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Abstract

Wassily Hoeffding, in his 1963 paper, introduces a procedure to derive in-
equalities between distributions. This method relies on finding a martin-
gale coupling between the two random variables. I have developed a con-
struction that establishes such couplings in various urn models. I use this
construction to prove the inequality between the hypergeometric and bino-
mial random variables that appears in Hoeffding’s paper. I have then used
and extended my urn construction to create new inequalities.
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Chapter 1

Introduction

Many realistic situations are much too intricate for exact calculations. In
practice, one must resort to approximations and bounds. Establishing stochas-
tic orders can lead to improved approximation and tighter bounds for var-
ious probabalistic models. Progress in this area can have ramifications in
economics, statistical physics, queueing theory, reliability theory, epidemi-
ology, and many other fields. (Muller and Stoyan, 2002)

1.1 Stochastic Orders

Stochastic orders are special cases of partial order relations of random vari-
ables.

Definition 1. A binary relation � on a set S is a partial order if it satisfies the
follwing conditions:

• Reflexivity: x � x for all x ∈ S;

• Transitivity: if x � y and y � z then x � z;

• Antisymmetry: if x � y and y � x then x = y.

(Muller and Stoyan, 2002)

When S is the set of all distributions of real-valued random variables,
the partial ordering is a stochastic order.



2 Introduction

1.2 The Hypergeometric Bound

In Wassily Hoeffding’s 1963 paper, he studies methods by which bounds
on the tails of probability distributions can be derived. He uses a stochastic
order to derive a bound on the hypergeometric distribution as a special case
of sampling from a finite population. For a hypergeometric distribution
where there are a total of N balls, M of which are deemed as a success if
drawn. For n draws with k successes,

H(M, N, n, k) ≤
((

p
p + t

)p+t ( 1− p
1− p− t

)1−p−t
)n

, (1.1)

where k = (p + t)n, p = M
N for t ≥ 0.

This was later proved by Chvátal (1979) in an ad-hoc method.
The hypergeometric distribution is a common model in applied probabil-

ity theory used to model the drawing without replacement of discrete ob-
jects. For discrete probability distributions, it is often the case that exact nu-
merical distributions are computationally intensive for large populations.
Thus, rather than an exact solution, inequalities are often utilized to bound
the possible values.

1.3 Direction of Research

The goal of my research at the outset was to provide a more accessible
treatment of Hoeffding’s method and then to construct a concrete model
with which to prove Hoeffding’s inequality. I later use this construction to
apply Hoeffding’s inequality to obtain new results.



Chapter 2

Background

Hoeffding proves his bound for the hypergeometric distribution and more
general inequalities by creating a martingale coupling between random
variables.

2.1 Terminology

Definition 2. A coupling between two random variables X and Y is a pair of
dependent random variables X̂ and Ŷ such that X =d X̂ and Y =d Ŷ (Ross and
Peköz, 2007).1

Definition 3. A martingale coupling is a coupling (X̂, Ŷ) such that

E[Ŷ|X̂ = k] = k.

An example of a martingale coupling is the situation in which we con-
sider two particles performing a random walk. If we simply enforce the
condition that one particle perform the exact same movements as the other,
we have a martingale coupling. Notice that when we scrutinize the parti-
cles individually, their distributions have not changed.

The next step in Hoeffding’s work then utilizes Jensen’s inequality to
deduce a bound.

Theorem 2.1 (Jensen’s Inequality). Given that the function f (x) is convex in
an interval I, then for positive numbers p1, . . . , pN such that p1 + · · ·+ pN = 1

1Y =d Ŷ indicates that the distribution of Y is the same as that of Ŷ.



4 Background

Figure 2.1 Example of a convex function.

and any numbers x1, . . . , xN in I,

f (
N

∑
i=1

pixi) ≤
N

∑
i=1

pi f (xi).

(Hoeffding, 1963)

Definition 4. A real-valued function defined on (a, b) is convex if

f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2)

where a < x1 < b, a < x2 < b, 0 < t < 1 (Rudin, 1964).

Figure 2.1 shows an example of a convex function.
Hoeffding uses Jensen’s inequality in conjunction with martingale cou-

plings to establish a bound for expectations of convex functions. I define
this stochastic order as

Definition 5. A random variable X is at most as risky as a random variable Y,
or X ≤risk Y, if for any continuous, convex function f ,

E[ f (X)] ≤ E[ f (Y)].

(Rothschild and Stiglitz, 1970)

This choice of terminology stems from the economists’ application of
this stochastic order to the assessment of risk.
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2.2 Sampling from a Finite Population

Hoeffding proves his bound on the hypergeometric distribution by demon-
strating that the bounds apply to the binomial distribution and that any
tail-bound on the binomial must also apply to the hypergeometric.

Showing that the inequality applies to the binomial random variable is
shown in Hoeffding’s paper (1963). We now examine the latter half of the
procedure. The crucial theorem is

Theorem 2.2. Let X = ∑n
i=1 Xi where X1, X2, . . . , Xn denote a random sample

with replacement from a population that consists of N values c1, c2, . . . , cN . Let
Y = ∑n

i=1 Yi where Y1, Y2, . . . , Yn denote a sample without replacement from the
same population. If f (x) is a convex function, then

E[ f (Y)] ≤ E[ f (X)].

(Hoeffding, 1963)

The proof of this theorem, which can be found in Hoeffding’s work
(1963), relies on the existence of a martingale coupling between X and Y,
and the application of Jensen’s inequality. Hoeffding did not find an ex-
plicit coupling and his argument is convoluted.

Later, in my research, I use the concept of exchangeable random vari-
ables.

Definition 6. The discrete random variables X1, X2, . . . , Xn are exchangeable
if, for every permutation i1, i2, . . . , in of the integers 1, . . . , n,

P[Xi1 = x1, Xi2 = x2, . . . , Xin = xn] = P[X1 = x1, X2 = x2, . . . , Xn = xn]

for all x1, . . . , xn. (Ross, 1994)





Chapter 3

Research

We now examine a concrete procedure that couples the distribution of sam-
pling from a finite population without replacement to sampling with re-
placement. Consider the following situation. We have two urns. The first
contains N black balls, and the second contains N white balls. Each black
ball is given an associated numerical value. Now we begin drawing balls
from the white urn. Each time we draw a white ball, we replace it with a
black ball and record the value of the black ball. If we draw a black ball
from the white urn, we record its value and replace it. We continue this
process until all the balls in the white urn have been replaced with black
balls. To simulate drawing with and without replacement from a finite
population, we scrutinize a curtailed version of my procedure.

We would like to model a situation where X = ∑n
i=1 Xi and X1, X2, . . . , Xn

denote a random sample with replacement from a population that consists
of N values c1, c2, . . . , cN ; and Y = ∑n

i=1 Yi where Y1, Y2, . . . , Yn denote a
sample without replacement from the same population.

For the urn of N black balls, let the values of the balls be c1, c2, . . . , cN .
Now consider the point in our procedure where we have only drawn n
times from the white urn. Let X be the sum of the values of the n draws.
Next, we examine the point in time at which we have drawn n balls from
the black urn. Let Y be the sum of the values of the n black balls.

Theorem 3.1. X,Y is a martingale:

E[Y|X = k] = k. (3.1)

Proof. Consider replacing the white urn with an urn of N white balls that
are numbered 1, . . . , N. We examine the equivalent procedure of first draw-
ing n black balls and then drawing n times from this numbered urn, replac-
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ing with the drawn black balls. Let ci1 , ci2 , . . . , cin denote the values of the
n black balls drawn. At the end of this process, we should have recorded
a series of integers representing the numbered balls that were drawn. We
must then map the n black ball values to one of the integers 1 through n.
Notice that the values of the drawn black balls are exchangeable random
variables so all n! assignments are equally likely.. The probability that any
integer i is assigned to a value cij is 1

n . Thus, the expected value of any draw

from the white urn will be ∑n
j=1

cij
n . Since there are n draws from the white

urn, the expected value of Y will be n ∑n
j=1

cij
n = ∑n

j=1 cij = k.

Next, I claim that my procedure faithfully replicates the situation of
drawing with or without replacement from a finite population.

Theorem 3.2. X has the distribution of drawing without replacement from a finite
population and Y is has the distribution of drawing with replacement from the same
finite population.

Proof. Both X and Y are defined on the same probability space. Clearly,
the black balls are drawn without replacement and the urn is a finite pop-
ulation. Our procedure establishes a bijective map between the white and
the black balls with all (a + b)! bijective maps being equally likely. Thus,
drawing with replacement from the white urn is equivalent to drawing
with replacement from the black balls. Thus, both draws are from the same
finite population.

The above procedure demonstrates that drawing from a finite popu-
lation without replacement is at most as risky as drawing from the same
finite population with replacement.

Notice that a special case of our procedure leads to the binomial and hy-
pergeometric coupling that results in Hoeffding’s hypergeometric inequal-
ity. If we consider the values of the black balls to be limited to 1 or 0 (this
can represent red and blue balls by convention), then X will be a hyperge-
ometric random variable and Y will be a binomial random variable. From
now on, I present my research in this specific context since it improves
notational convenience. However, the following theorems obey a similar
generalization.

The impetus behind our next theorem comes from the intuitive obser-
vation that if we instead have ta red balls and tb blue balls and we let t ap-
proach infinity, then drawing from this urn will be indistinguishable from
a binomial distribution B(a + b, a

a+b ).
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Theorem 3.3. Y ∼ H(a, a + b, n) is at most as risky as X ∼ H(ta, ta + tb, n)
where t ∈ Z+.

Proof. We prove this statement by establishing a martingale coupling be-
tween the two random variables. Consider the following procedure:

1. We begin with an urn of a red balls and b blue balls.

2. Introduce an urn with ta + tb white balls and associate t balls with a
unique serial number so that there are (a+ b) different serial numbers
each with t balls.

3. Draw a ball from the urn with the white balls.

• If the ball is white, draw a colored ball from the first urn, record
the color, and then find the (t − 1) white balls with the same
serial number and paint them the color of the colored ball drawn
from the colored urn.
• If the ball is colored, record its color and remove.
• Continue this process until all the balls in the white urn have are

colored.

Let X be the number of red balls drawn from the white urn from n
draws, and let Y be the number of red balls drawn from the colored urn
when there have been n draws from the colored urn. To see that this is a
martingale coupling, we consider the situation where there have been k red
balls drawn by the time n colored balls have been drawn from the colored
urn. Using a similar numbering system in the proof of Theorem 3.2, we give
each group of serial numbers drawn from the white urn a number from 1 to
n. Recognizing that the balls drawn from the colored urn are exchangeable
random variables, we see that the probability that any one of the integers 1
through n is k

n . Given there are n draws, the expected value of X given Y is
k.

We can see that the final result is a hypergeometric distribution, H(ta, ta+
tb, n), by noticing that every ball in the colored urn with (a + b) balls maps
to t balls in the urn of white balls with the same serial number. All (a + b)!
maps are equally likely. Since we draw without replacement, the result is
the hypergeometric H(ta, ta + tb, n).

Following a similar line of intuition, we conjecture the following:

Conjecture 1. For, p, q ∈ Z+, if p > q then X ∼ H(pa, pa + pb, n) is more
variable than Y ∼ H(qa, qa + qb, n).
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We now apply our construction to the Pòlya urn model. In this model,
we begin with a red balls and b blue balls. At each step, we draw a random
ball, record its color, and return it along with another ball of the same color.
Let the random variable P be the number of red balls drawn in n draws.
Let X denote the hypergeometric random variable with the same initial
distribution in the urn.

Theorem 3.4. X ≤risk P.

Proof. We first develop a martingale coupling. Consider an additional urn
of (a + b) white balls. My process is to draw a ball from the white urn, if
it is white, we draw a ball from the colored urn, record its color, and then
replace the white ball with the colored ball and another ball of the same
color (from an external supply). Continue this process until all the balls in
the white urn are colored. Now let P be the number of red balls drawn after
n draws. Let X be the number of red balls drawn from the colored urn once
n balls have been drawn.

The random variables Xi in the Pòlya urn model are exchangeable (Ross,
1994). Assuming k red balls were drawn from the colored urn by the time
n were drawn, we again find the expected value of a draw from the white
urn to be k

n . After n draws, the conditional expectation from the white urn
will be k, which shows that we have a martingale coupling. Drawing from
the white urn is identical to the Pòlya model because there is a bijective
mapping from the colored urn to the white urn.



Chapter 4

History

The stochastic order described in Theorem 2.2 has been studied in the con-
text of economic theory and particularly the assessment of risk (Rothschild
and Stiglitz, 1970). The question that Rothschild and Stiglitz attempt to an-
swer is when a random variable Y is more variable than another random
variable X.

4.1 When is a Random Variable More Variable than
Another?

In previous mathematical economic research, there are four main answers
to this question. Y is more variable than X if

1. Y is distributionally equal to X plus Z where E(Z|X) = 0. In the
language of probability, this is the Martingale coupling that we dis-
cussed.

2. For all concave functions U, E[U(X)] ≥ E[U(Y)].

3. Y has more weight in the tails than X.

4. Y has a greater variance than X.

The first three conditions lead to an identical partial ordering of distri-
butions, so it is the equivalence of these relations that we investigate. The
purpose of examining these different characterizations is that Machina and
Pratt (1997) establish a correspondence between the martingale coupling of
two random variables (1), the convexity condition (2), and what are known
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as the integral conditions (3). Ultimately, the integral conditions are more
convenient mathematical criteria with which to work. However, before we
verify these relations, I will introduce the notation that will appear in the
remainder of this section. X and Y are random variables, F and G are cu-
mulative to the respective cumulative distribution functions, and f and g
are the respective density functions (when they exist).

4.1.1 Mean Preserving Spreads

Let h(x) be the piece-wise function defined as

h(x) =



α ≥ 0, if a < x < a + t;
−α ≤ 0, if a + d < x < a + d + t;
−β ≤ 0, if b < x < b + t;
β ≥ 0, if b + e < x < b + e + t;
0 otherwise,

where

0 ≤ a + t ≤ a + d ≤ a + d + t ≤ b ≤ b + t ≤ b + e ≤ b + e + t ≤ 1

and
βe = αd.

It should be clear geometrically that∫ 1

0
h(x)dx =

∫ 1

0
xh(x)dx = 0.

Therefore, if g = f + h, then∫ 1

0
g(x)dx =

∫ 1

0
f (x)dx +

∫ 1

0
h(x)dx = 1

so the total probability is conserved, and∫ 1

0
xg(x)dx =

∫ 1

0
x( f (x) + h(x))dx =

∫ 1

0
x f (x)dx,

which implies that the expected value of f is unchanged with the addition
of h. Thus, an addition to f with the properties of h is known as a mean
preserving spread (Rothschild and Stiglitz, 1970). This is an equivalent defi-
nition for a martingale coupling.
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4.1.2 Integral Conditions

Rothschild and Stiglitz (1970) show that if F and G are related by a sequence
of mean preserving spreads, then the following integral conditions hold:∫ x

0
(G(ω)− F(ω)) dω ≥ 0 for all x ∈ [0, 1), (4.1)∫ 1

0
(G(ω)− F(ω)) dω = 0. (4.2)

4.1.3 Convexity

Due to convexity, Rothschild and Stiglitz (1970) use Jensen’s inequality that
for all concave functions U, E[U(X)] ≥ E[U(Y)] to prove the equivalence
of all three conditions. They prove that condition (1) implies condition (2),
condition (2) implies condition (3), and condition (3) implies condition (1).

4.2 Converse of My Research

My research has mainly focused on developing martingale couplings to
show that one random variable is at most as risky as another. However,
the converse, that there is a martingale coupling for every pair of random
variables that obey this stochastic order, has also been proven. (Muller and
Stoyan, 2002)

Theorem 4.1 (Extension of Strassen’s Theorem). For random variables X and
Y that have expectations, the following conditions are equivalent:

• X ≤risk Y.

• There exist random variables X̂ and Ŷ with the same distributions as X
and Y, such that E[Ŷ|X̂] = X̂. In other words, there exists a martingale
coupling.

(Muller and Stoyan, 2002)





Chapter 5

Future Work

I hope to prove Conjecture 1 by the use of my construction. From there,
I forsee many more opportunities to apply this construction. From these
orderings, many bounds can be tightened and new inequalities may be de-
rived.
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