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Chapter 1

Introduction

I have grown tired of answering the question, “What do you study?” I have grown

tired because I can never explain my answer; that answer being philosophy and

physics. The polite reaction is one that appreciates academics as a whole and

from all angles. The confused reaction is one that sees a fundamental clash. And

I must admit, I more clearly see a fundamental clash than an appreciation of

academics. But that is the last of my pessimism. I do see a correlation between

the two, and many others do as well. And the clash within me will pass with

time, as did my belief in correlation.

Quantum theory posits a description of physics that is as humbling as it

is modest. When we represent quantum theory with its most general mantra,

“Everything is one,” we move towards holist deisms and further from a genuinely

physical account of the world. Quantum mechanics, though, is rooted in a

physical description of the world. In describing the world, we bring sense to

some spiritual claims while infecting physics with paradox. Quantum mechanics

builds its philosophy from a contradiction embedded in ourselves. This paradox

will prove to be more useful than confusing.

The best part: Quantum mechanics was the most atomic of surprises. Clas-

sical physics was operating so terribly well for centuries. Until, that is, physics
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started asking questions on the smallest and biggest of scales. There is de-

bate whether a distinction can be made between classical physics and modern

physics. This thesis, in the spirit of quantum physics, will prove both answers

are possible. One thing is for certain: A hundred years ago, the mathematical

physics was proving to be as successful as it was proud.

For the 1898-99 University of Chicago catalog, the physics section opened

with:

While it is never safe to affirm that the future of the Physical Sciences
has no marvels in store even more astonishing than those of the
past, it seems probable that most of the grand underlying principles
have been firmly established and that further advances are to be
sought chiefly in the rigorous application of these principles to all the
phenomena which come under our notice. . . . An eminent physicist
has remarked that the future truths of Physical Sciences are to be
looked for in the sixth place of decimals. (Treiman 1999, p. 3)

The excerpt was almost certainly written by famous experimental physicist Al-

bert Michelson. (1999, p. 3) The state of the physics departments seemed ripe

for a contradiction. Within two decades, the discovery of high-energy light, ra-

dioactive decay, free subatomic particles, special relativity, and the bedrocks of

quantum mechanics splashed into physical community. (1999, p. 4)

Put bluntly, the grand underlying principles of physics had not been firmly

established. While there had been great advances in electromagnetism, ther-

modynamics, and other fields, further implications of these theories had yet to

be investigated, and this investigation required ingenuity not just in the sixth

decimal place. Still, it was assumed that the intuitive and classical Newtonian

description could be applied to any physical system. Such a description implied

fundamental suppositions, such as the absolute nature of space and time, the

principle of sufficient reasoning that governs all physical systems, and the ne-

cessity for every conceivable bit of matter to exist in only one place at any given

time. Granted, Newtonian mechanics and classical physics provide immense

practical application. But with the modern discoveries, physics begins to offer
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an opinion regarding our intuition of reality, an opinion that seems to contradict

everyday experience.

When introducing modern physical concepts, most physics texts juxtapose

the classical predictions with the modern experimental observations. I feel this

is a good way to grasp the difficulties that came with the beginnings of quantum

physics.

Quantized Systems

Classically, a particle might be anywhere a priori; and similarly, it might have

any mass, or any velocity, or any angular momentum (defined by position, veloc-

ity, and mass), etc. Following, the particle’s total energy, kinetic plus potential,

might take on any value. However, quantum mechanics necessitates these char-

acteristics take on discrete values, usually in some multiple of Planck’s famous

constant, h (also written h̄ = h/2π). We say the values are quantized. Classical

values require nice, continuous, differentiable equations; in other words, they

disallow such discretization.

Probability

As mentioned before, classical physics concludes that any bit of matter ex-

ists in a single place at any given time. Practically speaking, of course, the

measurement apparatus will always have some limit to the level of specification

available. But in principle, there is no a priori limit to a level of accuracy in any

given measurement. Thus, if one wants to determine the future state of affairs,

they only need to rigorously apply the theories of mechanics. Classical physics

is deterministic in the sense that the future states of the system are set in stone

given some initial state. In quantum mechanics, “state” refers to simply “all

that can possibly be known about the system at any instant.” (Treiman 1999,
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p. 6) Quantum mechanics admits some level of determinism, but the difference

lies in the description of the state. Quantum physics does not conclude on the

specific position, momentum, etc. of any given particle; rather, quantum me-

chanics specifies a probability of these values. So rather than quantum theory

determining the future, it states a probability regarding the future. So for some

situations, the outcome is almost definite; for others, the probability function

is extremely broad; and further, there lies an infinite number of possibilities

between these two extremes. It is always important to remember this is an

intrinsic state of the system, and not a limit of the experimental apparatus. For

instance, if we were to set up some series of detectors to measure the position of

a quantum mechanical particle (an electron, for example) at some given instant,

then when one of the detectors clicks, we will know the exact position of the

particle at that exact instant. But, if we were to repeat this experiment, we

would find this particle to travel in all sorts of directions at all sorts of velocities,

and the outcome can only be described probabilistically. These experimental

descriptions will come in Part I.

Indistinguishable Particles

In our everyday life, it is impossible to call any two entities identical. They will

differ in some physical way, in addition to their differences in spatial-temporal lo-

cation. Classically speaking, one could in principle label the particles and track

their behavior thus posing no conceptual problem. In quantum mechanics, the

concept of identity must be approached probabilistically. Keeping track of any

given particle is not only physically impossible, but is also meaningless: Switch-

ing two indistinguishable particles has no affect on the state of the system and

thus carries no probabilistic ramifications. Considering that these probabilistic

descriptions are all we can possibly know, a system of identical particles must

be understood as truly identical, rather than the classical analogy of seemingly
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identical while distinguishable in principle.

Radioactivity

Some particles emit smaller, high-energy particles. This process is entirely spon-

taneous. Given a sample of radioactive material, we can predict a half-life based

on experimental observation, when half of the high-energy particles have left the

sample. But predicting when any given atom will emit its single, high-energy

particle can only be done in terms of probability. Where these emitted particles

come from was a question not answered until Rutherford’s description of the

atom, as discussed in Chapter 2. But when does the atom decide to decay? The

answer to this question would have to await quantum interpretations. Classical

models would predict that, if there is some mechanical mechanism that causes

an atom to undergo decay, why don’t all of the atoms in a given sample undergo

radioactive decay at the same instant? Quantum mechanics claims that only a

probabilistic explanation is possible. We now know that decay comes in many

flavors, including decay of subatomic particles as well as atomic particles, and

lifetime of radioactive elements varies from 10−24 seconds to billions of years.

(Tipler and Llewellyn 2007, p. 49)

Tunneling

The probabilistic nature of the quantum world allows particles to exist where

they would be otherwise classically forbidden. For example, we would not imag-

ine a car to spontaneously lift itself from the gravitational “energy well” of our

planet and hover above the ground. Quantum mechanics does not imply mir-

acles of quite this magnitude, but it does suggest (and observe) some similar

classically impossible scenarios. There can, for instance, be an energy barrier

that separates two regions of space, such that a particle must have some thresh-
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old amount of energy to travel from one region to the next. Quantum physics

states that there is a finite probability that a particle below this threshold en-

ergy could penetrate through the barrier. This mechanism is coined tunneling

through forbidden regions.

Creation and Destruction

Even without a stable model of the atom, classical theory predicted that all

matter was an arrangement of some fundamental building block. Naturally, the

way to test this theory involves taking things apart. When we reach a subatomic

level, we have to recreate some rather uncommon situations such as shooting

high-energy projectiles at elementary particles. This is the research conducted

in particle accelerators. This miniscule impact causes a small particle to burst

into pieces, allowing physicists to trace the motion of the tinier particles of de-

bris. Some of these reactions are considerably normal in that two things come

together to make a third, or vice versa in some way. Other kinds of reactions,

however, make very little intuitive sense. For instance, take the following reac-

tion: p+p→ p+p+π0. (Tipler and Llewellyn 2007, p. 234) Here, we have two

free protons colliding to yield two protons and a third particle, the puon. No

degree of rearrangment can hope to explain how it is that the final system con-

tains the same ingredients as the initial system, plus some new element. There

is simply no way around it: Particles can be (somewhat spontaneously) created

or destroyed; there is no special, innate “conservation of matter law” on the

microscopic scale.

The preceding paragraphs are meant to give a rough overview of some of the

difficulties in combining a classical model with a quantum model. The first three

examples will be referred to a considerable degree, while the last three serve as

only a primer for our physics talks to come. There are some thinkers who wish
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to say that what makes physics physics is something more fundamental than

the difference between these two models, and thus so-called “modern” physics is

really no different than “classical” physics. As said earlier, either position here

is possible, and the merits of each will come out in this thesis. Further, it is

worth mentioning that while this philosophic claim carries weight, any practicing

physicist will recognize a divide between classical and quantum models. Once

I overheard a prospective-student tour-guide ask Harvey Mudd Professor John

Townsend why it is that they teach quantum mechanics before any other form

of physics in their curriculum. His response: “Because the classical model is

simply wrong.”

This thesis is divided into two parts. Part I is primarily an investigation

into the odd world of quantum physics. Our entry point in Chapter 2 will be

the principle of uncertainty, one of the founding theories of quantum mechan-

ics. The uncertainty principle will fall out of some ordinary physical questions

and will turn out to be incompatible with a “complete” classical theory. In

Chapter 3, the uncertainty principle will prove to be only the tip of the iceberg.

Some very practical experiments will show us that much more than “knowl-

edge” is at stake here. Chapter 4 will begin to open up quantum mechanics so

as to envelop the observer into the observed. We will see our actions have far-

reaching consequences through mechanisms we cannot fully explain. In Chapter

5, the paradox will become apparent as we describe the classical response to the

theories of quantum mechanics. In analyzing the rebuttal, we will begin to

understand just how deep quantum mechanics goes.

Part II is dedicated to understanding the philosophic implications of quan-

tum theory. In the first chapter of Part II, we will describe the locus of quantum

philosophy, the Copenhagen interpretation. The philosophy will be presented

as stemming from a paradox. Understanding the answers to the paradoxes will

again allow us to run further with quantum theory and ask more fundamental

questions. Chapter 7 will be our strongest link to primary sources of philosophy,

9



specifically Kant’s Critique of Pure Reason. We will see that Kantian dialectics

are a good analogy for quantum mechanics, but stops short at recognizing the

true significance of what we are discussing. The Copenhagen interpretation will

prove to tear open some holes in the Kantian doctrine – Chapter 8 will hopefully

fill these holes by juxtaposing the hard-hitting, anti-materialist philosophy of

Martin Heidegger with the profound, well reasoned insight of Werner Heisen-

berg. We will see that quantum theory makes poignant claims regarding the

world and our place in it. The conclusion will be a short summary followed

by a reflection on what has been discussed. I hope to show you that marrying

philosophy to physics is not only possible, but enlightening to us as humans.
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Part I

Mirrors
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Chapter 2

The Quantum Uncertainty

Principle

To the common experimental scientist, the word uncertainty is analogous to

error. For the entire history of natural science, uncertainty has been the as-

terisk presented alongside data. Uncertainty is used to assess the truth of a

given claim. The question is often, does the theoretical prediction fall within

the range of uncertainty? Theory becomes knowledge when justified by exper-

imental observation. When an experiment is consistent with theory and has

reasonably low uncertainty, an idea is actualized as knowledge. Uncertainty,

then, is a gateway to knowledge: High uncertainty disallows succinct and well-

founded explanations, while low uncertainty can conclude definitively on the

validity of a given hypothesis.

In most natural science experiments, uncertainty takes two forms: statisti-

cal uncertainty and systematic uncertainty. Statistical uncertainties arise from

random fluctuations in a measurement. These random fluctuations can occur

in measuring devices. For example, air currents or electronic noise lead to small

fluctuation in motion detector readings. These fluctuations occur even when the
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motion detector is measuring the distance to a stationary object. So, we might

expect differing measurements for a given distance even though no change in

the system occurred. Random fluctuations can also be a characteristic of the

quantity being measured, in addition to the experimental apparatus. For ex-

ample, if we use a meter stick to measure the landing positions of a series of

projectiles, we see significant random variations which clearly do not arise from

the limitations of the meter stick. Instead, we suspect the launch angle or ve-

locity of the projectiles is subject to small random variations in the launching

equipment.

The standard method of eliminating statistical uncertainty involves taking

lots of data. The defining feature of statistical uncertainty is that the uncer-

tainties average to zero. For instance, returning to our projectiles: Suppose we

perform our experiment twice, measuring the distance from launch to landing.

The first launch shot the projectile five feet; the second, six feet. Can we con-

clude on the forces at work in the launcher? Apparently not. Suppose, then,

we repeat the procedure one hundred times. We find that the average launch

distance is five and a half feet. Yet clearly this does not mean that every time

the launcher shoots a projectile, that projectile will travel five and half feet. In

fact, it is quite the opposite. The chances of traveling exactly five and a half

feet are very small. Further, there might have never been a situation out of the

one hundred and two launches where the projectile traveled within a tenth of an

inch to five and a half feet. Nevertheless, the scientific method concludes that

the most accurate piece of knowledge we have arises from the average distance

of five and a half feet, and thus the scientist concludes that the launcher exerts a

force x at and angle of ε. Statistical uncertainty is a part of every experimental

conclusion.

Systematic uncertainties are due to defects in the equipment or methods used

to make measurements. For example, if a motion sensor is poorly calibrated,

it could consistently produce readings that are only ninety percent of the true
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value. It has a systematic uncertainty that is much greater in magnitude than

the statistical uncertainty in its readings; while small fluctuations could cause

small errors in data, systematic errors tend to produce large, sustaining un-

certainties. Systematic errors are often difficult to detect because they do not

show up as fluctuations in the results of repeated measurements. Instead, the

scientist must deduce a reoccurring tendency of the experiment. Usually, this

tendency can be isolated because the observations deviate from the theory in

a consistent way. Other times, the systematic uncertainty is not noticed until

some time after the experiment. Sometimes, the uncertainty is noticed within

minutes or days after the observation; sometimes, it takes decades to isolate

the problem with the apparatus and thus observe a system that is consistent

with theory. And still others times, a systematic uncertainty goes unnoticed, a

conclusion is reached, a theory becomes knowledge, and then much later theory

takes a ground-shattering turn and suggests systematic error has been part of

a whole body of experiments.

The standard method of eliminating systematic uncertainty, on the other

hand, involves being a really good scientist. Edwin Hubble was just such a

scientist. (Tipler and Llewellyn 2007, p. 341) Hubble was the first to prove that

our surrounding celestial neighborhood is a type of island universe, one galaxy

among billions of differing scale, shape, age, and morphology. How did he infer

such a conclusion? In astrophysics, a common method of measuring the distance

to source of interest is by using nearby stars, or in Hubble’s case, a star inside the

galaxy he was observing. These special standard-ruler stars are called variable

stars. They come in many forms, but the unifying trait is their variability in

luminosity, size, and temperature. Of course, Hubble could only detect one of

these variations: luminosity (brightness). It had been known for quite some time

(though considering the age of precise astrophysics it was quite a short time) that

these stars follow rather strict variation patterns. Specifically, the magnitude

of the change in luminosity is directly proportional to the time scale on which
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it varies. In other words, the bigger the variation in luminosity, the longer the

period of variation will be. Similarly, the bigger the variation in luminosity,

the more massive the star. Hubble noticed long variations of sources within

a nebulous astronomical object, known today as the Andromeda Galaxy, our

closest galactic neighbor. The luminosity variations, though, were surprisingly

faint. Hubble thought that if these stars were within any contemporary estimate

of the size of the universe, then the star would exhibit much brighter changes in

luminosity. So, because the amount of light that reaches an observer drops off

with distance from the source, Hubble concluded that these variable stars were

in fact much further than the estimates for the size of the universe. In turn, it

was clear that “the universe” was in fact an island amongst a vast sea of others.

Hubble’s conclusion was by no means immediate. As an innovator and de-

veloper of highly sensitive photographic plates, Hubble examined the likelihood

of systematic uncertainty carefully. Hubble spent years experimenting with dif-

ferent types of photographic plates, hoping that he could invent an accurate

and reliable light-absorbing surface. Yet after countless runs of confirming the

data of his peers and then turning his plates towards Andromeda, Hubble was

forced to conclude that there exists no systematic error; the universe was, in

fact, enormous. Most times, systematic uncertainty is a conclusion to an experi-

ment that did not observe the predicted data. The scientist attaches systematic

uncertainty to a fruitless trial. There are other times, though, when system-

atic uncertainty is a result of the theory. As a rubric for what is and what is

not knowledge, theory can yield startling reactions to certain experiments. Un-

certainty can be an uncanny gateway to knowledge, posing new questions and

deconstructing the inconsistencies in theory.

Modern physics has added a new category of uncertainty: Quantum uncer-

tainty. Oddly, it has almost no similarity to statistical or systematic uncertainty.

While statistical and systematic uncertainty are characteristics of any experi-

ment, quantum uncertainty is characteristic of anything. Formally, the quantum
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principle of uncertainty is stated:

h

2 ≤ ∆x∆p.

In words, the product of the uncertainties of position and momentum for any

given particle can be no less than half the value of Planck’s constant. In essence,

when you try to measure both the position (in space) and the momentum (the

product of the particles mass and its velocity), you will be met with an uncer-

tainty that is neither statistical nor systematic. (Tipler and Llewellyn 2007, p.

113) The uncertainty is not a result of poorly designed experimental equipment.

Rather, the system cannot be defined to have simultaneous, finite values for two

variables. (The uncertainty principle is often stated another way: h
2 ≤ ∆E∆t.

In words, the product of the uncertainties of energy [of a given particle] and

time [of observed energy] can be no less than half the value of Planck’s con-

stant. This formulation falls directly from the previous statement using first

principles. Yet this way of stating the uncertainty principle has its own sorts of

implications, and will become part of our broader analysis later.)

Werner Heisenberg derived the uncertainty principle in 1926 along with sig-

nificant contribution from his mentor and friend, Niels Bohr. There were chal-

lenges to Heisenberg’s principle of uncertainty, including much criticism from

Albert Einstein. Such criticisms took the form of thought experiments as well

as competing mathematical descriptions of the world. While we will give a

conceptual derivation of the uncertainty principle soon, delving deep into the

philosophical implications of the quantum principle of uncertainty is the objec-

tive of Part II. For now, though, we can explain some of the physical implications

of quantum uncertainty.

As stated before, quantum uncertainty has nothing to do with experimental

apparatus; it is a condition of the system. To understand what this means,

we must consider the particle that Heisenberg had in mind when deriving the

principle: the electron. The uncertainty principle is by no means limited to only

describe the electron; instead, this was the particle under highest scrutiny during
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the time of early quantum mechanics. The picture of the atom taught in most

introductory physics courses describes a Newtonian mechanical system: Much

like the planets orbit around the sun due to gravity, negatively charged electrons

orbit around the positively charged nucleus due to electromagnetic force. This

is quite intuitive, especially given that the equation for electromagnetic force is

analogous to the equation for the force of gravity:

FG = G
m1m2

r2 ; FE = k
q1q2

r2 .

FG represents the force of gravity, while FE represents the electromagnetic force.

G is the Newtonian gravitational constant and k is the Coulomb electromagnetic

constant. Each equation considers two “particles.” The first equation represents

these as m1 and m2, the mass of each object, while the subject equation repre-

sents them as q1 and q2, the charge of each object. The distance from object one

to object two is represented by r in the denominator. So, with these descrip-

tions of two fundamentally different forces, the layman is lead to believe that

the system of an atom is simple and similar to other, more tangible systems.

The problem, however, arises when one tries to verify the orbit of the electron

about the nucleus.

In 1909, Ernest Rutherford arrived at the familiar, orbiting-electron model of

the atom. While the conclusion was reached experimentally, it did not observe

any sort of electron motion. Rutherford shot α-particles (essentially helium

atoms, two electrons surrounding a nucleus of two protons and two neutrons) at

a sheet of gold foil. At the time, it was thought that the atom was a positively

charged “solid” with negatively charged bits floating scattered throughout. Un-

der this prevailing “plum pudding” model of the atom, Rutherford expected the

homogeneous mixture of positive and negative charge within the atom would

cause each α-particle to be deflected at a small angle as it passed through the

gold foil. Specifically, the α-particles, which are small when compared to gold

atoms, would push their way through the foil and be slightly nudged by elec-

tromagnetic forces as they exit the matrix of gold atoms. Rutherford believed
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that this scattering would give insight to the charge distribution of the plum

pudding model of the atom.

The result was quite surprising. Rutherford’s associates Geiger and Marsden

surrounded the gold foil with a sheet of zinc sulfide; when the α-particles hit the

zinc sulfide, the screen would darken in order to detect the angle of deflection.

Geiger and Marsden observed α-particles scattered at angles greater than ninety

degrees; basically, some α-particles were being reflected. Rutherford expressed

his astonishment in a famous quote:

It was quite the most incredible event that has ever happened to
me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper and it came back and hit you. On
consideration, I realized that this scattering backward must be the
result of a single collision, and when I made calculations I saw that
it was impossible to get anything of that order of magnitude unless
you took a system in which the greater part of the mass of the atom
was concentrated in a minute nucleus. It was then that I had the
idea of an atom with a minute massive center, carrying a charge.
(Rutherford, 1902)

Rutherford concluded that the electromagnetic force required to reflect the

α-particle could only result from a highly concentrated, positively charged nu-

cleus of an atom. With this, the standard model of the atom was born: The

race was on to observe the electron in orbit about its nucleus.

Not long after the birth of the standard model, it became obvious that

observing the electron is no simple task. The size was estimated, using a classical

non-quantum relativistic model of the electron, to be about 1/3000th the size of

the atom itself, which was estimated to be rather small: 10−15 meters. (Tipler

and Llewellyn 2007, p. 120) The problem with observing such a small particle

arises from the nature of light. Light travels in waves, and the size of the

objects that light can interact with is proportional to the wavelength of that

light. A wavelength is the distance from the crest of one wave to the crest

of the next. For instance, radio wavelengths are many meters long, and thus

pass right around most daily objects, including bodies. Ultraviolet light, on the
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other hand, has short wavelengths, short enough to collide with our skin cells

and cause damage. Small fibers in our eyes are of just the right size to “catch”

visible light and translate it into electrical signals. An analogy is a wave in the

ocean: Waves with long wavelengths, perhaps miles long, pass right around a

small island, while shorter waves smash against the shore and dissipate. So,

the wavelength of light needed to image an electron must be equally as small as

the electron itself. But short wavelength means highly energetic light, and light

with this short of wavelength is very energetic. In fact, this light is so energetic

that humans have yet to create, sustain, and direct such light.

But who cares? We can still assume that one day, we will be able to control

such light and thus be able to image the electron, right? Okay, let us assume

this technological feat. Also let us assume the electron is a “classical” particle,

whose position can be described using more tangible Newtonian physics rather

than probability wave equations.

Consider a microscope that emits γ-rays, light rays energetic enough to image

the tiny electron. Most microscopes used to image small objects refract light to a

point. This point could be a small bacterium or minerals in a piece of quartzite.

(Keep in mind, though, the electron is much smaller.) Light is refracted by

the microscope is done so the in same way light sunlight is refracted to a point

with a magnifying glass. As such, the light forms a cone as it travels from the

refracting lens to the electron. For simplicity, assume the particle is moving

in one dimension along some x-axis. An image of the electron forms when the

γ-rays strike the moving particle and bounce back to the observer. It is helpful

here to draw a diagram (Figure 2.1).

Okay, so we have our microscope. It is necessary to talk briefly about two

important observations from physics: The resolving power of an optical lens,

and Compton scattering.

The resolving power of an optical lens can be written

∆x = λ

sin ε .
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Figure 2.1: The Heisenberg Microscope. As an electron moves about the x-axis, we

attempt to image it using a γ-ray. The γ-ray knocks the electron out of its path at an

angle proportional to sinε. Heisenberg 1930, p. 21.

The goal is not to derive this equation from classical optics, but rather explain

why the expression is important to understanding how a microscope works. The

left side of the equation, ∆x, is the “resolving power” of any microscope, camera,

or optical device, more commonly referred to as resolution. While x represents

the particle’s exact position, ∆x represents the range in which that instrument

can detect an object. x is a position. ∆x is a range of positions, or a distance.

For example, the resolution, ∆x, for the human eye is about 0.1 millimeters. In

other words, things smaller than about a tenth of a millimeter are very difficult

for people like me to see. To put it another way, I cannot detect the position

of a particle smaller than ∆x to any degree more accurate than 0.1 millimeters.

On the other side of the equation, λ represents the wavelength of the light used

to resolve an object, and sinε represents the angle at which the light is scattered

following from Pythagorean geometry.

Why does light scatter, or bend, in this way? Sometimes it is more useful

to describe light as a particle; here, it is more useful to describe light as a wave.

Imagine ocean waves traveling perpendicular to a long jetty. Now, imagine there

is a hole in this jetty. We know that as the waves pass through the hole, they

will be refracted in radially out from the jetty opening. On one side of the hole,
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the waves will coming in will look like straight lines when viewed from above,

while the waves on the other side of the hole will look like a semicircle. Now,

imagine this jetty has seen one too many waves, and it has been reduced to a

small wall sticking out of the water some short distance from the coast. The

waves will pass by the jetty in a similar way, bending around the end walls.

Figure 2.2: Waves around objects. In (a) we see how waves bend around a stationary

object. In (b) see see waves propagate through a large slit; specifically, a slit larger

than the wavelength. In (c) we see waves propagate through a slit with a width smaller

than the wavelength.

So, we have a picture of light rays bending around the tiny electron. It so

happens that the degree of this bending is proportional to the wavelength of

the light itself. This makes sense: Short wavelength, high frequency light shoots

around the particle at a greater angle than long wavelength, low frequency light.

Now, recalling the equation for the resolving power, we see that the wavelength

of light, λ, must be greater than or equal to the resolution, ∆x. This follows

from the fact that sinε can only take on values from 0 to 1. Thus, to image

the position of the electron, we can do so only to some range determined by the

wavelength of light which the microscope emits.

Compton scattering is a bit easier to understand. Like the optics discussed

above, it is entirely an observational conclusion. This time, imagine light as

streams of tiny particles, call them photons, moving at the speed of light. These
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photons are extremely small; but something moving so fast will surely have great

momentum. In 1927, Arthur Compton was awarded the Nobel Prize in physics

for demonstrating that high-energy light (such as our γ-rays) scatters when it

collides with an electron. Just as one billiard ball strikes another at an angle, the

photon carries some bit momentum large enough to knock the near-weightless

electron from the orbit of its atom. We can describe the electron and the photon

bouncing off each other at some angle, ε.

Figure 2.3: The Compton Effect. An incoming light of wavelength λ hits an object

and is scattered at an angle θ. For our purposes, θ = ε. The resultant wavelength, λ′

will be of lesser energy and therefore λ > λ′. AP Physics 2011, WordPress.

When this photon hits the electron, the latter is deflected at a momentum

directly proportional to the wavelength of incoming light. Recall the shorter the

wavelength, the more energetic the light. We describe the energy of the wave-

length simply: E = hc/λ, where h is Planck’s constant and c is the velocity of

the photon. So again, following form this equation, the smaller the wavelength,

the more energetic the light. The momentum of the scattered electron p is then

p = h

λ
.

We have our tools. Let us return to the Heisenberg microscope, along with

the assumptions that we can control highly energetic γ-rays and the electron is

a simple ball of matter zooming around the nucleus of an atom. This angle of

scattering is determined by the position of the electron and the wavelength of

our imaging light, the γ-rays. So, the γ-rays hit the electron and bounce back
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to the observer charting out some cone of light with an angle ε. The electron

is knocked out of place by the incoming γ-rays due to Compton scattering.

Conclusion: It is impossible to measure the position of electron about the atom

without disturbing the system to some degree. (Heisenberg 1930, p. 22)

We can now finish this conceptual derivation of the Heisenberg uncertainty

principle. Recalling the introduction, we know the energy carried by photons

is quantized; it is always some multiple of Planck’s constant h. If this energy

is too big, it will nudge the electron and destroy the possibility of objectively

measuring the electron’s position, x. If this energy is too small, the wavelength

of light will be longer than the electron itself and thus the microscope could

not resolve the position to accuracy within this resolution limit. Thinking back

to the angle ε Figure 2.1, we can know the momentum of the electron is only

determined up to some range, ∆p, proportional to the scattering angle and the

wavelength of light:

∆p ≈ h

λ
sin ε.

This equation is very similar to the momentum from Compton scattering. The

difference, though, is that the angle of scattering introduces some uncertainty

in momentum, ∆p, rather than some exact momentum, p. Putting together our

expressions for the range of possible values of position and momentum, ∆x and

∆p respectively, we have
h

2 ≤ ∆x∆p.

The conclusion of the uncertainty principle is profound. If we call the range

of possibilities for position and momentum uncertainties, then physics has stum-

bled upon a finite limit to the amount of knowledge available. Heisenberg’s work

was the first of its kind in the history of physics. Uncertainty suddenly moved

from the realm of experimental error to the realm of physical truth. Perhaps

more interesting though is the implication that the mere act of observing the

electron can only disturb the electron itself, thus preventing any sort of objective

knowledge. I say only here because: While our thought experiment involved a
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microscope, even if the human eye was able to see the tiny electron, any light

wave illuminating the electron would shift the electron from “its” position. Thus,

the bit of light I capture to see the electron, I and I alone capture. There is

no doubt that this piece of information carries a subjective element. Further,

this “subjective” claim digs deeper than it appears. Every piece of knowledge

carries with it some amount of uncertainty. The uncertainty principle states

there is no such thing as arbitrarily certain knowledge. Uncertainty is a condi-

tion of knowledge. (We must remember that we are referring to only physical

knowledge. As it turns out, this is a good thing: Because we cannot refer to all

knowledge with the uncertainty principle, we are forced to look elsewhere for

sources of the paradox, i.e. sources outside epistemology. Instead, we will be

forced to look at ourselves and our relation to the object. In this way, knowledge

will be encompassed in our discussion. But the goal of these explanations of

quantum mechanics is to dig deeper than knowledge of the physical world.)

It should be said that there are challenges to Heisenberg’s microscope. For

instance, to determine the magnitude of recoil that the electron receives af-

ter being illuminated by the γ-ray, we could make the microscope moveable

and chart out this change in momentum along some kind of scale behind the

electron. At the very least, then, we would need to observe two rays of light

simultaneously: one bouncing from the electron and one illuminating our x-axis

position scale. Because light travels at a finite speed, simultaneously observing

the light from the scale and the light from the electron does not mean the events

are simultaneous: Light from the scale will take longer to reach the observer

than light from the electron. Thus the uncertainty in the recoil magnitude is

again encountered.

We now know that for small systems such as the atom, the motion of a

particle cannot be represented in the same way as the motion of a body under

gravitational or electromagnetic forces. Given the historical perspective, it is

clear that the uncertainty principle borders on what has been physical knowl-
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edge. The uncertainty principle is not so much a knowledge of something as it is

a limit to the knowledge of something. Physics had its eye on certain knowledge

since Newton and Galileo began to describe the motions of large bodies. As

physics approaches a proof for monism, though, the face of knowledge takes a

much different form.
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Chapter 3

Uncertainty Expanded: The

Decisive Electron

We now understand the difficulties in describing the state of a single electron.

The overwhelming implication is the impossibility of “objective” knowledge.

But, one can still make the argument that the quantum uncertainty principle

is incomplete. One might argue that the probability distributions of quantum

mechanics is a practical type of knowledge in that it allows the observer to make

reasonable conclusions on the state of any given particle. Quantum uncertainty,

though, does not allow any further development on the theory of small particles.

A more complete theory would be one that describes, with certainty, the be-

havior of any given particle. Given a set of initial conditions, a complete theory

would then determine the outcome of any given state of affairs, with certainty.

This was the firm belief of Einstein and his associates, which will be described

in full in Chapter 5. Before explaining this conjecture, I wish to make a greater

case for the odd nature of quantum systems.

The result of the above thought experiment involving Heisenberg’s micro-

scope is not exactly observed. While the assumptions that play a role in the
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thought experiment are most definitely experimentally confirmed, Heisenberg’s

microscope is not an instrument that is experimentally practical for the reasons

discussed. So, we turn to an experiment that has been conducted, numerous

times in fact. (Tipler and Llewellyn 2007, p. 163) As Richard Feynman put it

in his Lectures in Physics, the next experiment highlights

the basic element of the mysterious behavior in its most strange
form. We choose to examine a phenomenon which is impossible,
absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality it contains the only
mystery. We cannot make the mystery go away by ‘explaining’ how
it works. We will just tell you how it works. In telling you how
it works we will have told you about the basic peculiarities of all
quantum mechanics. (Feynman 1965, p. 3)

We set up a similar apparatus as discussed earlier. Viewing our equipment

from above, on our left we have a source of streaming particles. Moving to the

right, we have a screen with two slits. Behind the screen we have a detector that

lights up when an electron strikes its surface. Now consider three contrasting

experiments. (Polkinghorne 1984)

In the first experiment, our source fires little bullets in a very inaccurate

manner. The bullets may hit the screen and bounce off or travel through one

of the two slits. If we close one of the slits, then the bullets will fly through

and scatter across the detector behind the screen. There will be a probability

distribution to the bullet scatter. Most of the bullets will hit directly behind the

slit; some bullets will hit slightly to the left or right, depending on the angle at

which the bullet was fired. If we were to graph this distribution versus position

on the screen in a histogram, it would look like a hump or a Bell curve with

the peak being the point directly behind the slit. Opening the second slit, we

simply get two of these curves. If the slits are close enough, these humps overlap

slightly. Graphing the total distribution of bullets emerging from the two slits,

we might get a curve similar to the one-slit distribution. The humps of the

two slits combine and build a total peak to the distribution. Classically, this is
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what is expected of any particle with mass (i.e. the electron) and is the obvious

outcome of such an experiment.

For our second experiment, allow the source to produce waves; they can

be acoustic compression waves or photon light waves. Our detector will then

measure the loudness or brightness of the waves as more and more pass through

the slits and impact. The result will be what is called an interference pattern.

Figure 3.1: An Interference Pattern. When the crests of the waves meet in sync at the

detector, we obtain a maximum; when troughs of a wave meet in sync at the detector,

we obtain a minimum. The result is evidence for wave motion.

Again there is a peak distribution directly behind the middle-point of the

two slits. In this case, though, the pattern to the right and left is a damping

oscillation. This is due to the wave property of interference. At some points

on the detector, the crest of a wave from slit one will coincide with the crest of

a wave from slit two, thus resulting in constructive interference and causing a

bright fringe. Similarly, if a valley from slit meets a crest from the other, they

will destructively interfere and cause the total brightness to decrease on that

section of the detector. The minimums on our distribution function correspond

to a valley from one slit meeting with a valley from they other slit, and thus

their total combined brightness is negligible. The combined geometry of the

waves and our apparatus determine the spacing of the interference pattern.

The presence of two slits is essential to the interference pattern, for if only one
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slit existed our result would be identical to that of the first part of experiment

one.

For our third experiment we use quantum particles; for sake of consistency,

we will use electrons. Let our detector be a Geiger counter, and every time

an electron impacts the detector the counter responds with the stereotypical

‘click.’ We know the electron has a mass (Tipler and Llewellyn 2007, p. 54) and

thus the classical physicist expects the particle to pass through one slit or the

other. At first, this seems to be the case. The electrons arrive at the detector

and the Geiger counter responds with discrete clicks just like the bullets from

the first experiment. So we conclude the electron is a particle. However, after

accumulating some data on our distribution plot, we notice the same type of

interference pattern observed in experiment two. We conclude the electron is a

wave. (Tipler and Llewellyn 2007, p. 165)

The question then of course is, if the electrons arrive at the detector one

by one as the Geiger counter showed, then which of the two slits is the elec-

tron passing through? Suppose we say the electron passed through the first

slit. Then, at that time, the second slit was irrelevant. We could have mo-

mentarily closed it without affecting the outcome of the experiment. However,

if we perform a single slit experiment with electrons, we get the typical hump

distribution observed in experiment one. We are back at the particle model. If

we wish not to contradict ourselves, the only consistent conclusion at this point

is that the electron passes through both slits. This classically forbidden result

is inescapable in quantum mechanics. The problem of locality is beginning to

take shape.

Such is our bewilderment if we passively allow the experiment to continue.

Consider then taking active steps to determine through which slit the electron

traversed. Feynman suggested putting a lamp that emits γ-rays to illuminate the

particles as they pass through the slits. So, just before the Geiger counter clicks,

we see the electron flash through one slit or the other, and thus we are able to
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conclude the locality of the electron. Quantum mechanics, though, necessitates

that every form of measurement affects the result (the full explanation of this

interpretation will be in Chapter 6). So, we check to see whether the result has

be altered – quite counter to our intuition, the interference pattern is no longer

observed. Instead, we have two humps that combine to form a single Bell curve

of a distribution, no different than the result in the first experiment. (Feynman

1965, p. 18) Again, the conclusion is inescapable: The act of measurement

changed the result of the experiment.

The physicist calls this process collapsing the wavefunction. The electron

exists as a superposition of probability distributions, a collaboration of matter

waves. (Tipler and Llewellyn 2007, p. 176) The illumination apparent at the

first slit meant that the electron was no longer in a superposition of probabili-

ties, but rather collapsed to a single, unique state corresponding to a position

in the first slit. Without such superposition of acoustic or light waves, there

is no interference pattern. We have effectively removed this superposition of

states from the electron and determined its place in space all with a simple

measurement. (Polkingthorne 1984, p. 38)

The double-slit experiment displays a fundamental feature of quantum me-

chanics, namely that we know where something is only if we look at it through

measurement. Otherwise, the electron exists as probability, a distribution of

possible states that manifests as wave phenomena similar to light or sound.

Classically, particles have definite positions and trajectories. Thus we should be

able to trace the motion of the electron through a slit. We must give up this

assumption in the quantum world. There are no positions that coincide with a

given trajectory. Given a stream of electrons, we are best to describe this body

probabilistically, or in other words we are best to conclude merely that “some

will go this way and some will go that way.” Furthermore, considering a stream

of only two electrons, it is still best to say, “one might go this way and the other

might go that way, or they will both go this or that way.” Notice we need not
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say, “one might go this way and the other might go that way, or one might go

that way and the other might go this way, or they will both go this way or that

way.” Quantum mechanics assumes the electrons are identical in the sense that

they are indistinguishable. Having one electron in slit one and the second in

slit two is no different than having the second electron in slit one and the first

in slit two. Here we find a basic assumption underlying the classical prediction:

Identical particles are in principle distinguishable. (Jammer 1974, p. 26)

The philosophical problems inherent in quantum physics are becoming ap-

parent. First, we have found that the possibility of objective knowledge seems

at the very least conspiratorial. By objective knowledge we mean a knowledge

that can determine the outcome of any given set of initial conditions with cer-

tainty. Second, we have uncovered a problem of locality. By this, we mean the

seeming possibility that a single thing exists in two places at one time. We now

find ourselves trying to defend, for the moment, our basic notion of locality,

specifically our notion that things must have definite position regardless of our

knowledge of them. To defend this notion, we are forced to explain our under-

standing of identity and distinguishability on the particle scale. Why? Again,

if we are to claim that electron A exists in location xa, then we must be able

to distinguish electron A from the identical electron B. (We must also be able

to distinguish position xa from position xb, but let’s leave that question open.

As it turns out, the theory of general relativity might have a better answer to

this than quantum mechanics (Greene 2004, p. xv) even though the two are

not easily compatible, if at all.) In our everyday lives, identical does not imply

indistinguishable. In the quantum world, this is not the case, as we will show.

Step one: Dismantle the (classical) notion that identical does not imply

indistinguishable.

Suppose, then, we have two electrons that are governed by wave equations;

suppose these particles are identical but not indistinguishable, as per as conven-

tional beliefs of singular locality. The most commonly adopted wave equations
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for quantum particles are called the Schrödinger equations, named after Aus-

trian physicist Erwin Schrödinger. As done before, our approach will be to

state the Schrödinger equation and then explain the parts. For our purposes,

we need not express the equation as a function of time. In other words, to de-

termine the implications of quantum mechanics on a theory of locality, we can

assume the system of two electrons is in a steady state. We can picture this as

the instant when two electrons “pass through” the first and second slits. The

time-independent Schrödinger equation is (Tipler and Llewellyn 2007, p. 170):

− h̄2

2me

δ2ψ(x)
δx

+ V (x)ψ(x) = Eψ(x).

(For clarification, the fact that the second term contains a derivative of ψ with

respect to x implies that ψ is a function of x.) As normal, x refers to the

electron’s position in space, while me refers to the mass of the electron. Planck’s

constant divided by 2π is here as well written as h̄. V (x) is the potential energy

of the wave; similar to a wave in the water, the potential energy will govern

the height of the crests and so on. E refers to the total energy of the wave,

which is shown as the sum of the potential energy, V (x)ψ, and what is called

the Hamiltonian operator, the first term. To get a better idea of the energies,

you can think of the potential energy V as the energy the wave would exert on

you if it were to carry you from the bottom of its trough to the top of its crest,

perhaps if you were floating in the ocean just off coast. The total energy, E, is

the energy that would be dissipated into the sand when the wave crashes into

the coast.

At a glance, it is obvious that each term in the equation includes some fac-

tor or function of ψ(x). This is the quantum wavefunction. The wavefunction

itself does not correspond to any physical reality. What does correspond to a

physical reality, however, is the square of the wavefunction ψ2, sometimes writ-

ten |ψ|2 or |ψ(x)|2 to explicitly connote its nature as a function of position x

and coordinate-system invariability. The wavefunction ψ2 refers to the prob-

ability density. Recall the wavy probability distribution plots we drew along
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with experiment two in the beginning of this chapter. The y-axis measures the

probability density, ψ2. Physically, it is the probability that our electron will

be at position x.

Before continuing, I should make two notes about the Schrödinger equation.

First, it is analogous to other wave equations such as those for compressive sound

waves or those for translational waves in water. Any wave equation will describe

the motion and the shape of the wave; in describing these two characteristics,

the energy of the wave is comes in handy. Second, the Schrödinger equation is

entirely empirical. It does not fall out of any system of mathematics a priori;

it is not derived in any sense. Schrödinger wrote the equation after observing

countless experiments similar to the double-slit experiment described above.

The equation gained popularity after its numerous set of solutions proved capa-

ble of explaining a countless variety of quantum experiments. (Jammer 1974,

p. 21; Tipler and Llewellyn, p. 174)

So we have our wave equation, and we have an understanding of the elusive

ψ. Now, return to our (classical) notion that identical does not imply indistin-

guishable.

Suppose I have a particle ‘here’ and an identical particle ‘there.’ Equiva-

lently, suppose we have a wavefunction ψ(xa, xb) corresponding to two identical

particles with positions xa and xb. ψ(xb, xa) must then be the same physical

state because our electrons are identical. In other words, there is no physical

difference between wavefunctions ψ(xa, xb) and ψ(xb, xa), even if we are able to

label the electrons and keep them distinguished from one another. For any given

set of vectors 〈xi〉, the set forms a linear vector space if any linear combination

of them, ∑
i

λi〈xi〉,

also belongs to that space. Likewise, any particle i described by the wavefunc-

tion λiψ(xi) in a system of n particles can be described as a scalar factor of any

other particle. (Polkinghorne 1984, p. 86) If we then interchange the positions
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of our two particles, this above sum means

ψ(xa, xb) = λψ(xa, xb).

In other words: We know the probability densities of two identical particles,

ψ2, are identical. This last equation takes this a step further, claiming that

the wavefunctions differ by only a single factor, λ. To find λ, interchange our

particles again: Applying the above equation twice yields

λ2ψ(xa, xb)

for the wavefunction of our original particle at position xa and xb. (1984, p.

89) But two interchanges, regardless of the identity of the particles, must leave

us in the exact same position we started, specifically back at ψ(xa, xb). So,

ψ(xa, xb) = λ2ψ(xa, xb),

and thus,

λ2 = 1, or λ = ±1.

Now we can write the relationship between the two original states, ψ(xa, xb)

and ψ(xb, xa). It is

ψ(xa, xb) = ±ψ(xb, xa).

(1984, p. 89) Particles that obey the positive relation, such as photons, are

called bosons; particles that obey the negative relation, such as electrons, are

called fermions. (1984, p. 39) Whether a particle is a boson or a fermion

does not matter for our discussion. What matters is that if we interchange

two identical particles, their probability density ψ2 remains the same. So even

if we assume the particles are distinguishable, their wave equations yield an

indistinguishable description of their position in space. In other words, if the

particles are identical, then the particles are indistinguishable.

Step two: Dismantle our (classical) notion of locality, that a particle must

reside in a single position at any given moment, regardless of our knowledge of

that particle.
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Recall our observations of the detection screen in experiments one and two.

In experiment one, we have two humps corresponding to a probability distri-

bution of identical (albeit distinguishable) bullets passing through two slits. In

experiment two (and three), we observed and interference pattern. While these

two results appear very different, they are actually described in exactly the same

way. This description relies on a mathematical truth that has been assimilated

into the physics of wave motion, known formally as the superposition princi-

ple. The principle states that wavefunctions add linearly. (Tipler and Llewellyn

2007, p. 59) For the bullets, this is easy to see: Two, small humps correspond-

ing to motion through each slit adds to form one, large hump corresponding

to the bullets passing through both slits. The wavefunctions of these simple,

non-quantum mechanical bullets are just straight lines, reflecting the trajectory

of the bullet. For quantum mechanical particles such as electron and photons,

this is slightly harder to see: The wavefunctions add to form a wavy distribution

pattern. This is because the wavefunctions are not straight lines; they are sine

waves. Squaring the wavefunction ψ gives the probability density ψ2, as has

been discussed.

For sake of honesty, we must allow the wavefunction to take on complex

values. (The reason, put very simply, is because the sine wave that is the wave-

function dips below the x-axis into negative values, and superposition of these

sine waves involves a Pythagorean-like argument that involves taking square

roots of negative numbers.) A typical complex number z is the sum of a nor-

mal number with some multiple of i, the square root of negative one. As an

equation,

z = x+ iy,

where x and y are ‘real’ and i is ‘imaginary’ because the square root of a negative

number does not exist. Mathematicians associate the complex number z with

its modulus, |z|, expressed

|z| = +
√
x2 + y2.
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Here, I wrote the plus symbol to denote that only the positive value be taken

for the square root. (See Andreescu and Andrica 2005, Chapter 1)

In quantum mechanics, the probability that a particle exists at some position

is always calculated in a two-step fashion. I have hinted at this process, but

let us make it explicit. First, one calculates the wavefunction itself, a, which

is always a complex number like z. Next, the probability itself is calculated

by squaring the modulus, a2, which naturally must be positive as indicated in

the last equation. As said before, the wavefunction ψ in Schrödinger’s wave

mechanics is a particular example of the wavefunction, ψ(x), in that it specifies

the probability of finding a particle in a specific location x.

The single, large hump probability distribution in experiment one is given by

the squares of the two, smaller hump wavefunctions. Let ψ1 be the wavefunction

of the particle passing through slit one, and P1 be the corresponding probability

as observed on the detector screen. Similarly, let ψ2 and P2 correspond to slit

two. Thus we can write

P1 = |ψ1|2 and P2 = |ψ2|2.

This corresponds to the probabilities when just one of the slits is open, as we

suggested long ago when we believed that the particle passes through either slit

one or slit two. But in the case we the particles are allowed to pass through

both slits, the probability is given by

P12 = |ψ1 + ψ2|2,

as per the rules discussed governing complex numbers. (Polkinghorne 1984, p.

41) This is the superposition principle at work, correctly adding the wavefunc-

tions as opposed to the probabilities. The quantities ψ1 and ψ2 correspond to

the wavefunctions, and the squares are the actual probabilities of position x.

The wavy probability distribution pattern given in experiment two and three

are due to the constructive and destructive interference between ψ1 and ψ2.
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Figure 3.2: Adding Probability Amplitudes. Notice that with only slit 1 or 2 open, the

intensity is a single-hump curve, I1 and I2. However, when both slits are opened, the

wavefunctions can be added together to form I12. Here, Feynman uses I for intensity;

we have been using P for probability. The two are interchangeable in this context.

Adaptation from his original lecture; Feynman 1965.

Earlier we claimed ψ2 and |ψ|2 are the same thing. What we really meant is

that summing the wavefunctions just yields new probability, and that the last

equation can also be written

Px = |ψ1 + ψ2|2 = |ψ2
x| = ψ(x)2.

But we just claimed that the only way to create a wavy probability distribution

on the detection screen is to have interference, which must be between at least

two particles! So if we assume identical particles are distinguishable in principle,

we end up saying two things (or many!) are in fact one thing.

What is going on? In our third experiment, we observed that shooting one

electron at a time through two slits over and over again produces an interfer-

ence pattern identical to the pattern observed when light, sound, water, etc.

waves pass through two slits. Now we have shown that this pattern can only

be described as a superposition of (at least two) wavefunctions. Because the

wavefunctions ψ in our case are specifically position wavefunctions ψ(x), this

superposition is analogous to a superposition of (at least two) positions cor-
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responding to a single electron. We are forced to conclude: A single electron

passed through both slits.

In the second chapter we explained the fact that every piece of knowledge

(at the quantum level) carries some bit of uncertainty. But this proof was given

using a famous thought experiment, Heisenberg’s microscope. Now, using ex-

perimental observation and mathematical truth, we are claiming that one thing

is for certain: Particles can exist in two places at a single time! The philo-

sophical implications are far-reaching; but, we will put this discussion off for

now. Part I is dedicated to laying the groundwork for the problems in quantum

physics that demand response from philosophy. The philosophic literature on

these topics is vast and often embedded in the physical arguments themselves.

Part II is dedicated to unearthing these topics and exposing them to a philo-

sophic deconstruction in order to illicit a philosophic response. For now, we

turn to yet another mystery of quantum physics involving what knowledge we

can have regarding photons, the traveling wave-packets of energy. Following the

next chapter, we will discuss a famous rebuttal to these quantum mysteries first

proposed by Einstein, Podolsky, and Rosen and the equally as famous response

to this argument, Bell’s Theorem.
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Chapter 4

Observations of

“Polarization”

We now switch our focus from one quantum mechanical particle, the electron, to

another, the photon. The nature of the photon allows some interesting observa-

tions that further the quantum mechanical penetration into basic assumptions.

We will see that our investigations into the behavior of the photon pose further

problems for our understanding of reality and locality, specifically what we mean

by the term “action.” By reality, I refer (with foresight) to the type of reality

that Einstein had in mind when arguing against quantum mechanics and claim-

ing every measured quantity has some corresponding physical reality. Einstein

stated the principle of locality to argue that dynamically separated particles

cannot interact without some information passing between them (here, infor-

mation could be a photon traveling at the speed of light). These concerns of

Einstein will be discussed in the following chapter. Now, we describe experi-

mental observations of the photon.

The photon, as it turns out, is not an easy thing to describe. Before explain-

ing the experimental setups that will reveal quantum behavior and uncertainty,
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we need to understand the two complimentary pictures of the photon.

On the one hand, the photon can be described as a small particle traveling

at light speed c and carrying with it some amount of energy proportional to its

frequency f . As mentioned earlier, this amount of energy is quantized, and so

comes in a multiple of Planck’s constant. Thus, we say the energy of the photon

E = hf = hc/λ. (Tipler and Llewellyn 2007, p. 204) The final expression here

is in terms of c and the photon’s wavelength λ. An experiment that describes

both the quantization of light energy and the particle nature of the photon

is the photoelectric effect. (Tipler and Llewellyn 2004, p. 128) In such an

experiment, light is shined on a piece of metal, and at some length in front of

the metal is a positively charged plated. Light hits the metal, excites electrons,

and the positively charged plate attracts the electrons across the distance. The

rate at which electrons are ejected from the metal plate can be determined by

measuring the current through the charged plate if we establish a simple closed

circuit. Classical mechanics predicted that the photons would hit the metal

plate, and after some time, the atoms would have received enough energy from

the light and would then eject their electrons. The process of energizing atoms

and inducing the electron ejection is called ionization. Furthermore, the classical

prediction said that the rate of ionization would be proportional to the intensity

of light. The brighter, more powerful the light, the more electrons would be

ejected. It was found, however, that the rate of ionization was not proportional

to the intensity at all. Instead, electrons were being ejected even with the

faintest light. However, once the frequency of light was turned down below

some threshold (i.e. making the light redder), ionization stopped completely.

The conclusion is that photons are discrete packets of energy, particles with

energy proportional to their frequency.

On the other hand, photons can be described as light waves that act similar

to other forms of waves such as compression (sound) or translation (water)

waves, as discussed in the previous chapter. The simple experiment here involves
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Figure 4.1: The Photoelectric Effect. When a photon with energy equal to the

ionization energy of the atom strikes a metal surface, the electrons are freed from the

atom and jump off the plate. If there is a positively charged conductor present, the

electrons will float towards it.

shining a light upon two slits and observing the pattern that forms on a wall

behind the slits. If photons were merely particles, we could predict that the

pattern on the wall would essentially be two vertical strips: The photons would

pass through one slit or the other and hit the wall like hurling thousands of small

rocks through two slits and watching two impact strips form behind. However,

light creates an interference pattern. The area on the wall between the two slits

is brightest, followed outward by strips of dimming light separated by darkness.

The reason is because the light waves constructively and destructively interfere

with one another. The light waves pass through a slit and propagate radially

from the slit, as shown in in previous figures. If you put two of these patterns

next to each other, you create corresponding areas of minima and maxima:

Light propagating from one slit interferes with light propagating from the other

slit. Constructive interference creates bright strips on the wall, and destructive

interference creates dark strips. This process is exactly the same for a wave in

water approaching a wall with two slits, passing through the two slits, forming

two radial patterns, and interfering on a distant wall. Recall Figure 3.1.

With this particle-wave model, we proceed to explain the polarization exper-

iment. First, what is polarization? Most waves require a medium through which

41



to propagate, such as sound waves or waves in water. Light, however, is self-

propagating. This is because there are two components to a light wave, an os-

cillating electric field and an oscillating magnetic field. According to Maxwell’s

equations, a changing electric field induces a magnetic field, and similarly a

changing magnetic field induces an electric field. If both fields are changing at

a periodic rate, i.e. if both fields are oscillating like a wave, then they induce

a periodic oscillation in each other. The result is a light wave composed of

an oscillatin g electric field perpendicular to an oscillating magnetic field with

both fields perpendicular to their direction of propagation. A photon is built by

superimposing many oscillating electromagnetic waves. After many waves are

put on top of one another, the result is a single “point” in space where all the

added waves constructively interfere to form a packet of electromagnetic energy.

We call this packet a photon.

So, if you were able to see a photon “head-on,” it would look like an cross.

Each line of the cross would correspond to an oscillating field; the length of the

line would correspond to the amplitude of oscillation. One can imagine that

this cross can be oriented in an infinite number of directions. Focusing on only

the electric field, the line could be pointed vertically, horizontally, and at any

angled value in between. Such is the case with sunlight: The sun releases an

infinite stream of photons with an infinite number of orientations. Polarized

light refers to a light wave that has a specific angle of polarization. There are

many ways to polarize light. Some polaroids absorb all light except the light

that is enters at some specific angle as determined by the orientation of the

polaroid, and thus all emerging light is polarized at that angle. We say that

the polaroid allows through the component of the light which is polarized in

the direction of the polaroid axis. An electric field pointing in any direction,

let’s say line OA, can be through of as two perpendicular components, OX and

OY. If the polaroid axis points in the OX direction, the light will be “divided”

and only the component corresponding to that direction will emerge. The same
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is true if the polaroid axis is pointed in the OY direction. In the special cases

when the electric field is entirely in the direction OX or OY, a polaroid oriented

in the x-direction transmits all and none of the light, respectively.

Another device used to polarize light is a calcite crystal. Instead of absorbing

the component of the light that is perpendicular to the polaroid axis, the calcite

crystal allows all the incident light through but forces the two components of the

light to emerge out different paths. The intensity of the two emerging beams,

E2
x and E2

y , equals the intensity of the incident light, E2, by the Pythagorean

Theorem. The inner workings of such a calcite crystal polaroid is not important

to our discussion, and we shall simply refer to these polaroids by drawing boxes.

The label HV will refer to a calcite crystal oriented in such a way that the

emergent light is polarized along a horizontal and vertical path; similarly, ±45◦

will refer to calcite crystal polaroids oriented such that the emergent light is

polarized along +45◦ and −45◦ path. (Rae 1986, p. 19)

At this point, it probably seems that polarization is a phenomenon that

supports only the wave picture of light and might not be applicable to individual

photons. However, as our ‘energy-packet’ description predicts, this is not the

case. Consider a very faint beam of light entering a calcite crystal such that

only a single photon passes through at a time. The photon must emerge in one

of the two channels, for at the very least the photon must go somewhere. We

can set up a detector behind the H path and behind the V path; the detector

will click each time a single photon passes through the crystal. We can confirm

the validity of this experiment by including two additional HV polaroids, one

behind the H path of the initial crystal and one behind the V path. The photons

will emerge from one of the two paths and then enter the second HV crystal.

If the photon follows the H path out the first crystal, then it will follow the H

path out polaroid in the second set; if it follows the V path out the first, it will

follow the V path out the polaroid in the second set.

Things start to get strange when we manipulate the setup further. Suppose
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the incident light on the first HV crystal is polarized in the +45◦ direction using

a traditional light-absorbing polaroid. Now replace the second set of polaroids

with ±45◦ polaroids. (Remember from previously that if a beam of light is

polarized in the H direction, say, a ±45◦ polaroid will divide the light into

two equal components.) As expected, half of the photons emerge from the HV

crystal polarized in the H direction and half emerge polarized in the V direction.

Each beam is then sent through a separate ±45◦ crystal. We now find that the

intensity of the light emerging from the +45◦ and −45◦ paths of each of the

second polaroids equals exactly one quarter of the initial +45◦ polarized light;

the second set of polaroids divides the H and the V beam into equally intense

components. In other words, the photons seem to have forgotten their original

polarization of +45◦. The original polarization of +45◦ has been destroyed by

the HV measurement. We reach a similar conclusion to that achieved in the

second chapter: A measurement necessarily affects the state of the system being

observed. Furthermore, we cannot know the state of a system unless we measure

it. When the photons passed through the first HV crystal, we thought we knew

the polarization; namely, we thought it was +45◦. As the second set of polaroids

proves, though, we did not in fact know anything about the ±45◦ polarization

of the photons emerging from the HV crystal. The only way to know such a fact

is through measurement; but conversely, such a measurement affects the very

thing we are after.

These explanations might not seem all that surprising. We know that a cal-

cite crystal splits a beam of light into two components, either H or V polarized.

No matter what the initial polarization of the beam was, the H or V polariza-

tion says nothing about the ±45◦ polarization. It should not be too surprising

that it is impossible to attribute two polarization directions to a single photon –

our conclusions followed directly from the wave-packet model of light extended

to a beam of faint light. However, we have already observed some insight into

the question of determinism and certainty. When a +45◦ photon enters an HV
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polaroid, the channel through which the photon will emerge is completely un-

predictable. We know that after many photons, the number emerging from each

will be roughly equal. If we focus on a single photon, however, the outcome is

entirely random (though we should be careful with such language). It is impor-

tant to note that this uncertainty arises from the fact that the photon should be

treated as a particle just as much as it should be treated as a wave. If the light

were merely a wave, then both the H beam and the V beam emerging from the

initial polaroid would emerge from the second set of crystals polarized in the

+45◦ direction. The indeterminacy arises because the photon must go through

either the H path or the V path, and thus the HV measurement destroys the

initial +45◦ polarization.

So far, no new conclusions regarding uncertainty, locality, or objective knowl-

edge have been reached.

Another interesting fact about calcite crystals is that we can reverse our

polarization measurement. When a beam of light enters a calcite crystal, it

is split into two components. These component beams emerge parallel to one

another. We can set up another HV polaroid oriented in exactly the opposite

direction behind the initial; call this second polaroid HV′. (Rae 1986, p. 24)

If we set the distance between HV and HV′ very carefully, we can make it so

the two component beams converge perfectly ‘in-step’ with one another in HV′

thus allowing the final beam to have the same intensity as the initial beam.

Now suppose we send a beam polarized in the +45◦ direction through this

same setup. Suppose further that we want to measure the polarization of the

final beam with a ±45◦ polaroid, just to make sure the photon original +45◦

polarization actually was destroyed by the HV and/or HV′ measurement. From

the preceding experiment, we expect an equal number of photons to emerge from

the +45◦ and −45◦ paths of the third calcite crystal. But instead, the photons

emerge from only the +45◦ path of the third polaroid. When the intensity is

turned down such that only one photon passes through at a time, the same
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result is observed: It is as if the single photon was split by the first polaroid,

followed both H and V paths, and was reunited in the second crystal. Yet if we

had instead placed a detector behind the first HV polaroid instead of the HV′

polaroid, we would be able to conclude with confidence that the photon was

polarized in either the H or the V direction but not in both. This fact is quite

difficult to reconcile with the previous conclusion that the measurement of the

photon changes the polarization state.

One might rebut that the effect of the second polaroid might be different from

what we thought and that in actuality each photon passing through is somehow

turned into a +45◦ polarization. We could test this possibility by blocking the

H or V path emerging from the original HV polaroid so that we know for certain

that the photon is either H or V polarized, respectively. But when we do this, we

observe that the original +45◦ polarization has indeed been destroyed because

the photons emerge at random through the third ±45◦ polaroid. We are then

forced to conclude that, either the photon passes through both HV channels at

once, or if it does pass through only one path then it somehow knew what it

would have done had it passed through the other. At this point, it is unclear

which disjunct we should accept!

In the start of this chapter, I claimed we would stumble upon a quite un-

orthodox conclusion regarding locality. With foresight, I will call this conclusion

‘action at a distance,’ or entanglement. The problem is coming: We must con-

tinue with the polarizing apparatus. It is important to note, though, that all

the experiments discussed in this chapter up to now and following are repro-

ducible and perfectly practical. These are not thought experiments, but rather

observations we must accept. (Rae 1987, p. 47; Albert 1992, p. 2)

The next set of experiments involve an atom that transitions from an excited

state to a ground state and releases two photons in quick succession. These

photons will have different wavelengths corresponding to different colors, say

red and blue. What is important for our discussion, though, is that these
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photons will always be polarized perpendicular to one another; for instance,

the red photon might be polarized in the +45◦ direction and the blue photon

might be polarized in the −45◦ direction. Naturally, not all atomic transitions

undergo this type of photon emission, but some in fact do and such systems are

perfectly practical in the experimental context. (1987, p. 28)

How is it that we know the photons are perpendicularly polarized? One

answer is that quantum mechanics requires it. For our purposes, though, it

is easier to point out that this property can be directly observed using HV

polaroids. Suppose we have an atomic gas light source that emits these special

pairs of photons. Because the gas is constantly emitting photons, we might

mix up the blue photons with the red photons and vice versa. To avoid this

confusion, we can set up color filters on either side of the source so that photons

going to the left pass through a red filter, allowing all red light through, and

the photons going to the right pass through a blue filter, allowing all blue light

through. Behind these filters we set up HV polaroids. Now, we are ready to

observe which photon (blue or red) is H polarized and which is V polarized.

So, in our apparatus, whenever a photon emerges from the left polaroid in

the H direction we expect another photon to emerge from the right polaroid in

the V direction. We adjust the intensity of the light such that detectors behind

the polaroids can operate sufficiently fast to record individual pairs of photons.

Of course, there is nothing special about the HV polarizes: The could just as

well be ±45◦ polaroids or any other pair of perpendicular polaroids.

Let us remove the right-hand polaroid and detector. After all, if we know

that the right-hand photon must be polarized in the perpendicular direction as

the left-hand photon, then a measurement of the left-hand photon constitutes a

measurement of the right-hand photon. (1987, p. 29) Up to this point, we have

spoken as if the polarization of each photon is exactly H or V. While we know

the photons are polarized perpendicular to one another, it is very improbable

that the photons are polarized in exactly the H and V directions. But if we
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are dealing with single photon pairs, we know that there is only one photon

passing through the polaroid, and thus there cannot be some component of

intensity that is subtracted. Such a subtraction only makes sense in the context

of many photons where the wave model can be applied with total confidence.

Still, the photon passes through one channel of the left-hand HV polaroid, let’s

say the H channel. We thus know the polarization of the right-hand photon

is V. But wait! We have learned numerous times now that the measurement

of the system affects the state of the system. So while the left-hand photon

could not have possibly been exactly polarized in the H direction, measurement

of this polarization implies the right-hand photon is polarized exactly in the V

direction. We can prove this by setting up the right-hand polaroid at a much

greater distance from the light source than the left-hand polaroid: It does in

fact turn out to be polarized in the V direction. It seems that measurement

of the left-hand photon has in essence polarized the right-hand photon. (1987,

p. 30) It seems that the photons have instantaneously communicated with one

another post-measurement. This is quantum entanglement.

Here lies a potential problem. We just stated that the photons are never

polarized in exactly the H or V directions. Instead, the HV polaroid ‘averages’

the polarization of the photon: If the photon is in fact polarized +44◦ to the

horizontal, it will emerge through the H channel; if the photon is in fact polarized

+46◦ to the horizontal, it will emerge through the V channel. So, we might

conclude that the result of the above paragraph comes as no surprise. Perhaps

the photon emerges from the left-hand crystal in the H direction, but because

this is merely an ‘average’ polarization, the photons do not need to communicate

for the right-hand photon to be measured as polarized in the V direction because

it too is just an averaging. By arguing this, we have implicitly rejected the

quantum principle that the act of measuring is a random and indeterministic

process. (1987, p. 31) Instead, we conclude that the polarization measurement

of each photon was determined from the beginning.
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But one thing is for certain: Once the left-hand photon emerges from the H

channel, it is in fact polarized in the H direction. Perhaps the crystal ‘averaged’

the polarization of the incoming photon, this we concede. Yet upon exit, the

photon must be polarized in the H direction as per the physics behind the

structure of the calcite crystal. Because the photons must always be polarized

in the perpendicular direction, measurement of the left-hand photon implies the

right-hand photon must now be polarized in exactly the V direction. Wherever

the right-hand photon is at the time of left-hand H polarization, its polarization

becomes polarized in the V direction. There is thus no room for randomness

associated with this measurement. (1987, p. 34) The obvious response is:

“This cannot be possible. The two photons are distinct entities separated by

some distance. Thus, when one photon is polarized, the other photon remains

unchanged.”

However, the above set-up can be further complicated to show that after

the left-hand photon has been measured, say in the H direction, the right-hand

photon is polarized exactly in the V direction. There is no averaging going on;

instead, the H measurement on the left implies a polarization of precisely V on

the right. To explain this experiment in detail and how the results are consistent

with a quantum mechanical description requires more mathematical formalisms

and further changes to our original polarization apparatus. These experiments

use statistical arguments that consider a large number of photons. It is not

necessary to go into detail on these experiments. Rather we can state with

experimental confidence that when the left-hand photon emerges H polarized,

the right-hand photon is V polarized, regardless of its initial polarization. (Rae

1987, p. 36; Polkinghorne 1984, p. 70; Albert 1992, p. 45; Jammer 1974, p. 58)

We seem to have some strong evidence for a deterministic hidden-variable

theorem. In other words, the result of polarization measurement appears to be

determined with certainty in advance by some property of the photon: The pho-

tons seem to ‘know what they are going to do’ before they enter their respective
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polaroids. There must exist some hidden variable that determines the action of

the photons, a variable of which we are not yet aware. This was the conclusion

of Albert Einstein and his coworkers, Boris Podolsky and Nathan Rosen. Ex-

plaining this argument in full and the quantum response is the subject of the

next chapter.

Before setting the out the argument for hidden variables and Einstein’s de-

terminism, I would like to end this chapter by explaining a much simpler ob-

servation of the indistinguishability. In a textbook of statistical mechanics,

Daniel Schroeder explains the curious behavior of a Bose-Einstein condensate,

a collections of bosons (particles mentioned briefly in Chapter 3). A boson gas

undergoes Bose-Einstein condensation when the temperature drops to a very

low value (the standard BE condensation temperature is less than 1 Kelvin,

or colder that −272◦C). The temperature is distributed throughout the bosons

as kinetic energy. When the temperature reaches this very cold threshold, the

boson particles condense in the “ground state.” The ground state of a particle

is the lowest possible energy state. No temperature, no energy, no excitation.

We can actually watch this condensation take place in the laboratory setting.

How can we explain this behavior? Schroeder ends the section:

So the explanation of Bose-Einstein condensation lies in the com-
binatorics of counting arrangements of identical [indistinguishable]
particles: Since the number of distinct ways of arranging identical
particles among the excited states is relatively small, the ground
state becomes much more favored than if the particles were distin-
guishable. You may still be wondering, through, how we know that
bosons of a given species are truly identical and must therefore be
counted in this way? . . . the answers are not completely airtight–
there is still the possibility that some undiscovered type of inter-
action may be able to distinguish supposedly identical bosons from
each other, causing a Bose-Einstein condensate to spontaneously
evaporate [upon observation]. . . . as David Griffiths has said, even
God cannot tell them apart. (Schroeder 2000, p. 322-323)

Here, Schroeder is quoting the introduction of Griffith’s textbook Intro-

duction to Quantum Mechanics. It is true that quantum physics makes the
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assumption that identical particles are not distinguishable in principle. This

assumption allows countless problems to be understood in a new light. How-

ever, some might say this assumption is not true, and there must exist some

hidden variable that allows us to distinguish. Perhaps this alternative is even

stranger. If, while watching a gas of bosons condense, we were suddenly able

to distinguish the particles, they would “spontaneously evaporate.” The behav-

ior of the particles themselves would change because we suddenly gained the

ability to distinguish bosons. So, if we assume the classical argument that all

particles are distinguishable in principle, then we (again) run into the quantum

argument that observation changes the state of a system. We thus invoke Oc-

cam’s razor and cut out the classical assumption of identical yet distinguishable

particles. Still, we will dive deeper into the defense of hidden variables clarify

our understanding of what is at stake with quantum mechanics.
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Chapter 5

Einstein’s Conjecture and

Bell’s Response

In their essay Can Quantum-Mechanical Description of Physical Reality Be

Considered Complete?, Einstein, Podolsky, and Rosen argue that the quantum-

mechanical description of such phenomena as the one described above cannot

be considered complete; the argument is commonly referred to as EPR. Fortu-

nately, we can apply their argument directly to where we left off in the previous

chapter. However, there are some definitions underlying the EPR argument

that must be highlighted before we continue.

First, as the title of their paper begs, what does it mean for a description

of physical reality to be complete? EPR ask this question explicitly in the first

few paragraphs.

In attempting to judge the success of a physical theory, we may ask
ourselves two questions: (1) “Is the theory correct?” and (2) “Is the
description given by the theory complete?” . . . The correctness of
the theory is judged by the degree of agreement between conclusions
of the theory and human experience. This experience, which alone
enables us to make inferences about reality, in physics takes the form
of experiment and measurement. (Einstein et al. 1935, p. 777)
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Perhaps it is obvious that before even reaching their question of interest, namely

question (2), EPR have already adopted a certain theory of knowledge. “Cor-

rect” knowledge, to EPR, is the consistency between theory and human expe-

rience. EPR are implicitly endorsing a type of empiricism, a type that analogy

is discussed in Chapter 6. Putting this note aside for now, EPR continue:

Whatever the meaning assigned to the term complete, the following
requirement for a complete theory seems to be a necessary one: every
element of physical reality must have a counterpart in the physical
theory. We shall call this the condition of completeness. The second
question is thus easily answered, as soon as we are able to decide
what are the elements of the physical reality. (Einstein et al. 1935,
p 777)

In other words, in order for a physical theory to be complete, it must be able

to predict with certainty the measurements described at the end of the previous

chapter. If the left-hand apparatus cannot affect the state of the right-hand

photon, then the left-hand polaroid must measure some property of the right-

hand photon without disturbing it. (Rae 1987, p. 31) While this property might

not be the polarization, it must be related to some hidden variable which would

predict with certainty the result of the right-hand polarization measurement.

This hidden variable is what EPR consider the reality of the complete physical

theory.

The elements of physical reality cannot be determined by a priori
philosophical considerations, but must be found by an appeal to re-
sults of experiments and measurements. A comprehensive definition
of reality is, however, unnecessary for our purpose. We shall be sat-
isfied with the following criterion, which we regard as reasonable. If,
without in any way disturbing the system, we can predict with cer-
tainty ( i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality correspond-
ing to this physical quantity. . . . Regarded not as necessary, but
merely as sufficient, condition of reality, this criterion is in agree-
ment with classical as well as quantum-mechanical ideas of reality.
(Einstein et al. 1935, p. 777)

53



(Let us point out right away that EPR calling their criterion for reality sufficient

as opposed to necessary does not protect them in any way. They argue, “If we

can find a hidden variable that describes an event, then we can sufficiently call

this event real.” I believe they make distinction because they do not want to

get wrapped up in a discussion on the formal criterion for reality. Nevertheless,

even this sufficient condition will cause trouble.)

EPR refer to another important criterion for any given physical experiment.

It is an extension of their criterion for reality, but it will prove problematic in

its own way. Einstein proved that the speed of light is a sort of ‘speed limit’

for anything in the universe. (Greene 2004, p. iix) No piece of information

(i.e. a photon or an electron) can travel faster than the speed of light, in any

inertial references frame. (See Section 6.2 for further discussion.) This led EPR

to assert a principle of locality:

If two systems have been for a period of time in dynamical isolation
from each other, then a measurement on the first system can produce
no real chance in the second. (Polkinghorne 1984, p. 73)

This sounds perfectly reasonable, but we have shown in the last chapter that

such a principle is conspiratorial at the very least. At the time of the devel-

opment of quantum mechanics, this principle was rather undisputed. We shall

see, however, it is the nub of the matter.

So, we have two paths to choose from: Either the quantum mechanical

description can be extended so that the measurement of one photon instanta-

neously affects a photon a long ways away, or there is a hidden variable theory

that determines the outcome with certainty underlying the quantum descrip-

tion. Put simply, we can either accept action at a distance, or we can accept

determinism.

At the end of the previous chapter, we left off by claiming that it appears

the measurement on one side of the room instantaneously affects the state of a

photon on the other side of the room. This is the quantum conclusion. We also
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said that the polarization measurement is always a type of averaging of each

individual photon. This mechanism presented a challenge to the quantum con-

clusion: There might exist a hidden variable within the photon that determines

the perpendicular polarizations, not the measurement itself.

In order to avoid over-complicating our photon polarization experiment, we

will switch to another pair of quantum particles: an electron and a positron. The

behavior of this pair is very similar to our photon pair. Through a process called

pion decay, an electron and a positron are sent in opposite directions. Instead of

having perpendicular polarization, the electron and positron have perpendicular

spins. The spin of a particle is derived from its angular momentum vector, and

has two values in any given axis: up or down. This pair (as well as the photon

pair, for that matter) has another similarity to what has been discussed above:

uncertainty in the product of observables. In the second chapter, we used the

observables of position and momentum. We showed that the product of these

two observables must yield some amount of uncertainty. In other words, we

cannot know with certainty the value of both observables to an arbitrarily high

degree. The observables are incompatible. In our discussion of photons, this

did not matter: We were only discussing one observable, namely polarization.

Here, though, we want to discuss two observables, namely the spins along two

different axes.

Say that I am on one side of the laboratory ready to measure the spin of the

electron; you are on the other side of the laboratory ready to measure the spin

of the positron. We know that if I measure an x-spin of up, then you must then

measure a x-spin of down. We repeat this experiment many times, differing our

distances from the source, changing to y-axis and z-axis spin measurements,

hiding our answers from each other, etc. Yet our measurements always result

in anti-parallel spins. Thus is the behavior of pion decay. So, like our photons,

we can conclude that one of our measurements is unnecessary, because one

measurement will always imply the other. Let us say that when I measure
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spin-up in the x-direction, we have state Ix; similarly spin-up in the y- and

z-directions are Iy and Iz respectively. Alternatively, when you measure spin-

down, we call those states IIx, IIy, and IIz. We also know when I measure

a spin-up in any given direction, you should measure spin-down in that same

direction. So when I measure Ix, you measure IIx, likewise with Iy and IIy, and

so on.

For our purposes, it is also important to know that the spin of a particle

is a vector quantity. (Tipler and Llewellyn 2007, p. 126) Because it is derived

from the angular momentum of a particle, the spin axis is always pointing in

one direction. The spin of the particle is always pointed in one and only one

direction. The spin is the result of the summation of angular momentum vectors.

Also it should be noted that, like polarization, spin is practically never exactly

parallel to a given axis. This makes sense, of course: Whatever coordinate

system we impose upon the particle will be entirely arbitrary, and we should

not expect the motion of the particle to perfectly comply. So, when we say

spin-up and spin-down, we are averaging the angular momentum vector; if the

spin points to the top half of the coordinate hemisphere we say spin-up, and

if it points to the bottom half of the hemisphere we say spin-down. Why does

it have this summative property? Simply, spin can be considered up or down,

but in actuality the vector that points up or down precesses like the handle of

a top. So we can imagine the spin vector as twirling around in a hemisphere of

a sphere. This second note, however, does not impact our conclusions; it is a

point of conceptual clarification. The first point, however, is crucial: A particle

cannot have two spins, because the spin is a summative property that considers

the entire system within the particle.

Now, suppose I intend to measure the x-spin of the electron, as before,

but you intend to measure the y-spin of the positron. Suppose you are a step

further back from the pion decay source than I am, so that I measure the x-

spin of the electron before you measure the y-spin of the positron. Because the
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spins in perpendicular axes are incompatible observables, quantum mechanics

necessitates that knowledge of the electron’s x-spin destroys knowledge of the

positron’s y-spin. (Recall that the uncertainty principle argues that the products

of the uncertainties of two observables equals a discrete value. Thus as one

variable goes to zero, the other must go to infinity. In other words, as the we

achieve certainty of one variable, the other uncertainty of the other variable

explodes.) If I measure Ix, then there is a 50% chance you measure Iy and a

50% chance you measure IIy; similarly if you chose to measure the z-spin. It

is impossible to predict the outcome of these two spins until a measurement is

made.

To clarify, we can physically imagine this quite easily. Suppose I have a

sphere, and at the center I have a vector. The vector must point to either the

left half or the right half of the hemisphere, for it has nowhere else to point.

Now, consider we have two spheres, A and B, each with a vector pointing in one

direction, ~a and ~b, respectively. Like the electron and the positron, the vectors

point in opposite directions. Suppose ~a points to the left side of the hemisphere,

in the −x direction. Then, ~b must point to the right side, in the +x direction.

So we have in our minds, for A, the left hemisphere ‘shaded,’ and for B, the

right hemisphere ‘shaded.’ What can we say about the other hemispheres of the

circle? Suppose we want to know the direction of ~a or ~b relative to the y-axis of

our sphere. Well, for A, we know that ~a can only point to the left; but this still

leaves a 50% chance for ~a to point in the +y hemisphere and a 50% chance for

~a to point in the −y direction. The same is true of the direction of ~a relative

to the z-axis. For ease, let’s call the spin of the electron ~a and the spin of the

positron ~b

The EPR argument is thus: A measurement of ~a in state Ix enables us to

predict with certainty the value of ~b to be in state IIx. The same is true if ~a is

measured to be in Iy or Iz. On the basis of our the principles endoresed by EPR,

namely the criterion for reality and the principle of locality, we can therefore
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say that IIx, IIy, and IIz are all real properties of ~b once we have determined

the corresponding properties of ~a. However, we know that either vector being

in two states, for instance IIx and IIy, is not 100% probable: For if ~a is in Ix,

then it must be the case that ~b hase a 50% chance of being in Iy and a 50%

chance of being in IIy. As stated, EPR claimed this indicated an incompleteness

of quantum theory. (Albert 1992, p. 42) The incompleteness, to be precise, is

that measurement of the spin of ~a necessitates uncertainty in the state of ~b. The

EPR paper concludes:

While we have thus shown that the wavefunction does not provide
a complete description of physical reality, we have left open the
question of whether or not such a description exists. We believe,
however, that such a theory is possible. (Einstein et al. 1935, p.
780)

Thus the conclusion of EPR is that quantum mechanics is merely a practical

way of describing systems, but there exist hidden variables governing the prop-

erties of the particles. A complete theory of physics would include such hidden

variables. However, EPR had defined the rules so as to assure themselves vic-

tory. First, let us tell the story EPR set up in a different way. This is Bell’s

theorem, conjectured by John Bell in 1964.

To begin, let us assume it is possible to know the spin state of a particle

relative to all three axes. To use our sphere model, this would localize the spin

to a region of an eighth of the sphere. If ~a spin-up relative to all its axes, then

we can say ~a is in state (x+, y+, z+). So, there are eight possibilities in all:

(x+, y+, z+), (x−, y+, z+), . . . , (x−, y−, z−). Suppose I measure ~a and find that

it is in state Ix, or x+. We know then ~b is in state IIx, or x−. Now I measure ~b

and find that it is in state IIy, or y−. We know then ~a is in state Iy, or y+. So

~a must be in one of two states, (x+, y+, z+) or (x+, y+, z−). Similarly with ~b.

Now, instead of measuring just a single pion decay, let us measure many pion

decays. Sometimes we measure spin along the x-axis for both, sometimes we

measure spin along the x-axis for ~a and spin along he y-axis for~b, and so on until
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we have a sufficiently high number of measurements. For each measurement,

we can nail down the spin relative to only two axes: As said just above, each

measurement-couplet will yield two possibilities for spin along the third axis.

So, we add up the numbers of each measurement. For example when either ~a

or ~b has up-psin relative to the x- and y-axes, I mark one point for n(x+, y+).

I do the same for the numbers n(x+, y−), n(x−, y−), n(x+, z+), and so on. Bell

was able to show (using some combinatorics that are not entirely beyond the

scope of this thesis but would indeed bog us down; for a great discussion using

only counting [no vectors or spin], look to Rae 1987, p. 37) that the outcome of

such an experiment, given EPR’s criterion for reality and principle of locality,

should be:

n(x+, y+, z±) ≤ n(x+, y±, z+) + n(x±.y+, z+).

This statement, known as Bell’s inequality, is a testable prediction that is inline

with the assumptions in EPR. The experiment (using lots of pion decays) has

been performed many times. The results violate Bell’s inequality about half the

time; in other words, there are equally as many times where the conjunction in

the inequality is > rather than ≤. (Polkinghorne 1984, p. 75) In other words,

there must be some kind of action at a distance that allows one particle to

switch spins when we measure the spin of another. (1984, p. 76)

Bell’s inequality and the combinatoric setup above are predicated only on the

two assumptions of EPR. For one, if the property that determines spin is ‘real’

to EPR then it should result in a measurable quantity. Bell responded, “Fine,

consider the system as normal and start adding things up.” For two, no particle

can undergo instantaneous change upon action some dynamical distance away.

Again, Bell responded, “Fine, consider the system as normal and start adding

things up.” Bell’s theorem works flawlessly in all normal cases. One example is

if we are to shoot a ball from a cannon and give it some spin: Measuring the

spin vector many times would leave us with Bell’s inequality. Another example

is if we are to make a table with the top variables as x, y, and z, and then start
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listing random triplets of +’s and −’s under the columns, like so:

x y z

+ – +

– – +

+ + –

+ – –

– – +

+ + +

– + –

. . . . . . . . .

Go ahead, do so yourself and see if you can find a set of n triplets that does not

obey Bell’s inequality. You will not succeed, because it is impossible.

Bell’s theorem operates like clockwork everywhere, expect of course in the

quantum world. As such, the philosophical ramifications are now teaming at the

gates of quantum theory. This last chapter of Part I was meant to articulate a

zenith to the problems of quantum mechanics. EPR, and many others, did not

disagree with Bell’s theorem. Once experimental results began to flow in the

1970’s that violated Bell’s inequality (see Freedman 1972; Clauser 1974; Aspect

1981; Bell 1987), the strangest of interpretations became somewhat undeniable.

But with this interpretation comes extremely urgent questions. To the false

criterion of reality as per observation, we might ask the question, “What, then,

makes an object real in and of itself rather than the reality of our observation?”

To the false principle of locality, we might ask the question, “What, then, is the

cause of such instantaneous communication?” Obviously, there can be many

questions stated to the results of quantum experiments. The thread of com-

monality, however, is that they all seem to outright deny our intuitive grasp of

space, time, and existence. What to make of our knowledge on these matters?

Part II is dedicated to unravelling the philosophic ramifications of quantum

mechanics. Our first task will be to understand the interpretation of quantum
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mechanics as per the founders of the theory, such as Werner Heisenberg and

Neils Bohr. I believe these people are just as much philosophers as they are

theoretical physicists. We will begin to see many aspects of this Copenhagen

interpretation that reflect trends in modern philosophy, specifically those that

find their roots in Kant’s critique of metaphysical knowledge. We will then use

Kant to defend the Copenhagen interpretation against the classical philosophy

of physics. This, however, will uncover holes that Kant could not possibly have

foreseen. We will attempt to patch these holes in the final chapter where we

will utilize postmodern understandings of quantum physics.
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Part II

An Image of Ourselves
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“As far as the laws of mathematics refer to reality, they are not cer-

tain; as far as they are certain, they do no refer to reality.”

–Albert Einstein

As our discussions have shown, measuring the location, or the momentum,

or the polarization, or the spin, or any observable involves “breaking” or “col-

lapsing” the wave function. By this, we mean: The particle can have any

given value for any given observable until that observable is measured. Before

measurement, the wavefunction describing any given observable yields an infi-

nite number of possible values. Our experiments have attempted to limit the

number of possibilities in order to predict the outcome of a given set of initial

conditions. First, we tried a brute force method: In Chapter 2, we attempted to

image the electron itself, and thus limit a single variable to a single possibility.

This proved impossible, and gave us an understanding of how the uncertainty

principle functions in our observations of the physical world. In the third chap-

ter, we gave the electron two choices; the electron refused to cooperate and

instead passed through both slits creating an interference pattern. Until, that

is, when we measured the electron, its wavefunction collapsed, and it willingly

went through a single slit, erasing any semblance of an interference pattern. In

Chapter 4, we showed that again that measuring the system affects the system.

We then proceeded to show that not only does measurement affect the system

we are measuring, but measurement of a system instantaneously affects systems

at great distances! In the fifth chapter, we presented an argument against these

claims which proved to be supported only by more fundamental, essentially

philosophical assumptions of cause, action, and reality. We were left without

an answer to the rudimentary question, “How can we know anything about a

system without directly observing?”

Our answer has been inescapably empirical. If we do not look, we cannot

know the state of the system. Our conclusion, however, was further-reaching:

63



The system exists in a state of probability. It makes no sense to talk about the

system in any other way until we collapse the wavefunction and measure the

state of the system. What, then, is real?
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Chapter 6

The Copenhagen

Interpretation

6.1 A Paradox

The interpretation of these questions as adopted by the founders of quantum

mechanics is known as the Copenhagen interpretation. The name comes from

reference to the series of talks that were held in Copenhagen during the initial

formulations of quantum theory. Headed by Neils Bohr, the Copenhagen school

of quantum theory taught that our descriptions of reality are limited by our

descriptive framework. How this conclusion is reached is the subject of this sec-

tion. I will primarily draw this interpretation from one of its founders, Werner

Heisenberg, and his book Physics and Philosophy, written in 1958. While quan-

tum mechanics accurately describes the observations of the experiments in the

previous chapters, we will see that it also poses challenges to some fundamental

assumptions.

The Copenhagen interpretation begins with a paradox:

Any experiments in physics, whether it refers to the phenomena
of daily life or to atomic events, is to be described in the terms of
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classical physics. The concepts of classical physics form the language
by which we describe the arrangement of our experiments and state
the results. We cannot and should not replace these concepts by
any others. Still the application of these concepts is limited by the
relations of uncertainty. We must keep in mind this limited range
of applicability of the classical concepts while using them, but we
cannot and should not try to improve them. (Heisenberg 1958, p.
44-45)

Heisenberg is making explicit the claim that it is impossible to build, from the

ground up, a new conceptual framework for describing the natural world. To

get a better understanding of this paradox we can compare a classical approach

to a quantum approach. In Newtonian mechanics, for instance, we can begin

our inquiry by measuring, say, the position and velocity of some moving body.

These results are translated into a mathematical schema by deriving values for

the coordinates, rates of change, etc. These formulas are then used to derive the

coordinates or rates of change at any given moment. We predict, with certainty

in our mathematical consistency, the properties of the system at any later time.

When describing the motion of planets, say, this approach works quite well and

we can be confident in our conceptual schema. (1958, p. 45)

In quantum mechanics, the approach is quite different. We might be inter-

ested in the motion of an electron and determine some kind of initial position

and velocity. But these descriptions will be subject to the uncertainty principle.

Still, the uncertainty principle allows us to insert the observations into a mathe-

matical schema that is essentially classical. Quantum mechanics does not change

the mathematical schema. It uses the mathematical schema in precisely a clas-

sical way. In a classical way, I mean that quantum mechanics simply inserts an

uncertainty, rather than a known variable, into classical physical descriptions.

In doing this, it yields what we have called the wavefunction, a probability func-

tion. The wavefunction “represents a mixture of two things, partly a fact and

partly our knowledge of a fact . . . [it] represents both a tendency for events and

our knowledge of events.” (1958, p. 45-46) We can calculate the probability
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of the electron being at some specific point later at some later time, but this

probability does not represent a course of events through time. There is no

reality to it a priori.

The probability function can be connected to reality only if one
essential condition is fulfilled: if a new measurement is made to
determine a certain property of the system. Only then does the
probability function allow us to calculate the probable result of the
new measurement. The result of the measurement will again be
stated in terms of classical physics. (1958, p. 46)

At the same time, it is tempting to say that while we cannot know what the

electron does between measurement A and measurement B, it did in fact follow

some kind of path between the two points of observation. This argument is

valid in the classical framework. In quantum mechanics, we will see that such

an approach is a misuse of the language which cannot be justified. For now,

we can leave open the question whether this statement refers to our description

of the event, epistemology, or the event itself, ontology. What matters for now

is that all we have in the mathematical schema is a statement of possibility.

We can therefore not describe what happens between two observations. We

cannot pin down which slit the electron goes through; we cannot explain how it

is that the photon suddenly switches its polarization from almost-V to precisely

V. Further, simply saying the electron went through one slit or the other slit is

problematic and leads to contradictions.

From Chapter 2 forward, it seems that observing a system introduces an

element of subjectivity. This element contradicts the framework of classical

physics: We describe not the universe as a whole, but instead some isolated sys-

tem within the universe. There are many elements in the classical model that

are not part of the description of the system, such as the experimental apparatus

or the observer. We are forced to accept this framework when describing our ob-

servation of quantum events: We get a probability function post-measurement

which allows us to follow the laws of quantum theory (such as the uncertainty
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principle). So, “the probability function combines objective and subjective el-

ements.” (1958, p. 53) On the one hand, the wavefunction includes objective

possibility or tendency; Heisenberg invokes the Aristotelian term, potentia, a

potential for the particle to have some definite value. (1958, p. 53) On the

other hand, the quantum description will contain our subjective experiential

data on the matter, subjective insofar as it can differ from the experiential data

of another observer.

The transition from possible to actual, objective to subjective, is inherent in

the act of observation. Heisenberg calls this a discontinuous change in the prob-

ability function, referring to the impossibility of using mathematics to change

a probability into a discrete value. The discontinuous change of our (observa-

tional) knowledge is the image of the discontinuous change in our (classical-

mathematical) wavefunction. (1958, p. 55) The function collapses before our

eyes, and our knowledge collapses as a result. The reason is because the function

itself is the language with which we articulate knowledge. Knowledge is always

bound to our language and our conceptual schema. As Heisenberg quotes Carl

Friedrich von Weizsäcker: “Nature is earlier than man,” in that the ideal of

objectivity in classical physics in justified; “but man is earlier than natural sci-

ence,” in that we cannot escape the paradox of quantum mechanics. (1958, p.

56; circa 1949)

Classical physics began with the belief that the world could be described

without any reference to ourselves, and for the most part, this belief has proved

largely practical in describing the world. (Stapp 1993, p. 19) Objective knowl-

edge is the first criterion for the value of any scientific result. Yet at the same

time, we know that these objective means of describing the physical world do

not yield a result consistent with our observations. This paradox, this tension,

is where the statistical, probabilistic representational framework of quantum

mechanics is born. If quantum mechanics were entirely objective, it would de-

termine the outcome of events with certainty: Initial conditions would always
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obey a set of laws that do not reference the observer. If it were entirely sub-

jective, the possibility of any given state would always be infinity: What we

observe directly is all that can be known. Quantum mechanics combines these

approaches to produce probability.

One could argue that we could break from the schema of classical descrip-

tion. We could build our conceptual approach from the ground up, and arrive

back at some completely objective description of the physical world. For in-

stance, we could build a model of reality that includes our existence and is

predicated by our observational actions. Including ourselves in the system will

then arrive at a determinist theory of everything. One that attempted such a

theory was Leibniz, who argued that everything was composed of inner percep-

tions which could project themselves and the world upon observation of other

perceptions. He claimed that there was no strict delineation between perception

and reality, but instead “only a non-causal relationship of harmony, parallelism,

or correspondence between mind and body.” (Kulstad 2007, p. 1)

But such an argument rests on a misunderstanding. We said above that clas-

sical theory begins by dividing the world into, first, the object to be studied, and

second, everything else (which includes ourselves, the observers). The determin-

ist would argue that we can include ourselves and the measuring device into the

classical division of the world. But it can be shown that such an alteration of

the delineation of the system does not affect the measurement of the system.

(Polkinghorne 1984, p. 66; Stapp 1993, p. 21) In other words, experimen-

tal observations yield similarly paradoxical results. The reason is because the

principles of uncertainty apply to every object, inside and outside our isolated

system. Complicating our measuring apparatus by broadening the boundary

of our system cannot help to avoid the fundamental paradox of quantum me-

chanics. There is simply no method of delineating a system such that objective

situation and subjective observation collide in a way to produce uncertainty.

Further, as Bohr has argued, we should not attempt to free ourselves from a
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classical schema. (Murdoch and Murdoch 1989, p. 12) We should not attempt

to argue that the classical division of the world is arbitrary. When we want

to understand the physical world, we want to understand how an event follows

from the physical laws of nature. The observed stuff of matter is the object

under consideration, while the experimental apparatus necessitates a subjective

feature in the description of any event. “What we observe is not nature itself,

but nature exposed to our method of questioning.” (Heisenberg 1958, p. 58)

The only method by which we can ask a question about nature exists in and

of our language. As Bohr put it, “One must never forget that in the drama of

existence we are ourselves both players and spectators.” (Murdoch and Murdoch

1989, p. 9)

I will say, with some foresight, that the above resembles a Kantian perspec-

tive. Kant argues simply that we cannot understand our experience outside our

schema of space and time. Similarly, the classical-mathematical schema is the

language through which we understand our observations. Our questions are de-

signed using classical concepts, and these classical concepts are bound to their

(rather intuitive) description of space and time, cause and event, subjective and

objective. So to summarize, the Copenhagen interpretation argues that the

mode in which we understand the physical world is destined to paradox; there

will always be a gap between what exists and how we describe it.

6.2 Counterproposals

The Copenhagen interpretation has lead physics far away from “the simple

materialistic views that prevailed in the nineteenth century.” (Heisenberg 1958,

p. 128) As such, there are of course counterproposals that attempt to argue

quantum physics can be inserted back into the materialist philosophy of classical

physics. Heisenberg divides these counterproposals into two basic categories.

The first group does not want to change the Copenhagen interpretation as far
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as the experimental inquiry goes, by rather tries to change the language of the

interpretation so as to agree with classical physics. The second group argues

that quantum mechanics offers no description of what happens independently

of and between observations and thus is not a complete physical theory. I will

argue that both of these groups attempt to return the quantum insights back to

the reality concept of classical physics (first discussed in Chapter 5). In other

words, all the groups attempt to return to a ontology of materialism, in which

the smallest parts of the world exist objectively in the sense that they are not

dependent on our observations of them. Before, we left open the question of

whether quantum mechanics is an epistemological statement or an ontological

statement. With discussion of the counterproposals, I now wish to show that

the nature of the quantum phenomena discussed in the second chapter imply

that such an objective ontology is impossible.

To the first group of counterproposals, Heisenberg maintains that they do not

dispute quantum mechanics on the observations and their results. Rather they

dispute the interpretations of these claims, specifically the language through

which the paradoxes are discussed. These claims then attempt to reconstruct

the body of experimental observations “with its exact repetition in a different

language.” (1958, p. 130)

The EPR conjecture is of this first group. From the classical perspective,

we are inclined to think that hidden variables govern the apparent statistical

behavior of quantum systems. The language through which the Copenhagen

interpretation describes these observations ‘misses’ the hidden variables. If the

reality of the observations were to be described completely, as EPR argues, the

chain of events would unfold in a determinist way. The language, then, is one

that includes the hidden variables and thus describes reality completely. Bohm

also had such theory, where he claimed that our measurements are limited by

our experimental apparatus, which are in turn limited by the questions quantum

mechanics allows us to pose. In other words, if we could think in terms of these
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hidden variables, we could describe a system that reveals these variables and

thus design an experiment to detect these variables

Bell responded that any attempt to create such a language results in the

same paradoxes. Recall Bell’s inequality – even if we admit there is a hidden

variable that governs the actions of particles in our experiments, we should still

be able to arrive at Bell’s inequality through simply counting up all the spins.

We argued that Bell’s inequality takes only two assumptions into account. One,

particles that are far away from each other cannot affect one another. Two,

every piece of reality can be ‘counted’ and given a value. So even if we assume

there are hidden variables governing the system (as intuitive a claim as it gets),

the outcome of our pion decay experiment is so strange that it does not obey a

simply combinatoric relation.

Heisenberg claims this type of classical defense “reveals itself as a kind of

‘ideological superstructure’ which has little to do with immediate physical re-

ality; for the hidden parameters . . . are of such a kind that they never occur in

the description of real processes, if quantum theory remains unchanged.” (1958,

p. 132) EPR and Bohm argue the classical claim; namely, that the particles

(electrons, photons, etc.) are ‘objectively real’ structures in space and time. To

the description of these particles as waves (as discussed when considering how

electrons and photons act as both particles and waves), EPR and Bohm claim

that they, too, are ‘objectively real.’ Returning to EPR’s criterion for reality

from Chapter 5, something that is real is something that can be assigned a

physical value with certainty. Yet it seems that this is more so a criterion for

objectivity rather than reality. Sure, the matter waves that govern the action

of electrons can be assigned an objective value; but to say that these waves are

‘real’ seems very strange. While structures, like the electron (half the time) or

a molecule or a stone, have definite reality in space, matter waves have definite

reality on configuration space. A matter wave, like a photon or the electron (the

other half of the time) is not so much a thing in space as it is a description of
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the behavior of a thing in space, namely a disturbance in space.

What does it mean to call waves in configuration space ‘real?’ This
space is a very abstract space. The word ‘real’ goes back to the Latin
word ‘res,’ which means ‘thing’; but things are in the ordinary three-
dimensional space, not in an abstract configuration space. One may
call the waves in configuration space ‘objective’ when one wants to
say that these waves do not depend on any observer; but one can
scarcely call them ‘real’ unless one is willing to change the meaning
of the word. (1958, p. 130)

Heisenberg’s argument is hardly clear here, but it seems to strike at the EPR’s

criterion of reality. He seems to be defining his criterion for reality analytically.

Within our notion of real lies the notion of a thing. A wavefunction, for ex-

ample, is not a thing in Heisenberg’s mind. A wavefunction is necessarily a

description. This description does not lie within space; it lies within our knowl-

edge of phenomena. Because it does not lie in space, it does not lie in reality.

Heisenberg claims that reality corresponds to things-in-space in the way that

bachelors correspond to unmarried.

Meanwhile, to say that such a description of the wavefunction does lie inside

of reality is a synthetic judgment. The two parts of the synthesis are, (1), reality,

and (2), an analogue or value that is knowable with certainty. Claiming (2) is

within (1) is claiming that every piece of certain knowledge we have has some

correspondence to reality. Every bit of reality has ‘potentia’ for a direct, know-

able value. To put it this bluntly seems strange and begs for justification. EPR

and Bohm hold this claim to be self-evident, but this is essentially a synthetic,

metaphysical statement concerning the nature of reality. Still, EPR and Bohm

hold this statement to be a priori knowledge. The ‘ideological superstructure’

exists in the belief that we can define reality a priori without referencing our

experience.

How do we know EPR and Bohm hold their criterion to be a priori knowl-

edge? We can apply simple process of elimination: Our experience does not

give us any evidence supporting this criterion, so we cannot call it a posteri-
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ori. Rather, our experience gives us quite the opposite of such a criterion! Our

experiments have shown us that there is no way to predict with certainty the

motion of an electron or photon. The uncertainty principle demands that a

probability in place of a value must describe the electron. Reality appears to

be much more elusive than to guarantee us a pretty description. Any hidden

parameter is merely hoping to know an unknowable. EPR and Bohm’s crite-

rion cannot possibly be a posteriori knowledge. The criterion asserts hidden

variables govern the interactions, regardless of our observation or experience of

those phenomena.

Heisenberg argues that this formulation is embedded in the ontology of ma-

terialism. We want to associate some objective, materialist reality to every event

observed. We want a ‘complete’ theory of reality would describe all these pieces,

but instead,

It is the ‘factual’ character of an event describable in terms of the
concepts of daily life which is not without further comment con-
tained in the mathematical formalism of quantum theory, and which
appears in the Copenhagen interpretation by introduction of the ob-
server. (1958, p. 137)

In other words, the factuality or materiality of an event only comes into being

through the introduction of the observer. Sure, there exists a reality outside

the observer, but this reality has statistically infinite possibility if there exists

no the observer to collapse the wavefunction.

The observer has only the function of registering decisions, i.e. pro-
cesses in space and time, and it does no matter whether the observer
is an apparatus or a human being; but the registration, i.e., the tran-
sition from the ‘possible’ to the ‘actual,’ is absolutely necessary here
and cannot be omitted from the interpretation of quantum theory.
(1958, p. 137)

When Heisenberg says here that such an observational ‘registration’ cannot

be omitted from the theory, he means that the introduction of any hidden

variable that eliminates the action of the observer is bound to reach the same
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contradiction. That contradiction, he argues, stems from the irreversibility of

our measurement. Once measurement is made, the infinite possibility collapses

to a single value. This is “a consequence of the observer’s incomplete knowledge

of the system and in so far not completely ‘objective.’” (1958, p. 138) Put simply:

The act of measurement is fundamentally an entirely nonobjective process. (We

are careful here to not say the process is entirely subjective, either. Quantum

mechanics claims these observations are more than subjective in the sense that

there is no other way to experience the workings and phenomena of quantum

mechanics.)

As we see now, the two categories of counterproposals are closely liked.

The second group claims that statements regarding the probability of atomic

events because they deny any event between points of observation. Regardless

of the method of description, “The physicist must postulate in his science that

he is studying a world which he himself has not made and which would be

present, essentially unchanged, if he were not there. Therefore, the Copenhagen

interpretation offers no real understanding of atomic phenomena.” (1958, p.

144) This is the second counterproposal.

This conjecture without a doubt attempts to return to the classical materi-

alist ontology that drives our inquiry into the rationality of the physical world.

The Copenhagen response is that physics will always aim to offer a description

and understanding of nature. These descriptions and understandings must be

formulated and communicated within the scope of language. This is why the

Copenhagen interpretation begins with a paradox: The only language we have

available (namely the classical schema) is at the same time problematic to our

description of nature. We are bound to our intuitive modes of experience, and

our language is built from this experience. We cannot say anything on the sub-

ject of possibility until that possibility is actuality: Our language simply does

not allow us to ask those questions.

If therefore the atomic physicist is asked to give a description of
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what really happens in his experiments, the words ‘description’ and
‘really’ and ‘happens’ can only refer to the concepts of daily life or
of classical physics. . . . Therefore, any statement about what has
‘actually happened’ is a statement in terms of the classical concepts
and – because of thermodynamics and of the uncertainty relations
– by its very nature incomplete with respect to the details of the
atomic events involved. (1958, p. 144-145)

Ontological materialism rests on the illusion that the “direct actuality” of the

world can be extended to describe atomic events. The illusion is that ontological

materialism can be a priori metaphysical knowledge. The classical criterion for

reality is a synthetic assumption that forces counterproposals to the Copenhagen

interpretation to hope for a better, more complete description of reality. This

description of reality must necessarily be in classical language, and is thus by

its very nature incomplete knowledge. “The statistical nature of the laws of

microscopic physics cannot be avoided.” (Murdoch and Murdoch 1989, p. 32)

The conclusion is that if we accept the uncertainty relations and statistical

descriptions of quantum mechanics, we must accept the Copenhagen interpre-

tation. There exists no alternative method with which to articulate our de-

scriptions that escapes the fundamental claims. Here ends our discussion of

the Copenhagen interpretation. As has been pointed out at numerous points,

Heisenberg’s philosophy seems to reflect many elements of Kant. The next

chapter is meant to tie links between the Copenhagen interpretation to Kantian

doctrines. We will see that while there exists many similarities, there are some

holes when importing quantum mechanics into philosophy. These holes will

hopefully be filled in Chapter 8, and thus move us closer towards a philosophic

understanding of quantum mechanics.
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Chapter 7

The Kantian Analogy

This chapter will be divided into three parts, each highlighting a specific way

the Copenhagen aligns with Kantian philosophy. Kantian philosophy is, of

course, very broad to say the least. I wish to primarily focus Kant’s conception

of causality, knowledge of things-in-themselves, and his arguments regarding

metaphysical a priori claims. These topics are the three sections, and each will

present difficulty which will be responded to in Chapter 8.

7.1 Causality

At the end of the fifth chapter, in response to the violation of locality, we asked

the question, “What is the cause of instantaneous communication?” This section

is meant to shed light on this question. We will find that the way the question

is posed is in itself a problem. The Copenhagen interpretation argues that the

statistical nature of quantum particles does not obey the kinds of cause-necessity

relations with which we are familiar. As an entry point, I want to consider the

Kantian concept of causality. We will see similarities both between Kant and the

Copenhagen interpretation as well as between Kant and the counterproposals

to Copenhagen.
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It has been said that Kant’s impetus for describing the concept of causality

comes from Hume. Immanuel Kant, with the Critique of Pure Reason, claimed

that Hume had awaken him from a slumber of dedication to the principles of

absolute rationalism. Many take this to signal Kant’s distaste for Hume’s skep-

tical empiricism. In actuality, Kant admits that Hume isolated a fundamental

problem with pure rational discourse; Kant’s departure is his answer to Hume’s

problem. We attempt to show that the Copenhagen answer to classical inter-

pretations of quantum theory is analogous to this pure rationalist position. As

we have shown, the fundamental criterion for reality is essentially a rationalist

claim. What, then, is Hume’s concern with pure reason?

The problem is found in Hume’s position regarding causality. To Hume,

the notion of causality was a particularly nebulous concept in philosophy. The

standard approach was that in order for one event to cause another, the second

must necessarily follow the first. Hume coined this link a necessary connection.

His primary concern was that there was no empirical evidence of such a neces-

sity. In order to understand how Hume came to this conclusion, we must first

understand Hume’s place in early modern philosophy as an empiricist.

Hume was primarily a content or concept empiricist, claiming that the only

things we can know are those things that are directly derived from experience.

Further, the only concepts of which we can actually make sense and utilize for

the pursuit of knowledge are those concepts that directly come from experi-

ence. To use an extreme example, Hume claimed that there cannot possibly

be rational justification for the existence of God. On the one hand, there is no

empirical evidence derived directly from experience that indicates the existence

of an omnipotent, omniscient being. On the other hand, the rational concept

of God itself has no justification grounded in experience. So for two reasons

the existence of God cannot be known. Hume did not claim whether a God

existed, even though he was an atheist. Rather, Hume was arguing against the

rationalists that attempted to prove the existence of God such that it is certain

78



and undeniable knowledge.

So for Hume, the notion of causality must have direct correlation in expe-

rience. Further, to know that such a concept as causality exists, we must be

able to prove that this concept is found in our experiences. Hume claims that

we cannot directly experience a necessary connection. For instance, consider

three events A, B, and C. A is when I have an object in my hand. B is when I

release this object from my grasp. C is the object falling, or the object’s motion

towards the ground. To most, it is common knowledge that C follows B which

follows A. Hume argues that there are in fact three distinct experiences of an

observer when such an object falls to the ground, namely experiences A, B, and

C. Hume’s argument is that while the object falls to the ground, and will always

fall to the ground, there is no experience of causality; there is no experience of

a necessary connection between events A, B, and C. In other words, we can ex-

perience each of these events individually, but we cannot experience something

like (A→ B→ C). We merely see effect following cause, but never the causality

itself. To Hume, there is contiguity in space and time albeit, but no notion to

suggest a necessary connection between events. This belief is argued in sections

six and seven of the Enquiry Concerning Humen Understanding published in

1748.

What exists, then, to give the illusion of a necessary connection between

these events? Hume argues that the mind mistakes constant conjunction for

necessary connection. After a repetition of similar events, the mind uses judg-

ment and is carried by habit to expect a certain effect once the complementary

cause appears. Constant conjunction, then, is a link made through habitual

imagination. This link forms what Hume calls an impression. This impression

then acts as a stand-in for the concept of necessary connection. For Hume,

all concepts must derive from an impression, and this impression is precisely a

mental mark remnant of direct experience.

When we look at external objects, and consider the operation of
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causes, we are never able, in a single instance, to discover a necessary
connection; any quality which binds the effect to the cause, and
renders one a necessary consequence of the other. We find only that
the effect does, in fact, follow the cause. The impact of one billiard
ball upon another is followed by the motion of the second. There is
here contiguity in space and time, but nothing to suggest necessary
connection. (Hume 1748, p. 559)

Kant agrees with Hume in that there is no purely rational basis for the notion

of causality. Kant, though, believes that Hume’s knife has cut too deep and has

either cast out important developments in natural sciences and metaphysics,

or trivialized important developments in mathematics and logic. Kant wants

to lay the grounds for a true metaphysics, a science of things that are not

physical. The criterion of reality put forth by EPR is the type of metaphysical

claim that has problems in classical metaphysics. In order to lay the appropriate

grounds, though, he needs to be able to dodge Hume’s criticisms of causality and

necessary connection which apply to the sciences as well as avoid the argument

that metaphysics is wholly trivial.

To do this, Kant first delineates between two types of knowledge: analytic

and synthetic. (Kant 2007, p. 48) Analytic knowledge is the type of knowledge

that is contained in the concept itself. For instance, if I were to recall my

notion of a dog, I would necessarily recall my notion of a hairy four-legged

animal. This, to Kant, is analytic knowledge. Within the definition of a dog

lies the characteristics of hairy and four-legged. We are saying nothing new

when we say a dog is hairy of four-legged, because, of course, all dogs are hairy

and four-legged. Further, hairy and four-legged are necessary characteristics of

dog, and therefore anything that is not hairy or four-legged cannot be a dog.

Therefore, if I know that a certain dog is hairy and has four legs, this is analytic

knowledge. EPR and other proponents of a classical interpretation to quantum

mechanics suggest that the predictable, determined values (such as the hidden

variable) are the legs of the dog of reality.

Perhaps the dog I am thinking of is blue. Surely the color blue is not in
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any generous definition of a dog. Kant calls this synthetic knowledge. Synthetic

knowledge is that which puts two concepts together. These two concepts cannot

be analytically tied together, and therefore their relation is not trivial. While

the dog I am thinking of might be blue, it is certainly not the case that all dogs

are blue, or in other words, it is certainly not the case that the dog is necessarily

blue. This, then, is a synthetic piece of knowledge because it puts two concepts

together that do not necessarily exist as one.

Kant makes another distinction important to saving the scientific studies and

nontrivializing other disciplines, again regarding the nature of knowledge. Kant

asks the question whether there exists knowledge that is entirely separated from

sense perception. He admits that there does exist such a type of knowledge,

proven in the existence of such disciplines like mathematics and pure logic.

This type of knowledge Kant labels a priori. A priori knowledge is specifically

knowledge that does not rest in experience. A posteriori, on the other hand, is

knowledge that sources in experience.

How do these distinctions help Kant answer Hume’s problem with the notion

of causality? Kant agrees that it is impossible to directly experience something

like a necessary connection. Where Kant departs from Hume, however, is in

the distinction between the types of knowledge that are available to the human.

Kant does not agree that the only kinds of knowledge we can have are those that

are directly derived from experience. He argues this specifically in his defense

of synthetic a priori knowledge.

To understand Kant’s defense of causality and relate it to the Copenhagen

interpretation, we must first understand what Kant means by experience. For

Kant, experience itself is a kind of thinking, judging, or cognizing using the

conceptual vocabulary that is available to us. “Thoughts without content are

empty, intuitions without concepts are blind. . . . Only from their unification can

cognition arise.” (B75/A51) “Experience itself is a kind of cognition requiring

the understanding.” (B77/A53) For Heisenberg, our classical physical language
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is the cognition that allows us to understand the natural world. Meanwhile,

this cognition is fundamentally limiting because it stops short of any determin-

ist description of the world. Yet this determinist description of the world is

impossible given, one, our classical mode of experience, and two, a description

that actualizes only through our experience of the world. Still, for Kant,

. . . the concept of cause . . . would be false if it rested only a subjec-
tive necessity, arbitrarily implanted in us . . . I would not be able
to say that the effect is connected with the cause in the object
. . . but only that I am so constituted that I cannot think of this
representation otherwise than as thus connected; which is precisely
what the skeptic wishes most, for then all of our insight through the
supposed objective validity of our judgments is nothing but sheer
illusion. . . (A464/B492)

EPR and others claim that the Copenhagen interpretation is exactly this

type of objective judgment that is an illusion. The wavefunction and the un-

certainty principle are objective in the sense that they are descriptions that do

not rely on any subjective feature. The experiments are as objective as we can

get: There is no objective description outside the ideality of classical physics.

Classical physics is the language built to reflect the utmost objectivity when

describing the world. As such, we cannot describe the world in any other way.

To say that these classical descriptions of quantum phenomenon are subjective

illusions is to say that everything we say is a subjective illusion because, of

course, all explanation is and only is through classical language.

So, what is the link of causality between Kant and Copenhagen? The link ex-

ists in that any reference to causality must also reference our interpretive, experi-

ential schema. To Heisenberg, this schema consists in the classical-mathematical

formalisms that have made up our language of physical phenomena. He argues

that any other formulation of causality or ‘happening’ between two events is

fruitless in that it will always reach a gap of uncertainty. There must always ex-

ist a fundamental uncertainty in any description of the world. This uncertainty

takes the form of statistical and probabilistic representations in the classical
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schema. It would be a mistake, however, to claim that we can dodge this un-

certainty with a new language of description. Again, any language will be an

experiential language, and that language will always lead to the paradox of the

Copenhagen interpretation.

[T]he physcists have gradually become accustomed to considering
the electronic orbits, etc., not as reality but rather as a kind of
‘potentia.’ The language has already adjusted itself, at least to some
extent, to this true situations. But is it not a precise language in
which one could use the normal logical patterns; it is a language that
produces pictures in our mind, but together with them the notion
that the pictures have only a vague connection with reality, that
they represent only a tendency toward reality. (Heisenberg 1958, p.
181)

To Heisenberg, any unmeasured event always exists as possibility or ‘poten-

tia.’ To explain the cause of a possibility, we must be equally ambiguous. If we

are to stand by the classical criterion for reality, our concept of causality breaks

down in the quantum world: Any attempt to validate a complete theory will

necessarily include a measurement, and this measurement will be the ‘cause,’ in

the classical sense, of the result. To rescue such a concept, we must admit the

language of probability is the best we can do.

Another way to envision the link is through Kant’s argument regarding the

infinite regression of cause. For Kant, the cause is no different than the effect.

Every cause must be an effect of another cause. Attempting to know a cause

only poses further questions of causality. Every cause in and of itself must also

be an event or a happening to Kant. But in the same way that describing an

object is limited to our understanding of it through time, so too is our conception

of the cause itself. Here we are beginning to brush up against Kant’s conception

of things-in-themselves: The primary cause is that type of thing that cannot be

nailed down. Why? Just like anything else, the object of cause is bound to our

experiential mode:

The accepted view is that only through the perception and compari-
son of events repeatedly following in a uniform manner upon preced-
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ing appearances are we enabled to discover a rule according to which
certain events always follow upon certain appearances, and that this
is the way in which we are first led to construct for ourselves the
concept of cause. . . . Since the universality and necessity of the rule
would not be grounded a priori, but only on induction, they would
be merely fictitious and without genuinely universal validity. It is the
same with these a priori representations – for instance, space and
time. We can extract clear concepts of them from experience, only
because we have put them into experience, and because experience
is thus itself brought about only by their means. (B241/A196)

For Kant, all conception is driven by experience. On the one hand, objects like

physical things or causes are experienced in space and time, and our knowledge

of these objects is driven by this framework for experience. On the other hand,

there exists space and time, which are not objects. Still, we have an intuition

of these concepts only given the necessity that our experience must take place

within and through space and time.

But is this really Heisenberg’s view of causality? There is an agreement

between the two in that the concept of cause cannot exist outside a certain

experiential framework. For Kant, it is our intuitive a priori notion of space

and time; for Heisenberg, it is the classical schema from which we “cannot and

should not” escape. Kant assumes a constant object, such as a physical thing

or an event. The object, though constant, remains outside the knowledge of our

experiential framework. Alternatively, Heisenberg believes the object, such as

an electron or the polarization event, becomes constant only during the act of

experience. His argument is that we are not ignorant spectators of the object.

Instead, we play an intimate role in the ‘reality’ of the object. In this way,

experience becomes the object through the act of observation. There is no such

thing as a constant object without the act of measurement. Instead, the object

is precisely uncertain in that it exists merely probabilistically. We can attach

this probability to the object as a physical thing: The electron is both here

and there, until we try to measure, in which case it appears only here or there.

We can also attach this probability to the object as a cause: The detector will

84



register an interference pattern if we just look at the distribution of electrons,

or the detector will register discrete particles if we try to view the electrons

themselves. Furthermore, the instantaneous change in polarization direction of

the right-hand photon is caused by my measurement of the polarization of the

left-hand photon. Heisenberg wants to make it very clear that experience is an

object just as much as any other object, and this is proven by the object of our

experience colliding with objects of the world.

Here is the first disconnect between Kant and Heisenberg. Kant has helped

us immensely, and will continue to help, in supporting the Copenhagen inter-

pretation against counterproposals. However, we run into problems with Kant’s

outdated notion of experience as non-objective. Remember, Heisenberg will al-

ways claim experience is both objective and subjective. It is subjective in the

sense that it is ours and we can control it (this side is the easy part), and it is

objective in the sense that it has measurable, irreversible effects on a physical

system. The Copenhagen interpretation is thus an attempt to breakdown this

binary. Some have tried to claim everything is objective, others have tried to

claim everything is subjective; Copenhagen claims everything is both.

7.2 Unknowables and Things-in-Themselves

At the end of the fifth chapter, in response to the violation of EPR’s criterion

for reality, we asked the question, “What makes an object real in and of itself?”

Surely the experiments and conclusion in Part I make us question what it means

for a particle to be real. EPR held that real objects must have a direct link to

variables that can be predicted and known with certainty. Heisenberg’s uncer-

tainty principle, as well as our observations of the motion of an electron, show

us that such a variable must be precisely uncertain. So after the failure of an

intuitive and classical description of a real object, we ask the question whether

such a description is possible. We will see that the classical criterion for reality
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is an assumption regarding the possibility of this description. Kant will help

us to see that knowledge of things-in-themselves is both conspiratorial and the

desire towards which our mode of understanding tends.

Here I want to show that Heisenberg, like Kant, argues we cannot know

things-in-themselves. We know that Kant rules out knowledge of what is most

fundamental. At the same time, the theoretical job of our faculty of reason is

to point us toward a fundamental description of nature. The classical interpre-

tation seeks an unconditioned set of conditions: There is a determinist theory

underlying all outcomes in the natural world. This would be the classical ‘com-

plete’ description.

[R]eason in its logical use seeks the universal condition of its judg-
ment (its conclusion). . . . Now since this rule is once again exposed
to this same attempt of reason, and the condition of its condition
thereby has to be sought. . . . we see very well that the proper princi-
ple of reason in general (in its logical use) is to find the unconditioned
for conditioned cognitions of the understanding, with which its unity
will be completed. (A307/B364)

The hidden variable approach is such an unconditioned condition. But does such

a thing exist? We have found that any attempt to detect such a condition results

in a necessary conditionality, namely the observation. Kant argues, however,

that such a desire to search for the universal condition is built into our rational

schema. Something that exists in space and time, available to our sensibility,

never appears unconditioned. “In sensibility, i.e. in space and time, every

condition to which we can attain in the exposition of given appearances is in turn

conditioned.” (A796/B824) Our very framework of interpretation necessitates

that we attribute all events to some larger, more fundamental reason. We

necessarily and rationally have interest in something unknowable, namely this

universal condition or this hidden variable. Kant argues that we have no choice

but to recognize this tendency in our mode of thinking:

For to what cause should the unquenchable desire to find a firm foot-
ing beyond all bounds of experience otherwise be ascribed? Pure rea-
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son has a presentiment of objects of great interest to it. (A796/B824)

And it is this very desire that provides indispensable guidance or regulation to

the classical interpretation:

Accordingly, I assert: the transcendental ideas are never of consti-
tutive use, so that the concepts of certain objects would thereby be
given, and in case one so understands them, they are merely sophis-
tical (dialectical) concepts. On the contrary, however, they have an
excellent and indispensably necessary regulative use, namely that of
directing the understanding to a certain goal. (A644/B672)

The classical counterproposal is a rationalist metaphysical argument, and we

are tempted to accept. Reason guides us by projecting an image of the uncondi-

tioned. The particle, though, is statistical by nature. It behaves according only

to statistical predictions, and probability vanishes to a discrete value only upon

observation. We could say the event is random, and in this way unconditioned

(though again we must be careful with such language). The classical metaphys-

ical criterion for reality is an illusion which tricks us into thinking there must

exist an unconditioned ground for everything condition.

For both Heisenberg and Kant, the problem lies within the way in which we

understand the thing. When we refer to Kant’s phrase of things-in-themselves,

we are using shorthand for the longer phrase “things considered in themselves”

(Dinge an sich selbest betrachten). The correlative difference is one of human

sensibility and understanding. So ‘in-itself’ and ‘how it appears’ are two differ-

ent ways of talking about the thing. I argued that Heisenberg and EPR seem

to differ in their understanding of the thing, the latter using a synthetic de-

scription. The synthetic description is problematic, however, because it utilizes

an appearance. This appearance is the determinist outplay of most physical

systems, namely the physical systems a classical model was best at describ-

ing. However, assuming every physical system is determinist in-itself is doubly

wrong. For one, it claims that this synthetic metaphysical claim is a priori

knowledge. For two, it assumes our web of interpretation and language can
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describe the thing-in-itself:

Now a thing in itself cannot be known through mere relations; and
we may therefore conclude that since outer sense gives us nothing
but mere relations, this sense can contain in its representation only
the relation of an object to the subject, and not the inner properties
of the object in itself. (A49/B67)

It is important to note that the difficulty with knowledge of things-in-

themselves comes from the appearance of things to us. For Kant, appearance

is always through the lens of space and time. We cannot perceive space and

time directly; rather space and time are the structures which support our mode

of perception. The structure itself appears to operate by laws of causality, so

we are inclined to extend these laws to the things themselves. However, we

must remember that the things-in-themselves are within a larger structure that

we cannot perceive directly and distorts any direct knowledge we may have of

things-themselves.

In appearance every effect is an event, or something that happens in
time; the effect must, according to the universal law of nature, be
preceded by a determination of the causality of its cause (a state of
the cause) on which the effect follows according to a constant law.
(343)

I italicized the first words here because they are the clinch-pin of this argument:

Cause itself is an appearance, and not a characteristic of the thing-in-itself. Or

rather, we cannot possibly know whether it really is a trait of the thing-in-itself

because we are forced to understand and perceive the thing in this way. When

Kant speaks of space and time as the blinders which limit us to a knowledge

of only appearance, Heisenberg similarly refers to classical physics as a mode

of perception we are forced to adopt. Quantum mechanics is novel in that it

suggests a discrete limit to our knowledge, a limit that exists because of the

thing’s appearance in classical language. We must always remember that for

Heisenberg, even quantum mechanics is bound to this schema: There is no

language to describe phenomena outside this schema.
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The Copenhagen interpretation states that quantum mechanics does not rep-

resent particles, but rather our knowledge, our observations or our conscious-

ness, of particles. (Popper 1967, p. 8) To recall, difficulty in calling quantum

mechanics knowledge of the thing-in-itself comes from the spontaneous collapse

of the wavefunction, a discontinuous change in the existence of a particle that

must not be viewed apart from our observation. No such change occurs out-

side our observation. An objective, thing-in-itself description is impossible and

not fruitful: Any attempt to rework the observations will result in more uncer-

tainty; any attempt to find a hidden variable that gives new insight into the

thing-in-itself will result in similar paradoxes. Accordingly, Heisenberg suggests

that “it is now profitable to review the fundamental discussion, so important

for epistemology, of the difficulty of separating the subjective and the objective

aspects of the world.” (Popper 1967, p. 11)

K.R. Popper suggests looking at quantum mechanics without the observer.

While he does not say this himself, I submit that conceiving of a quantum

mechanics with and without and observer is analogous to perceiving a thing

through appearance and in-itself. (1967, p. 20) Popper argues that without the

observer, there would not be a significantly different state of affairs. Sure, if we

shoot a γ-ray at an electron and bounce it off in one direction, the world is in

a slightly different state of affairs. But Popper’s argument is that the universe

would maintain a statistical arrangement on the particle scale. At the instant

of measurement, the observer sees only one of an infinite number of properties.

It is this relativity of the propensities that makes them [quantum de-
scriptions] sometimes look ‘unreal’: it is the fact that they refer both
to single cases and to their virtual repetitions, and that any single
case has so many properties that we cannot say, just by inspection,
which of them are to be included among the specifications defining
what should be taken as ‘our’ experiment and ‘its’ representation.
(1967, p. 38)

It is easiest to understand these properties as various positions in space. At

any given instant, a particle can have the property (or properties?) of existing
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anywhere in space (here, space refers to a relatively tiny sphere of possible

particle-space). But to say that the particle exists in such and such a place only

because of the observation is a misguided formulation. Yes, it seems we are the

authors of the electron bumping out of our Heisenberg microscope; but this is

always appearance, always our representation of the event. Defining more and

more variables of the experiment ad infinitum will not change the only available

representation. In other words, we cannot think of the quantum world without

using our observer intellect; similarly, we cannot know the thing-in-itself without

referencing how it appears to us.

There remains one critical difference in the philosophy of Heisenberg and

Kant. It seems that Kant’s view of space and time is analogous to Heisenberg’s

conception of the classical schema of physical description. I have argued that

they are similar because we cannot perceive the natural world without looking

through these lenses. Heisenberg argues that Kant was the first to draw our

attention to “the fact that the concepts of space and time belong to our relation

of nature, not nature itself; that we could not describe nature without using

these concepts.” (Heisenberg 1958, p. 27) He claims this Kantian interpretation

of space and time closed those concepts to new experience and elevated them

to a priori knowledge, in some sense. However, in tipping his hat to Einstein,

Heisenberg points out that the theory of relativity did fundamentally change our

concepts of space and time. Kant assumed a priori that our understandings of

space and time were fixed. Here I do not mean ‘fixed’ in the sense that they

could not change (even though Kant was wrong here, too). I mean Kant assumed

space and time were fixed relative to every object within space and time. This,

though, is simply not the case.

Einstein’s famous thought experiment was, If one were to travel the speed of

light, at what speed would an adjacent beam of light travel? Under the Kantian

doctrine, the answer is obvious: the same speed! We could wave at the photon

as if we were waving to passengers on an adjacent subway. Einstein instead
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stated the apparent speed of light, i.e. how light appears to be traveling to us,

as the real velocity of light, i.e. how the light travels in-itself. I like to think

of this as Einstein imposing the Kantian doctrine upon the things Kant himself

held to be constant and a priori.

Speed is a measure of distance traveled divided by duration of the
journey, and so is intimately bound up with the concepts of space
and time. And, Einstein claimed, space and time – in contrast to
Newton’s [and Kant’s!] intuitively sensible description – are not
fixed and unchanging. Instead, they are fluid and malleable. Space
and time, he argued, adjust themselves to keep something else – the
speed of light – fixed and eternal, regardless of the motion executed
by the light’s source or someone observing it. (Greene 1994, p. ix)

In Einstein’s eyes, there was an a priori piece of knowledge: the speed of light.

The speed of light is constant in any inertial reference frame. If we are to travel

at the speed of light, space and time travel with us per se. As we drag spacetime

along with us, it contorts, yielding very peculiar appearances and phenomena

indeed.

One major problem in the classical theory of gravity was explaining how

it ‘instantaneously’ traveled through infinite distances. It appeared to be a

problem of action-at-a-distance as discussed in Chapter 4. The suggestion was

to give gravity a definite speed and fill space with an ether through which these

gravity waves (and light waves!) travel. Newton, in Principia, left this problem

to the reader. (Greene 1994, p. xv) Einstein’s answer was that the very fabric

of spacetime was the medium that transmits the force of gravity, such as the

classic example of relativity which includes a bowling ball stretching the fabric

of spacetime.

The cosmic scaffolding could not be dismantled into rigid, univer-
sally agreed upon struts of space and time. . . . the shape of the
cosmic scaffolding responds to the presence of matter or energy –
and, in turn, the shape of spacetime affects how other objects move.
Space and time . . . are participants in the evolution of the universe.
(Greene 1994, p. xi)
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Heisenberg, as a true founder of modern physics, cannot deny the magnitude of

this shift in thinking.

Since all systems of reference that are in uniform translation motion
with respect to each other are equivalent for the descriptions of na-
ture, there is no meaning in the statement that there is a substance,
the ether, which is at rest in only one of the systems. . . . it is much
simpler to say that light waves are propagated through empty space,
and that this space itself is subject to magnification and rarefaction
on the largest of scales. (Heisenberg 1958, p. 114)

While of course Kant never suggested such an ether or eternal substance, we

can correlate Kant’s space and time to such a concept. If we accept space and

time are constant, then we run into two immediate fallacies. First, as already

indicated, there seems to be instantaneous communication between objects at

great distance. While we have argued that such a phenomenon might be possible

in the quantum realm, Einstein did not take this to be a possibility. Second,

light can propagate without a medium; but physicists did not want to say that

light was a reality on its own. This ether would constitute the struts that hold

together the cosmos; the ether would be what fills space and time but has no

influence on the events that take place within that arena. This was primarily

born from our understanding of a wave – something that needs a medium. Yet

it was also born from an assumption about the universe – that space and time

are static dimensions such that matter and energy do not affect the fundamental

structure of the cosmos.

Returning to the discontinuity between Kant and Heisenberg: Kant claims

that the lens through which we experience the world (namely space and time)

is a priori in the sense that it cannot be affected by any experience. Heisenberg

argues that the lens through which we experience the world (namely the classical

schema) is precisely a posteriori in the sense that it is built from our experiences

and is always added to by our experiences. There is no a priori truth to the

existence of the classical schema, as our Weizsäcker quote eloquently put. Kant

thought space and time were exactly those types of things-in-themselves that
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we cannot know and thus cannot conceptualize in any other way. To Kant, we

had no choice but to accept our intuitions of space and time.

As the opening quote of Part II stated, mathematical concepts do not refer

to reality with certainty. The violation of Bell’s inequality confirms this state-

ment. Quantum mechanics proves that is is a mistake to consider our mode of

experience as “how it is” a priori. The Copenhagen interpretation argues that

the classical-mathematical mode of experience is at root uncertain a posteriori

knowledge. Hesienberg himself says that this mode of experience is open to

change and will do its best to adapt to new observations like quantum mechan-

ics. Nonetheless, the language binds us to a certain body of expressive tools

such that the articulation of knowledge will always be subject to uncertainty.

The thing-in-itself, then, can never be know; this is the primary similarity be-

tween Kant and Copenhagen. The paths separate at how it is we know we

cannot know the thing-in-itself. Kant attributes this to a larger argument, that

we cannot make metaphysical a priori claims. This topic is the next field on

which Kant and Copenhagen play out their dual.

7.3 A Priori Synthetic Metaphysics

After this discussion of Kant combined with the Copenhagen interpretation,

we may be thinking, “Why should we even ask, then, really what constitutes

an electron, or a photon, or pion decay?” Surely such a pessimistic stance is

unpleasantly skeptic. The stance also resembles a Berkeleyan strategy: You

want to know whether perception corresponds to the way things are independent

of perception, but the very idea of a way-things-are independent of all perception

is incoherent. Our perception can be our imbedded conceptions of space and

time, for Kant, or our classical-mathematical mode of analysis, for Heisenberg.

We are stumbling upon a metaphysical question. The question can be stated:

Can the properties of objects of reality, i.e. real objects, be determined with
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certainty? To answer this question either way is to make a metaphysical claim.

I have argued that the EPR criterion for reality is just such a claim. I have

also argued that EPR and others hold this claim to be a priori knowledge.

Further, with the help of Heisenberg, I claimed the criterion for reality is a

synthetic judgment, because it combines to distinct concepts, namely reality and

our ability to determine with certainty. Following our discussion of quantum

physics, our goal is to break down this a priori synthetic judgment.

Such a claim regarding the nature of reality falls into the cosmological meta-

physics. These arguments refer to our summative set of experiential data, i.e.

all appearances through the mode of space and time. (A420/B448) In the Cri-

tique of Pure Reason, Kant responds to such cosmological metaphysics using the

famous antinomy approach. To Kant, all cosmological arguments give rise to a

set of competing arguments, the thesis and the antithesis. The world and our

interpretations of it are pseudo-empirical, which makes all cosmological claims

inherently dialectical. On the one hand we have to refer to sensible objects in

space and time, thus using our empirical faculties, and on the other hand we

must refer to the totality of space and time, thus abandoning empirical intu-

ition. In such a dialectic, Kant sees two approaches: We can either take an

dogmatic route or a empiricist route. (Grier 2007, p. 1) The problem is that

each of these strategies is unsatisfying.

To satisfy the rationalist is to posit an idea that can never be grasped em-

pirically. The demand of the rationalist is an ultimate unconditioned condition

upon which the world is built. The theses in Kant’s antinomies can offer such

a first-mover, but does so by retreating to the realm of the unintelligible by

providing explanations that have no have no grounding in our spatio-temporal

existence. (Grier 2007, p. 4) Likewise, the empiricist approach can never live

up to the fundamental demands of reason. Any argument derived from experi-

ence will necessarily limit the scope of the intellect until we arrive at a Humean

strategy, which is to deny everything we do not perceive with absolute certainty
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and clarity. The empiricist ends up being just as dogmatic for assuming that

whatever arguments hold in our spatio-temporal existence hold generally. And

we have already proved for ourselves that it is dangerous to extend our sub-

jective conclusions to universal ontological claims. Kant claims that if we are

to avoid dismissing particular parts of our reason and thus a “euthanasia of

reason,” we must accept the distinction between appearance and thing-in-itself.

(A407/B434)

In the Critique, Kant cites four such antinomies. The first regards the ques-

tion of finite versus infinite space and time, second is the divisibility of objects

in space and time, the third regards the conflict between determinism and free-

dom, and the fourth is the conflict over necessity and contingency. Clearly, the

criterion for reality which we want to examine does not fall nicely into one of

these categories. Still, we can call it a cosmological dilemma because it regards

the a priori nature of physical things in space and time. Up until now, we

have put the criterion for reality in this way: If an object is real, it has a value

that can be predicted and known with certainty. Posing the question this way,

however, is inherently classical. It states a necessity, observable empirically, on

rationalist grounds. Let us pose the criterion as thesis/antithesis:

Thesis: Every object in reality has, in principle, a corresponding

value in any complete description of the world.

Antithesis: Every object in reality has a value insofar as we ascribe

to it a value via our mode of description.

In the tradition of Kant, we claim the thesis as the dogmatic argument. As

asserted in Chapter 5, EPR and others defined the game in order to assure vic-

tory. Using this thesis as their criterion for reality, they proposed a method to

find the hidden variable that corresponds to the odd nature of quantum systems.

They supposed the quantum theory was in fact complete, and upon making this

supposition, they arrived at the conclusion that particles communicate instan-

taneously over great distances (nonlocality). Because there is a finite limit on
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the speed of information (namely, the speed of light) EPR concluded that the

quantum theory is incomplete. A complete theory would offer a value for this

hidden variable. This value, in satisfaction of the principle of locality, must

then originate at the source of the system of the two particles (the source in our

experiment being a pion decay).

But upon what grounds can we assert the criterion for reality? Equivalently,

what justification exists for the above thesis? Any justification seems to be an

infinite regress. If we ascribe a value to a physical quantity, the question of

reality does not stop there. A proponent of a complete theory might rebut,

“What variable gives rise to the value indicated?” Perhaps a set of experiments

can be formulated to answer this question. But then again, a complete theory

would demand we give value to the conditions which produced this variable.

The regress would continue until there were hidden variables proposed for the

formation of the physical laws themselves. The answer, then, would be wholly

rationalist: It would necessarily be a theory of everything, attributing all phys-

ical truths to either an abstract chain of infinity or to a supreme being as a

first-mover.

Meanwhile, the empiricist retreats to a similar dogmatic defense of the an-

tithesis. A superficial account of the Copenhagen interpretation might suggest

such a position. A measurement is the act that collapses the possibility inherent

in the wavefunction to a finite value. We can find patterns in the collapse of

the wavefunction in the same way that we can find constant conjunctions from

a Humean point of view. But in the end, the collapse of the wavefunction is a

result of the measurement as per the observer and not a trait of the particle.

While the empiricist does not doubt the reality of the particle, they do doubt

whether such a fundamental claim can be made about how reality corresponds

to our descriptive framework.

We must also remember that the thesis and antithesis both generalize to

include any description of the world. The antimony proposed here does not ig-
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nore the possibility of an alien civilization that has a language which can yield

a complete description of the world; for the sake of argument we must agree

that our mode of understanding and intellect is not the best the universe has to

offer. However, the empiricist approach will concede that there may exist really

smart aliens, but it will not concede that such a complete theory is possible.

The empiricist will argue that the rationalist justification for reality-value cor-

respondence is unintelligible in that it specifically negates our experience (here

I mean the results of our quantum experiments).

The conclusion of Kant’s antinomies is that a prori synthetic metaphysical

claims are impossible. Such metaphysical truths are bound to a dialectic. (Grier

2007, p. 5) Here we find a similar situation. We have stated that the classical

criterion for reality is both a priori and synthetic. We expanded this criterion

into an antinomy, where both thesis and antithesis are bound to an a priori syn-

thetic judgment. Furthermore, I have claimed that this question is inherently a

metaphysical one in that, while it makes a statement regarding our knowledge,

it more fundamentally makes a statement regarding the metaphysical nature

of physical things. That nature, to be precise, is that every piece of possible

information (every event, every cause, every effect, every particle, every polar-

ization, every spin, every decision the electron can make, etc. ad infinitum) can

be represented and predicted with certainty in a complete theory.

My argument now is that the Copenhagen interpretation attempts to step

outside the antinomy. I said that superficially, it seems the Copenhagen inter-

pretation argues in support of such an antithesis as an answer to the classical

thesis. Instead, as had been stated already, the Copenhagen interpretation sug-

gests that our classical framework is both objective and subjective. It does not

claim that there exist no physical values outside our description. Instead, it

argues that these values are inherently statistical and bound intimately to pos-

sibility. One might say that this is the same as the thesis, and that a value is

only that which can be ascribed with predictive certainty. But to make this
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argument is to assign too strict a definition to value here. We want to maintain

that the wavefunction is real and its collapse at the instant of observation is

also real. We want to maintain complimentarity of the wave-particle model,

that the electron is really a wave as well as really a particle. We want to main-

tain that the quantum world is governed by harmonic oscillations as beautiful

as Beethoven, at the very least to maintain the modest elegance of the quantum

theory.

Yet while this last paragraph argues agreement with the Kantian doctrine of

metaphysical antinomies, it also signals a departure. For we are now claiming

that something can be known about the thing-in-itself; namely, its statistical

nature, its tendency towards possibility. Is such a description of the thing-in-

itself even tangible?

Quantum mechanics is not the only sect of physics that argues that the

tendency of a physical system is always towards more possibility. (See Schroeder

2000) Statistical mechanics and thermodynamics argue that all systems tend to

increase entropy. Many think of entropy as a ‘chaos’ factor. It is simpler to

think of it as the physicists define it: The number of ways you can arrange a

given system. The Bose-Einstein condensate described at the end of Part II was

strange because it violates this law as all the bosons collect in a single state,

thus taking the entropy to zero. But let’s not get off track – physics seems to

stating something about the thing-in-itself. How, though, can the thing-in-itself

be purely possibility? This is hardly intuitive. The next and final chapter will

reveal what can be meant by this. We do not attempt to answer this question

wholly epistemologically. In my life, philosophy imparts the greatest implication

when it speaks of the human. Thus, the capstone of this thesis is to speak of

what we, as humans, can learn from the strange world quantum theory.
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Chapter 8

Heidegger and Heisenberg

It is undeniable that Heidegger finds science and technology extremely danger-

ous. But what he finds disturbing is not that there are so many things wrong,

but rather that (most of the time) things function so well. At times Heidegger

is so pessimistic about the possibility of changing our technological schema of

thought, he goes so far as to say only a god can save us. (Heidegger 1976,

p. 277) At the same time, however, Heidegger understands science and tech-

nology as essentially positive and able to provide the most confident source

of salvation. (Heidegger 1968, p. 14) But first, from where does Heidegger’s

caution arise? Heidegger’s discomfort is one that might have had its origin

in Nietzsche’s position on the sciences. Nietzsche argues that the more-or-less

classical-mathematical schema begins to fall apart when its father, Socrates,

withdraws ‘into the cocoon of logical schematism’ by insisting that
the world is completely intelligible and comprehensible, that is, ‘that
thought, using the thread of causality, can penetrate he deepest
abysses of being, and that thought is capable not only of knowing
being but even correcting it.’ It is this kind of excessive optimism
and faith in the universal applicability of the principle of causality
that . . . is also dangerous in science and technology. (Seigfried 1990,
p. 621)
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The scientist will inevitably reach limits in their drive to uncover truth and

knowledge. Physics will continually be forced to come to grips with the fact

that, with new understanding, things that were once truths are now mere ap-

pearances. (1990, p. 622) Hans Seigfried suggests that the appropriate scientist

must “affirm the creative character of their work.” (1990, p. 622) Here, Seigfried

is pointing out that every physical theory is a “poem” in that it uses language

(i.e. the classical-mathematical schema) to create knowledge. To predict the

future with determinist certainty is a misuse of the classical schema. Theories

are creations and reflect only on the way in which we understand appearances.

Assuming a complete theory exists, then, is to claim that theory itself mirrors

the physical world and has the potential to mirror the physical world in its detail

and in its entirety. But as the title of Part II suggests, theory itself is more so

an image of ourselves.

Perhaps, then, the only synthetic, metaphysical a priori claims we can make

are those statements regarding ourselves. We found that making such a state-

ment regarding criterion for reality is in vain. We were instead required to alter

this statement such that it no longer posited the observer as separate from the

system. On the surface, it seems we are not making an a priori metaphysical

claim. But let us dive a little deeper. First, the claim does seem to be an a pri-

ori claim. We are saying that there is no way to understand the world outside

our descriptive framework. So, regardless of the reality of the world, the way

in which we describe it is necessarily through a web of interpretation. We can

see how this stems for Descartes’ Archimedean point: We can only know our

descriptive framework exists; what we describe, on the other hand, we cannot

know. Therefore, positing this claim as an a posteriori piece of knowledge seems

to miss the point. In fact, the classical-mathematical, vehemently empiricist,

Newtonian description of the physical world led back to paradox, that paradox

namely being our a posteriori descriptions are embedded in a classical language

a priori.
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How, though, is statement regarding our descriptive framework a ‘meta-

physical’ statement? It is true that we can only speak of ourselves and our

language. The Copenhagen interpretation is essentially a statement regarding

our relation to the natural world. Yet quantum mechanics necessitates a re-

structuring of our cosmological metaphysics. The criterion for reality and the

principle of locality are without a doubt metaphysical claims in that they presup-

pose any sort of physical action. They are (assumed) laws that all bodies must

obey. Furthermore, the Copenhagen conception of cause falls directly into the

Kantian antinomy (unlike the Copenhagen interpretation of reality): It is true

that everything we experience, we must experience through an understanding of

cause-necessary-connection. Even the quantum system is viewed this way; for

the paradox stems precisely from a language that is bound to a cause-necessary-

connection schema. On the other hand, cause-necessary-connection is an empty

concept. Hume was fundamentally right in that we cannot directly perceive

such a necessary connection; such a connection can only be impressed upon us

and then completed by the imagination of our intellect. The Copenhagen inter-

pretation is, then, a synthetic metaphysical a priori claim regarding ourselves.

Perhaps, then, such claims are possible only in relation to our own being.

Additionally, let us not restrict ourselves: We found that the Copenhagen

interpretation of cause went further than our Kantian analogy. Heisenberg

argued that our notion of causality is fundamentally a posteriori. Heisenberg

must be referencing his German philosophic ancestors. We must understand

cause as a posteriori because the object gains constancy only upon observation.

To Heisenberg, every observation and every experimental apparatus is different.

The notion of ‘repeatable’ is misguided in that no situation can be an exact

replica of another through the lens of quantum mechanics. Nietzsche agrees by

arguing that the classical physicists fails to realize

that there neither are nor can be actions that are the same; that
every action that has ever been done was done in an altogether
unique and irretrievable way, and that this will be equally true of
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every future action . . . as one contemplates or looks back upon any
action at all, it is and remains impenetrable. (1974, p. 265)

As such, causality is an appearance and can only be affirmed through a pos-

teriori means. The principle of causality is thus a creation of the classical

physicists, and a beautiful creation at that. The law of causality has explained

an essentially infinite amount of things in the physical world and holds a level

consistency that should be admired (and utilized!). Yet to “become fully our-

selves,” the task is to recognize our possibility; for just like a quantum particle,

each individual can be modeled as a function of infinite possibility until a cer-

tain possibility is realized. As Nietzsche put it, “to that end we must become

the best learners and discoverers of everything that is lawful and necessary in

the world: we must become physicists . . . Therefore: long live the physicists!”

(1974, p. 266).

“It is in the natural sciences and physics [i.e. quantum mechanics] where we

finally come to realize that the whole world of experience is the product of our

organization.” (Seigfried 1990, p. 624) With the Copenhagen interpretation,

we learned that the our mode of experience is defined through the classical-

mathematical schema, a schema that proves problematic with quantum exper-

iment. Seigfried is suggesting a very similar thing here by saying that our

experience comes forth from our structuring of the world. It is in this recogni-

tion of the true nature of experience where we can fully realize ourselves and

grasp our experience in the Heideggerian sense. But how can physics help us

attain such a goal of ‘finding ourselves?’ Is not physics responsible for a world

in which “precisely nowhere does man today any longer encounter himself”?

(Heidegger 1977, p. 27) Classical physics assumes that the world is constant

and determinist, that the observer, the ‘I’ does not bare on the world in any

special way. The answer to the last question lies in the positing of this ‘I’ that

is so essential to the Copenhagen interpretation of quantum mechanics:

For if we accept such objects as things ‘which always [already] are
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what they are’ and ‘constantly remain’ the same, then we are pre-
vented from recognizing our human ‘behavior’ (Verhaltungen) ‘in a
manner which is ontologically appropriate’ and phenomenally ade-
quate. Instead we are forced (as was Descartes at the beginning of
our modern age) to misconstrue the relationship between us and the
world as a correspondence-relationship between things equally fixed
and ready-made. From the outset Heidegger made it a prime task of
his discussions ‘to prove that if we posit an ‘I’ or subject’ as some-
thing given – something which already is what it is, then ‘we shall
completely miss’ the phenomenal findings about our own being, that
is, what we actually experience ourselves to be. (Seigfried 1990, p.
624)

Leaving the observer out of the description of the physical world is just the

type of static humanity that Heidegger is attacking. Being in-the-world, for

Heidegger, is a constant recognition that our experience comes forth from our

conceptualization of the world, and our beliefs in our concepts likewise comes

forth in our experience. (Heidegger 1962, p. 131) Any paradox of experience

will take root in a descriptive schema that assume constancy. A constant piece

of knowledge is only a temporal phenomenon, and never something that should

define a descriptive schema as independent from the person. Classical physics

has been burdened by the chore to consistently and systematically remove the

observer from any theory.

Quantum mechanics, however, necessitates the person, necessitates the ob-

server. There is no way to describe the system outside the collapse of the

wavefunction. The collapse of the wavefunction, the action of the observer, is

what defines the course of events. The course of physics then changes:

He [Heidegger] learns from Heisenberg that the aim of the natural
sciences and physics is no longer die Natur an sich: nature in itself,
but die der menschlichen Fragestellung ausgesetzte Natur : nature in
the setup of human concerns and demands. (Seigfried 1990, p. 626)

Heisenberg and Heidegger agree that the classical-mathematical schema of de-

scribing the physical world has proven very advantageous for technological ad-

vances. They also agree, however, that these advances have shaped the object
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of questioning of physics. In shaping the questions physics answers, the techno-

logical advances also delineate a purpose to physics. This purpose is as much a

prison as the technology is convenient.

So, modern physics is a way in which the human can encounter themsef. By

this I mean the human is given an opportunity to understand that the world is

a construction of experience, and there is no way to relate to the world outside

our web of experience. Quantum physics forces this realization by stating a

fundamental paradox. Superficially, the paradox lies within all the experiments

we discussed in Part I. As we dug deeper, however, we found that this paradox

was rooted in deeper assumptions. These assumptions were predicated on the

belief that the classical-mathematical schema can accurately and completely

mirror the workings of the physical world. The fundamental paradox of quantum

mechanics then becomes one of language, one of how we experience the world.

Heidegger argues that being in-the-world necessitates two-way experience: Our

conceptual schema frames our experience, and experience continues to build our

conceptual schema.

Heidegger claims that this mode of understanding is always wrapped up in

our experience. Whenever we ‘encounter’ a circumstance or event, we are en-

countering a web of interpretation that separates us in some way from the thing-

itself. I quoted Heidegger earlier saying that man no longer encounters himself;

on the same page, Heidegger claims further that man “can never encounter only

himself.” (Heidegger 1977, p. 27) Heisenberg, on the other hand, believes quan-

tum physics is like no other situation in humanity. To him, quantum physics

is the realm in which “for the first time in history man encounters only him-

self on this earth.” (Heisenberg 1984, p. 412) Heisenberg argues that quantum

physics utilizes physical descriptions that are entirely meaningless without posit-

ing the observer as a unique part of the physical reality. Heisenberg and the

Copenhagen interpretation do this by deconstructing classical binaries, such as

observer/experiment, subjective/objective, and mind/body.
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But is Heisenberg the first to bring this type of deconstruction to the table?

Most certainly not. I feel Heisenberg’s argument goes further than the decon-

struction of this binary. As stated many times now, a superficial reading of the

Copenhagen interpretation will claim merely that we must be careful with such

distinctions, distinctions which drive the classical experimental mode of thought.

Heisenberg skips this point almost entirely because it is of no pertinent matter

to him: Instead, what is at stake is our understanding of ourselves. The classical

experimental schema will always prevail for our technological purposes. Now,

the question is whether we can save ourselves from the classical-mathematical-

logical schema (Heisenberg 1984, p. 415) that has more or less destroyed the

rest of the world.

The uncertainty relations show that what we originally conceived
as the ultimate object of reality, namely, the elements of matter,
cannot be observed ‘in themselves,’ that is, their objective deter-
mination in space and time is impossible. . . . The new situation in
physics indicates that such received distinctions as subject/object,
inside/outside, mind/body are no longer applicable and useful. Heisen-
berg mostly develops the implications for nature and what we ordi-
narily call objective reality. But, of course, there are also similarly
radical implications which need to be drawn out for what we ordi-
narily call the self. (Seigfried 1990, p. 628)

Heidegger agrees in that the only task worth pursuing for physics not a techno-

logical feat, but rather a perceptual ‘turning’ that could (re)insert the human

back into his/her description of the natural world. (Heidegger 1977, p. 39)

After all, what else is there to do with a classical-mathematical schema that

“no longer mirrors nature, but only our knowledge of nature.” (Seigfried 1990,

p. 628) We have no choice but to accept that the mirror with which we tried

to see nature has been turned back on ourselves, and is nothing more than a

mirror image of ourselves.

The objective representation of natural processes is no longer pos-
sible in quantum physics. What quantum physics provides is not
a representation of nature (Bild von der Natur), but a representa-
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tion of our relationship to nature. (Seigfried 1990, p. 629 citing
Heisenberg 1984, p. 417)

The classical Cartesian distinction between body and mind is not only useless,

but also dangerous in modern physics. Such a binary between res extensa and

res cogitans leads to vast assumptions about the natural world, such as the

classical criterion for reality and principle of locality. Heidegger argues that

quantum physics, too, is wrapped in the Cartesian binary and can therefore

cannot encounter either the natural world or itself (as a discipline). But,

contrary to Heidegger, who claims that modern physics rests on a
Cartesian ontology, ‘which, in principle, is still the usual one today’
(1962, p. 100), quantum physics deals this ontology a much harder
blow than Heideggerian phenomenology. (Seigfried 1990, p. 629)

We must admit, then, that humans are participants more so than they are benign

observers in the natural world. Our relationship with nature is a “transaction”

that is clouded by uncertainty relations. Without such an understanding of

ourselves, without such an understanding of the natural world, we are bound

to a determinist framework. As Plato says, we are nothing but puppets of the

Gods. (Plato 1969, p. 1244)

Heidegger has helped us realize everything quantum mechanics has to offer,

even though he himself stated “Physics . . . will never be able to renounce this

one thing: that nature reports itself in some way or other that is identifiable

through calculation and that it remains orderable as a system of information.”

(Heidegger 1977, p. 23) To this statement, we must simply say Heidegger was

wrong. Quantum theory states precisely the opposite – Nature is not identifiable

through calculation. To say the thing-in-itself is calculable remains the ultimate

claim this thesis has worked to debunk.

What, then, is the thing-in-itself? We stated in Section 7.2 that the Copen-

hagen interpretation seems to make at least one claim regarding the thing-in-

itself, namely, that it tends towards possibility. The act of observation which

destroys possibility is an invasive process. We do not meet invasive in such
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a negative way. Rather, we want to accept that every observation necessarily

projects our being onto the system of inquiry. The thing-in-itself is wrapped

up in our being in the sense that it cannot be observed without imposing our-

selves upon it. We are not claiming the world is only our mind: Instead, we

want to deconstruct the binaries that try to define a world as separate from our

existence.

Remember, we do not want to claim that there exists not world separate from

our experience. This is the inflationary and skeptical route. We want to claim

that the world is comprised of infinite possibility until, that is, one discrete pos-

sibility is realized. The thing-in-itself tends towards possibility. As the observer,

we effectively choose a possibility. In many cases, how possibility becomes actu-

ality cannot be adequately explained using our classical-mathematical schema.

Further, possibility becoming actuality is even more so mysterious in the context

of the person. But if we are to take anything away from the juxtaposition of

Heisenberg and Heidegger, it is this: Any observation is an image of ourselves,

and accordingly offers us the opportunity to actualize our possibility and create

ourselves.
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Chapter 9

Conclusion

With the advent of quantum mechanics come fundamental questions. At first

glimpse, these questions seem to be epistemological in nature. This is the knee-

jerk reaction of any philosophy of physics. We are inclined to think that the

goal physics is to present a wholly objective description of our knowledge of the

world. The burden of physics, then, is quite large. In fact, this thesis has shown

that that burden is impossible. This thesis has shown that we play a more

intimate role in the workings of the physical world. By accepting our intimate

relation, we have come to a metaphysical conclusion regarding the reality as

well as a existential conclusion regarding the being of a person.

In Part I, we observed quantum phenomenon. We tried to image an electron;

we tried to send an electron through one slit or the other (we did not care which

one!); we tried to measure polarization without contradicting ourselves; we tried

to measure spin, but instead only showed that our observations violate basic

mathematical principles. With what were we left?

We were left with a paradox. The paradox was: While we know our descrip-

tive schema cannot describe the natural world accurately, we also know this is

only the descriptive schema we can adopt. Kant helped us understand why:

Our concepts of cause, space, time, and thing-in-itself force us to search for
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sufficient reasoning in every event. Classical-mathematical physics has mostly

accomplished this: There are many physical events that can be described using

the classical schema. But still, the paradox carries dramatic assaults on our

underlying assumptions. To rework these assumptions, we had to retreat all

the way back to metaphysical claims regarding the natures of reality and the

thing-in-itself, as well as our relation to these two concepts. A physical principle

that began as seemingly a statement on knowledge flourished into an examina-

tion of our metaphysical presuppositions. We had no choice but to accept these

ramifications.

We are now left with a rather confusing situation that goes against our in-

tuition. The world can only be described using our conceptual schema. Yet

this schema is developed through our observations of the world. Perhaps while

bringing light to one paradox, this thesis has happened upon another: Which

comes first, the schema or the experience? Our answer seems to be equally

paradoxical: Both come first. We are able to make such a statement only by

recognizing the intimate interplay between experience and concept. We have

argued that it is just as meaningless as it is dangerous to separate these two.

Some philosophy works to take things apart, and some philosophy works to put

things back together. We have taken apart the schema through which we ex-

perience the world in order to put back together the binaries of object/subject,

mind/body, self/world, and all those distinctions that only confuse our inter-

pretation of ourselves. We did this by proving such distinctions are bound to

paradox. And thus, in the paradox we rejoice.

As I said in the Introduction, quantum theory is as humbling as it is modest.

It is humbling because it allows us to understand our significance in the world.

We have no choice but to accept ourselves as that which actualizes possibility.

Determinism is empty at its core. It is modest in that it does not treat the

person as a particularly special entity. For a long time, physics thought we could

observe the world objectively and arrive at a complete description of reality
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absent ourselves. This, however, is not the case. We are just another piece of

matter, inextricably linked to the natural world around us. A theory that is

both humbling and modest is sure to bring about enlightening conclusion. Our

conclusion is that we are in charge of possibility. We are in charge of creating

the descriptive language, and we are in charge of pushing probability into the

realm of actuality.

Philosophy and physics are connected in that they ask fundamental ques-

tions. We can understand, then, why the two will run into each other. In order

to answer such questions, we must take up our creative spirit and build a world

out of our description. We can count on the world to forever be uncanny, and

thus we can count on forever having inspiration. For this reason, we link the

physicist and the philosopher and the artist; and after we attribute the deserved

elegance to the theory of quantum mechanics, I myself can view it as nothing

but a miracle of the human. But perhaps the paradox is more enlightening:

“There are two ways to live: You can live as if nothing is a miracle;

you can live as if everything is a miracle.”

–Albert Einstein
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