3�A1

→D1A3�. Thus, for triplet-triplet transfer, the diabatic states
representing initial and final states must have spin density
�rather than charge density� localized in different regions of
space.

In order to produce diabatic states with localized spin
density, we first decompose the dipole operator �� as the sum
of 	 and 
 spin components:

�� = 

r,s=1

Nb

�� rsar	
† as	 + 


r,s=1

Nb

�� rsar

† as
 �40�

��� 	 + �� 
. �41�

Equation �40� is the usual second-quantized expansion
for the dipole operator in a single particle basis of dimension
Nb: r and s denote spinless single particle basis functions,
a†�a� signify creation �annihilation� operators, and the matrix
elements are �� rs= �r��� �s�. In Eq. �41�, we define separate 	
and 
 dipole operators according to the first and second
terms on the right hand side of Eq. �40�.

Finally, in order to localize spin density, we replace the
localization sum in Eq. �5� by Eq. �42�:

fDexterTT�U� = fDexterTT���i	�

= 

i,j=1

Ns

���i��� 	��i� − �� j��� 	�� j��2

+ 

i,j=1

Ns

���i��� 
��i� − �� j��� 
�� j��2. �42�

As in Eq. �5�, �i and � j denote trial diabatic states which are
to be determined by maximizing fDexterTT, and Ns is the total
number of states. Equation �42� differs from Eq. �5� by ig-
noring the spin cross terms �i.e., �� 	�� 
 terms� that would
appear in expanding Eq. �5�.

According to Eq. �42�, we maximize the charge separa-
tion both between the spin-alpha charge centers and between
the spin-beta charge centers. Thus, Eq. �42� should be a valid
localization sum for Dexter triplet-triplet energy transfer.
Moreover, like the standard Boys function �Eq. �5��, the Dex-
terTT function �Eq. �42�� is also a quartic function of the
rotation matrix and can be maximized using standard local-
ization algorithms and without any computational
penalty.35,41,46 The only computational difference between
Eq. �5� and Eq. �42� is that, whereas maximization of the
standard Boys function requires only the dipole matrix ele-
ments �� ij in the adiabatic basis, maximization of the Dex-
terTT localization sum requires the separate spin-alpha and

244101-5 Boys localized diabatic states J. Chem. Phys. 129, 244101 �2008�
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spin-beta dipole matrix elements in the adiabatic basis: �� ij
	,

�� ij

. Diabatization according to Eq. �42� will be investigated

in a future paper.42

IV. TWO CHEMICAL EXAMPLES FOR BOYS
LOCALIZED STATES

We now provide two simple examples for how one may
use Boys localization to create diabatic states. Our first ex-
ample is particular to excited state electron transfer, since the
ground state of the model system will not be included in the
diabatization scheme. Here, we consider benzene surrounded
by three p-benzoquinone molecules, and we localize all ex-

cited charge-transfer states. We do this in order to character-
ize qualitatively the Boys localized states using attachment-
detachment plots47 �which are only meaningful when the
ground state is unperturbed�. Our second example is a square
of four He atoms with one positive charge. Here, our Boys
localization scheme mixes the ground-state of a molecular
cluster with the first three excited states, and is more directly
relevant to standard electron transfer theory.

A. Benzene surrounded by p-benzoquinones

Consider first the tetramer in Figs. 1 and 2. Here, ben-
zene is surrounded by three p-benzoquinone molecules. Be-

FIG. 1. �Color online� One detachment plot �a� and three attachment plots ��b�–�d�� for the adiabatic charge-transfer states. All detachment plots look similar
to the eye, and thus, only one is included.
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cause benzene is a good electron donor and p-benzoquinone
is a good electron acceptor, we expect to find low-lying
charge-transfer states for this molecular geometry. Indeed, a
CIS calculation in a 6-31G� basis, reveals six low-lying
charge-transfer states, in two groups of three isoenergetic
states �7.809 and 7.897 eV�. These charge-transfer states can
be recognized by looking for large quadrupole moments of
the one-electron attachment and detachment operators47 after
a CIS calculation. One might expect that these adiabatic
states should correspond to charge transfer from the highest
occupied molecular orbital �HOMO� of benzene into the

lowest unoccupied molecular orbital �LUMO� of
p-benzoquinone. After all, the HOMO of benzene is doubly
degenerate and we have a triply degenerate LUMO �with the
LUMO’s spread over the three acceptors�, thus strongly sug-
gesting that the six charge-transfer states are simply HOMO-
LUMO charge-transfer states.

In Fig. 1, we show three attachment and one detachment
plot for the adiabatic charge-transfer states, noting that all
other plots are duplicates. As described in detail in Ref. 47,
these density plots are constructed by forming the one-
electron density matrices for an excited state Pex and the

FIG. 2. �Color online� Detachment ��a� and �c�� and attachment plots ��b� and �d�� for two Boys localized diabatic states ��a�/�b� is one pair and �c�/�d� is
another�. The attachment density in the other four states are simply rotated by 120° and −120°. The excitation energy for the state shown in �a�/�b� is 7.809
eV and for the state in �c�/�d� is 7.898 eV. These states differ by the orientation of the detached � density on the benzene relative to the attached density on
the quinone.
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ground state Pgs, and then diagonalizing the difference ma-
trix Pdiff= Pex− Pgs. By separating the positive and negative
eigenvalues of Pdiff, one decomposes the difference density
matrix into two new matrices, Pdiff= Pattach+ Pdetach. The at-
tachment density matrix has all non-negative eigenvalues
and the electron density corresponding to Pattach is an attach-
ment plot; the corresponding detachment density matrix has
all nonpositive eigenvalues.

From Fig. 1, one sees that, while the detached charge
density visually appears as a linear combination of orbitals
on the benzene, the attached charge density is spread out in
these adiabatic states, as the benzene molecule may donate
an electron into a linear combination of orbitals on the
p-benzoquinones. The exact physical meaning of these
attachment-detachment pictures is not entirely clear,
however.

Next, using Q-CHEM,43 we perform a Boys localization
on these charge-transfer states, and we find that the Jacobi-
sweep algorithm converges in five steps, indicating a strong
maximum. The algorithm correctly recognizes that it should
separate these six charge-transfer states into three sets of
two, forcing the dipole vectors to point into three different
directions. In Fig. 2, we show attachment-detachment plots
for two diabatic charge-transfer states after Boys localiza-
tion. Now, the attachment plots for a diabatic state show
charge density moved to one individual quinone molecule;
the detachment plots show charge transferred from either of
the two degenerate HOMO orbitals on the benzene. Because
there are two different orientations for the detached � den-
sity on the benzene relative to the attached density on the
quinone, this difference in symmetry leads to a small differ-
ence in excitation energies �7.809 and 7.898 eV�. The ener-
gies of the diabatic states are virtually unchanged from the
adiabatic states because the coupling is so small, but there
are nonzero mixings between the two sets of isoenergetic
adiabatic states. The coupling between the two states in Fig.
2 �which have the same dipole moment but different
attachment-detachment symmetry� is infinitesimal ��4.0
�10−7 eV�, as might be conjectured by symmetry. For states
of the same symmetry but dipole moments at angles of 120°,
the coupling is 2.6�10−5 eV. For states of the opposite
symmetry but dipole moments at angles of 120°, the cou-
pling is 4.0�10−6 eV.

The attachment-detachment plots for the other four di-
abatic excited states are identical to those in Fig. 2, only with
the electronic density rotated by 120° and −120°. These plots
make it clear that the doubly degenerate HOMO of the donor
�benzene� is being transferred into the LUMO of individual
acceptor p-benzoquinones, confirming our chemical intuition
describing the charge transfer.

Interestingly, this model problem also suggests that Boys
localization may be useful when trying to diabatize a conical
intersection where there is charge transfer. Generating diaba-
tic states in the vicinity of a conical intersection without
calculating derivative couplings is an active area of current
research.48

B. He4
+

Consider a square of four helium atoms with adjacent
nuclei separated by 2 Å and one positive charge on the clus-
ter �He4

+�. CASSCF�7,8� calculations have been performed
on this cation using the GAMESS package49,50 in a 6-31G�

basis. The energies of the ground state and first three adia-
batic excited states are −289.566 44, −288.414 88,
−288.414 88, and −287.104 86 eV, respectively. The energy
of the fourth excited state is 35 eV higher than the energy of
the third excited state. Thus, the fourth excited state �and all
higher excited states� has been disregarded.

The center of charge for each of the four included adia-
batic states is the origin �i.e., the center of the He4-square�.
In other words, the positive charge �i.e., hole� is spread out
over all four He atoms equally in all four states. If we con-
sider a Huckel-type picture for the He4

+ cation, the hole for
the ground state will have no nodes, the hole for the �degen-
erate� first and second excited states will have one nodal line
in the He4-plane, and the third excited state will have two
nodal lines in the plane. Although we are working with a
multiconfigurational expansion of the full wave function, this
simple picture of the hole orbital can be confirmed by look-
ing at dipole matrix elements between adiabatic states.

Now, when we perform Boys localization on the four
adiabatic states �i.e., ground plus first three excited states� of
the He4

+ cluster, we find that the algorithm converges in five
steps and the resulting diabatic states all have the same en-
ergy �−288.375 26 eV�. Moreover, the charge centers for the
four diabatic states make up a square with edge length of
1.96 Å, each one nearly on top of an atomic center. The
edge length between diabatic states �1.96 Å� is slightly less
than the edge length between He nuclei �2 Å� because the
He nuclei are slightly stabilized by electron sharing.

For the He4
+ cluster, the coupling matrix elements �HAB�

are found to be 0.615 eV between adjacent diabatic states
and 0.040 eV between diabatic states that are diagonally
across from each other. This coupling matrix element should
be compared to results for the dimer cation He2

+ �where adia-
batic states are generated with CASSCF�3,4��. For the dimer,
at a radial distance of 2 Å, HAB is 0.617 eV, and for a dis-
tance of 2�2=2.8284 Å, HAB is 0.082 eV. Thus, in He4

+, the
HAB coupling element between adjacent He diabatic states is
reduced by 0.002 eV, and the coupling element between di-
agonal diabatic states is decreased by 0.042 eV �all relative
to He2

+�. The former difference is small but the latter differ-
ence is relatively large, demonstrating that diabatic states and
the coupling elements between them can depend strongly on
interactions from the environment, and emphasizing the need
for an algorithm that can construct localized diabatic states
from rigorously defined quantum-chemistry calculations.

Although we have picked two elementary problems for
localizing states, the calculations above highlight the poten-
tial power of Boys localization, and its advantages over the
standard GMH algorithm when constructing diabatic, local-
ized charge-transfer states. The localized diabatic states
above could not have been calculated using the GMH routine
because, in these multicenter systems, there is no clear dipole
moment arising from the original adiabatic states. Although
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it remains to thoroughly benchmark the Boys routine over a
broad range of molecules, we expect the Boys algorithm pre-
sented here to greatly extend the applicability of the GMH
algorithm, allowing one to diabatize adiabatic states from
complicated noncollinear molecular geometries.

V. CONCLUSIONS AND FUTURE WORK

This paper has pointed out a straightforward connection
between GMH and Boys localization. We have shown that
the two are equivalent for two-state systems, and we have
suggested that Boys localization should be applicable for
constructing diabatic states when there are more than two
noncollinear charge centers. We hope that this connection
will be useful for chemists when modeling electron transfer
in the future. Although Boys localization does not offer a
simple formula for HAB as does the GMH formalism, the
algorithm has already been implemented in most computa-
tional chemistry and physics programs in the context of or-
bital localization and should be easily transportable.
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