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STATISTICS | RESEARCH ARTICLE

The principal problem with principal components
regression
Heidi Artigue1 and Gary Smith1*

Abstract: Principal components regression (PCR) reduces a large number of expla-
natory variables in a regression model down to a small number of principal com-
ponents. PCR is thought to be more useful, the more numerous the potential
explanatory variables. The reality is that a large number of candidate explanatory
variables does not make PCR more valuable; instead, it magnifies the failings of PCR.

Subjects: Statistical Computing; Statistics & Computing; Statistical Theory & Methods;
Statistics for Business, Finance & Economics

Keywords: principal components regression; PCA; factor analysis; Big Data; data reduction

Pearson (1901) and Hotelling (1933, 1936)) independently developed principal component analy-
sis, a statistical procedure that creates an orthogonal set of linear combinations of the variables in
an n x m data set X via a singular value decomposition,

X ¼ UΣV0

where U is an n x m matrix with orthonormal columns, Σ is an m x m diagonal matrix with the
ordered singular values, and V is an m x m orthonormal matrix. The non-negative eigenvalues of
X’X are the squared diagonal elements of Σ, the eigenvectors of X’X are the columns of V, and the
principal components of X are given by XV.
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Hotelling (1957) and Kendall (1957) recommended replacing the original explanatory variables
in a multiple regression model with their principal components. This replacement evolved into
a recommendation by several prominent statisticians that components with small variances can
be safely omitted from a regression model (Hocking, 1976; Mansfield, Webster, & Gunst, 1977,;
Mosteller & Tukey, 1977). Thus, principal components regression (PCR) discards the eigenvectors
that have the smallest eigenvalues, in contrast to other procedures like surrogate regression
(Jensen & Ramirez, 2010) and raise regression (Garcia, Garcia, & Soto, 2011) that increase the
magnitude of the small eigenvalues.

PCR enthusiasts evidently believe that components with small variances are of little use in
predicting variations in the dependent variable. Mansfield, Webster, and Gunst explicitly state
that, “The small magnitude of the latent root indicates that the data contain very little information
on the predictiveness of those linear combinations (page 38).” Mosteller and Tukey argued that,

A malicious person who knew our x’s and our plan for them could always invent a y to make our
choices look horrible. But we don’t believe nature works that way—more nearly that nature is, as
Einstein put it (in German), “tricky, but not downright mean.” (pp. 397–398)

Hadi and Ling (1998) show by theory and example that PCR may discard a principal component
that is perfectly correlated with the variable being predicted, while retaining components that are
completely uncorrelated with the dependent variable. Our point is more general. The principal
problem with principal components regression is that it imposes constraints on the coefficients of
the underlying explanatory variables that have nothing whatsoever to do with how these variables
affect the dependent variable in the regression model.

Hadi and Ling note the argument of PCR advocates that, “Because the PCs … are orthogonal, the
problem of multicollinearity disappears completely, and no matter how many PCs are actually
used, the regression equation will always contain all of the variables in X (because each PC is
a linear combination of the variables in X.” The problem we highlight is that, while all of the original
explanatory variables may be retained, their estimated coefficients are distorted by PCR in ways
that diminish the accuracy of the model when it used to make predictions with fresh data.

Principal components regression (PCR) is now commonplace. A principal components transfor-
mation of the original explanatory variables is used to create a set of orthogonal eigenvectors,
with the corresponding eigenvalues representing the fraction of the variance in the original data
that is captured by each eigenvector. The principal components selected for the multiple regres-
sion model are then based on a rule such as the largest eigenvalues that capture at least
80 percent of the total variance. A few examples from a wide variety of fields are Cowe and
McNicol (1985), Stock and Watson (2002), Price et al. (2006), Dray (2008), Sanguansat (2012),
Sainani (2014), Qi and Roe (2015), and Sabharwal and Anjum (2016).

Some argue that PCR solves the multicollinearity problem created by high correlations among
the original explanatory variables; for example, Kudyba (2014), Alibuhtto and Peiris (2015).
However, a transformation that retains all the principal components doesn’t affect the implicit
estimates or standard errors of the coefficients of the original variables or the predicted values of
the dependent variable. The regression model is affected if some of the principal components are
omitted, but, as will be illustrated later, this is because restrictions with no theoretical basis are
imposed on the original parameters.

Among others, Gimenez and Giussani (2018) emphasize that it is difficult to interpret the
coefficients of the principal components because they are weighted averages of the coefficients
of the underlying explanatory variables. Others criticize PCR for its linearity and propose a variety of
nonlinear weighting schemes; for example, Liu, Li, McAfee, and Deng (2012), Deng, Tian, and Chen
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(2013), Yuan, Ye, Bao, Ge, and Song (2015), Bitetto, Mangone, Mining, and Giannossa (2016), and Yu
and Khan (2017).

PCR has become popular in exploratory data analysis where there is a dauntingly large number
of candidate explanatory variables and the researcher wants to let the data determine the final
model; for example, Sakr and Gaber (2014), Taylor and Tibshirani (2015), Jolliffe and Cadima
(2016), Verhoef, Kooge, and Walk (2016), George, Osinga, Lavie, and Scott (2016), Chen, Zhang,
Petersen, and Müller. (2017).

Athey (2018) argues more generally that, “An advantage of using unsupervised learning to
create covariates is that the outcome data is not used at all; thus, concerns about spurious
correlation between constructed covariates and the observed outcome are less problematic.”
This characteristic is, in fact, the most serious problem with principal components regression. It
is a flaw, not a feature. The eigenvector weights depend solely on the correlations among the
explanatory variables, with no regard for the dependent variable that the model will be used to
predict. As a consequence, PCR may constrain the coefficients of the original explanatory variables
in ways that cause the model to fare poorly with fresh data. Specifically, the constraints that the
eigenvector weights impose on the implicit estimates may cause the estimated coefficients of
nuisance variables to be large, while the estimated coefficients of important explanatory variables
may be very small or have the wrong sign.

The Appendix uses a very simple model to provide a detailed example of the practice and pitfalls
of principal components regression. We also use a Monte Carlo simulation model to demonstrate
how this core problem with principal components regression is exacerbated in large data sets.

1. A simulation model
All the explanatory variables in our Monte Carlo simulations were generated independently in
order to focus on the fact that a principal components analysis might be fooled by purely
coincidental, temporary correlations among the candidate explanatory variables, some of which
are nuisance variables that are independent of the both true explanatory variables and the
variable being predicted, and might be useless, or worse, out-of-sample.

Two hundred observations for each candidate explanatory variable were determined by
a Gaussian random walk process:

Xi;t ¼ Xi;t�1 þ εi;t ε,N 0; σX½ � (1)

where the initial value of each explanatory variable was zero, and ε was normally distributed with
mean 0 and standard deviation σX . The central question is how effective principal components
regression is at estimating models that can be used to make reliable predictions with fresh data.
So, in each simulation, 100 observations were used to estimate the model’s coefficients, and the
remaining 100 observations were used to test the model’s reliability. All the data were centered by
subtracting the sample means.

Five randomly selected explanatory variables (the true variables) were used to determine the
values of a dependent variable Y

Yt ¼ ∑
5

i¼1
βiXi;t þ νt ν,N 0; σy

� �
(2)

where the value of each β coefficient was randomly determined from a uniform distribution
ranging from 2 to 4, and υ is normally distributed with mean 0 and standard deviation σy. The
range 0 to 2 was excluded because the real variables presumably have substantial effects on the
dependent variable. Negative values were excluded so that we can compare the average value of
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the estimated coefficients to the true values. The other candidate variables are nuisance variables
that have no effect on Y, but might be coincidentally correlated with Y.

A principal components analysis was applied to the in-sample data to determine the eigen-
values, eigenvectors, and principal components. The multiple regression model was estimated
by using the principal components associated with the largest eigenvalues such that at least
80 percent of the variation in the explanatory variables is explained by these components.

Our base case was σX = 5, σy = 20, and 100 candidate variables, but we also considered all
combinations of σX = 5, 10, or 20; σy= 10, 20, or 30; and 10, 50, 100, 500, or 1000 candidate
variables. One hundred thousand simulations were done for each parameterization of the
model.

2. Results
The number of principal components included in a multiple regression equation is not affected by
the standard deviation of Y since the eigenvalues do not depend on Y, just the correlations among
the candidate explanatory variables. For the same reason, the number of included principal
components does not depend on whether the candidate variables truly affect the dependent
variable or are merely nuisance variables.

In our simulations, it turned out that the assumed standard deviation of the explanatory
variable hardly mattered, at least for the range of values considered here; so, we only report the
results for our base case of σX = 5 and σy= 20.

With 100 candidate variables, the average PCR equation had 3.02 principal components. Table 1
shows that the average number of components retained increased with the number of candidate
variables.

We used the estimated coefficients of the principal components included in the multiple
regression model to calculate the implicit estimates of the coefficients of the five real variables
and each of the nuisance variables. The expected value of the coefficient of each of the five real
variables is 3.0; the true coefficient of each nuisance variable is 0.

Table 1 shows that the average value of the estimated coefficients of the nuisance variables
was approximately zero, while the average value of the estimates of the coefficients of the true
explanatory variables was substantially less than 3 and approached zero as the number of
candidate variables increased. This reflects our earlier comment that the construction of
principal components using eigenvector weights imposes unwelcome constraints on the esti-
mated coefficients of the explanatory variables. As the number of candidate variables
increases, they become essentially indistinguishable, with estimates that average near zero,

Table 1. Average number of principal components and estimated coefficients, σX= 5, σy = 20

Average Estimated Coefficient

Number of Candidate
Variables

Average Number of
Included Components

True Variables Nuisance Variables

5 2.04 1.224 N/A

10 2.44 0.733 0.000

50 2.95 0.177 0.000

100 3.00 0.091 0.000

500 3.00 0.018 0.000

1,000 3.00 0.009 0.000

Artigue & Smith, Cogent Mathematics & Statistics (2019), 6: 1622190
https://doi.org/10.1080/25742558.2019.1622190

Page 4 of 11



and consequently do not capture the importance of the real explanatory variables that deter-
mine the value of the dependent variable. As the coefficient estimates become increasingly
noisy, the model becomes less useful for making predictions.

Table 2 uses three metrics to compare the in-sample and out-of-sample prediction errors. The
first is the simple correlation between the actual and predicted value of the dependent variable.
The second metric is the mean absolute error (MAE)

MAE ¼
∑
n

t¼1
Ŷ � Y
���

���
n

(3)

The third metric is the root mean square error (RMSE):

RMSE ¼
∑
n

t¼1
Ŷ � Y

� �2

n
(4)

The first row, “5M” in Table 2, is a baseline, using multiple regression estimates with the five true
explanatory variables. The other estimates use the principal components with the largest eigen-
values. The principal components models consistently performed far worse out-of-sample than in-
sample. As the number of candidate variables increased, the in-sample fit worsened somewhat,
while the out-of-sample fit deteriorated substantially.

The results are robust with respect to the number of observations. An increase in the number
of observations improves the precision of the estimated coefficients of the principal compo-
nents, but does not materially affect the results, because the flaw in PCR is that correlations
among the explanatory variables are used to constrain the implicit estimates of the model’s
original coefficients and, on average, these correlations are not affected by an increase in the
number of observations. For example, with σX = 5, σy= 20, and 100 candidate variables, 100,000
simulations with 1,000 observations gave results that were essentially the same as in the case
of 100 observations: 2.99 versus 3.00 average number of included components; 0.091 versus
0.091 average estimated coefficients of the true variables; and 0.832 versus 0.819 in-sample
and 0.150 versus 0.141 out-of-sample average correlations between the predicted and actual
values of the dependent variable.

The conclusions are also little affected by in-sample correlations among the explanatory
variables. We initially focused on independent candidate variables because we wanted to
emphasize the reality that PCR will often give large weights to nuisance explanatory variables

Table 2. In-sample and out-of-sample prediction errors, σX= 5, σy = 20

Mean Correlation Mean Absolute Error Root Mean Square Error

Candidates In-Sample Out-Sample In-Sample Out-
Sample

In-Sample Out-
Sample

5M 0.983 0.980 15.47 20.75 19.34 25.52

5 0.835 0.541 41.29 145.98 51.14 167.99

10 0.825 0.409 44.95 168.52 55.69 193.96

50 0.820 0.198 47.51 187.63 58.83 216.38

100 0.819 0.141 47.82 190.49 59.19 219.51

500 0.818 0.010 47.85 190.85 59.21 220.33

1000 0.817 0.008 47.87 191.17 59.30 220.71

5M: multiple regression with five true variables; the other estimates use principal components
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even if they are independent of the true explanatory variables. For comparison, we also
considered the case of candidate variables with 0.9 pairwise correlations. Table 3 shows the
results for the base case of 200 observations (half in-sample and half out-of-sample) and 100
candidate variables. If the candidate variables happen to be highly correlated in-sample, but
uncorrelated out-of-sample, PCR tended to choose fewer components (an average of 1.43
versus 3.00), have comparable (small) estimated coefficients for the variables, and
a somewhat better fit in-sample and worse fit out-of-sample. The weaknesses of PCR evi-
dently do not hinge on the in-sample correlations among the explanatory variables.

On the other hand, Table 3 also shows that PCR did relatively well if the explanatory variables
happen to be highly correlated both in-sample and out-of-sample. In the first two scenarios shown
in Table 3, the independence of the explanatory variables out-of-sample exposed the PCR pitfall of
putting inappropriate weights on the explanatory variables. If the explanatory variables happen to
continue to be highly correlated out-of-sample, then these inappropriate weights are not as costly
because it doesn’t matter as much whether the estimation procedure can distinguish between true
variables and nuisance variables.

3. Conclusion
The promise of principal components regression is that it is an efficient way of selecting a relatively
small number of explanatory variables from a vast array of possibilities, based on the correlations
among the explanatory variables. The problem is that the eigenvector weights on the candidate
variables have nothing to do with their relationship to the variable being predicted. Mildly impor-
tant variables may be given larger weights than important variables. Nuisance variables may be
given larger weights than the true explanatory variables. The coefficients of the true explanatory
variables may be given the wrong signs.

It might be thought that the larger the number of possible explanatory variables, the more
useful is the data reduction provided by principal components. The reality is that principal compo-
nents regression is less effective and more likely to be misleading, the larger is the number of
potential explanatory variables.

Table 3. One hundred highly correlated candidate variables, σX= 5, σy = 20

Correlation Among Candidate Variables

None In-Sample Only In- and Out-of-Sample
Average Number of Included
Components

3.00 1.43 1.43

Average Estimated
Coefficient

True Variables 0.091 0.158 0.158

Nuisance Variables 0.000 0.142 0.142

Mean Correlation

In-Sample 0.819 0.981 0.981

Out-of-Sample 0.144 0.201 0.973

Mean Absolute Error

In-Sample 47.66 33.41 33.41

Out-of-Sample 190.64 248.71 92.93

Root Mean Square Error

In-Sample 59.01 41.27 41.27

Out-of-Sample 219.92 274.35 106.47
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Appendix A. Principal Components Regression Example
Equations 1 and 2 were used to generate twenty observations for four explanatory variables, of
which two variables, X1 and X2, were used with randomly determined coefficients (2.022 and 3.403,
respectively) to determine the values of the dependent variable Y. The other two explanatory
variables, X3 and X4, were nuisance variables. To keep the standard errors comparable to the main
paper, we used σX = 5 and σy= 5. The first ten observations were used for the in-sample statistical
analysis, with the ten remaining observations reserved for an out-of-sample test of the model.
These data are shown in Table A1.

The eigenvectors and eigenvalues for the four explanatory variables are shown in Table A2. The
sum of the eigenvalues is 2,735.44, with the first eigenvalue a fraction 0.889 of the total. Using the
0.80 rule, the principal component corresponding to this eigenvalue was used in the multiple
regression equation.

The first principal components is

PC1 ¼ � 0:3298X1 þ 0:6054X2 � 0:6512X3 þ 0:3173X4 (1)

The absolute values of the weights given the two nuisance variables are comparable to the weights
given the real variables. Notice, also, that the weights for the first and second explanatory variables
have opposite signs, even though their true coefficients have the same sign. The inescapable problem
is that these principal component weights were derived from the correlations among the explanatory
variables with no concern for how the dependent variable is related to the explanatory variables.
Because of this, the implicit coefficients of the true variables, X1 and X2, will necessarily have opposite
signs (one will have an incorrect sign) and the implicit coefficients of the nuisance variables will be
substantial.

Matters would be more complicated if more than one principal component were included in the
multiple regression equation, but it remains true that the implicit estimates of the coefficients of
the original explanatory variables would be constrained by the principal component weights—
which depend on the correlations among the explanatory variables rather than their effects on the
dependent variable.

The matrix multiplication of the original data by the eigenvector weights gives the principal
components shown in Table A3. Using the 0.80 rule, a multiple regression using the first principal
component gave these estimates, with the standard errors shown in parentheses,

Y ¼ 0:000 þ 1:504PC1
4:254ð Þ 0:273ð Þ (2)

The t-value for the coefficient of the first component is a remarkable 5.51 and R2 = 0.79, seemingly
a highly successful model.

The substitution of Equation 1 into the multiple regression Equation 2 gives the implicit esti-
mates of the coefficients of the original explanatory variables shown in Table A4. The estimated
coefficient of X1 has the wrong sign and the absolute values of the coefficients of the nuisance
variables are as large as those for the true variables. Despite the impressive in-sample fit, the
estimated model is unlikely to be nearly as successful out-of-sample.
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Equation 2 was used to make out-of-sample predictions for observations 11 through 20. Table
A5 shows that the out-of-sample prediction errors were much larger than the in-sample errors, no
doubt because the model’s estimated coefficients were so inaccurate. Despite the 0.890 in-sample
correlation, the out-of-sample correlation between the predicted and actual values of Y was
negative. The out-of-sample MAE and RMSE were roughly double the in-sample values. For com-
parison, a naive model that completely ignores the explanatory variables and simply predicts that
Y will equal its average value (0) has a MAE of 15.71 and a RMSE of 13.95. The principal
components regression model was somewhat worse than useless for making predictions.

Table A1. Original data

observation Y X1 X2 X3 X4
1 20.899 −9.400 7.654 −16.163 4.014

2 41.320 −7.493 14.967 −11.858 8.426

3 9.584 −4.587 7.990 −10.045 9.638

4 16.632 1.872 3.797 −4.053 3.245

5 9.523 −2.325 6.163 −0.779 −0.193

6 6.874 0.825 1.940 3.796 −6.928

7 −11.663 3.343 −5.947 −0.465 −5.427

8 −30.695 4.341 −9.950 8.108 −0.364

9 −56.387 6.518 −20.660 15.646 −5.637

10 −6.087 6.908 −5.954 15.813 −6.774

11 7.878 6.577 −0.024 15.388 −8.043

12 4.724 −0.406 0.912 6.754 −13.972

13 −9.331 −4.455 −0.810 −0.136 −20.521

14 15.417 3.827 −0.791 1.051 −26.797

15 15.709 8.273 −2.250 −1.755 −21.643

16 12.040 6.598 −1.761 −8.400 −31.408

17 −6.672 3.634 −3.366 −3.504 −38.517

18 17.103 4.746 −1.061 −5.460 −31.746

19 −20.269 1.306 −6.963 −2.750 −23.184

20 −30.335 −7.336 −6.182 −4.434 −22.629

Table A2. The Eigenvalues and Eigenvectors

Eigenvectors

Eigenvalues E1 E2 E3 E4
2,431.96 −0.3298 0.1122 0.1769 0.9205

174.90 0.6054 0.7774 0.1420 0.0949

98.46 −0.6512 0.4693 0.4605 −0.3791

30.11 0.3173 −0.4035 0.8582 −0.0020

Artigue & Smith, Cogent Mathematics & Statistics (2019), 6: 1622190
https://doi.org/10.1080/25742558.2019.1622190

Page 9 of 11



Table A3. Principal components

Observation Y PC1 PC2 PC3 PC4
1 20.899 19.533 −4.309 −4.575 −1.809

2 41.320 21.928 1.830 2.570 −1.000

3 9.584 15.949 −2.907 3.968 0.323

4 16.632 5.349 −0.050 1.789 3.613

5 9.523 4.944 4.243 −0.061 −1.260

6 6.874 −3.768 6.177 −3.776 −0.482

7 −11.663 −6.122 −2.277 −5.125 2.701

8 −30.695 −12.851 −3.296 2.777 −0.021

9 −56.387 −26.634 −5.712 0.587 −1.879

10 −6.087 −18.330 6.300 1.845 −0.186

Table A4. True and estimated coefficients

Explanatory Variable True Coefficient Estimated Coefficient
X1 2.022 −0.496

X2 3.403 0.910

X3 0 −0.979

X4 0 0.477

Table A5. Prediction errors

Mean Correlation Mean Absolute Error Root Mean Square Error

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

0.890 −0.324 10.61 20.43 12.03 22.99
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