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Abstract

Research has shown that students achieved higher standardized test scores
in mathematics and gained more positive attitudes towards mathematics
after learning from reform curricula. Because these studies involve actual
students and teachers, there are classroom variables that are involved in
these findings (Silver and Stein, 1996; Stein et al., 1996). To understand
how much these curricula by themselves contribute to higher test scores,
I have studied the cognitive demand of tasks in two traditional and two
reform curricula. This work required the creation of a scale to categorize
tasks based on their level of cognitive demand. This scale relates to those
by Stein, Schoenfeld, and Bloom. Based on this task analysis, I have found
that more tasks in the reform curricula require higher cognitive demand
than tasks in the traditional curricula. These findings confirm other results
that posing tasks with higher cognitive demand to students can lead to
higher student achievement.
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Chapter 1

Introduction

My motivation for this entire project is how mathematical tasks might play
an important role in student achievement. I have found that many fac-
tors affect student achievement, and content is one of them. Because of the
abundant textbook choices available in our nation today, I want to exam-
ine which textbooks are best for students. Many studies have shown the
positive effects of reform curricula in mathematics classrooms. Students
perform better on tests and have a positive attitude towards mathematics
(Silver and Stein, 1996). However, is it because the teacher implemented the
curriculum well? How important is the textbook? The purpose of this in-
vestigation is to compare traditional and reform Algebra 1 textbooks based
on the task’s level of cognitive demand, the amount of intellectual activ-
ity needed to perform a task. Because findings (Chávez-López, 2003) show
that teachers use textbooks often, analyzing the written curriculum elimi-
nates classroom variables, such as teachers’ interpretations of the textbook
or teachers’ beliefs in the use of textbooks.

What is a curriculum? Several definitions and meanings of curricu-
lum exist, but I will use the term curriculum to refer to the set of ma-
terials and guidelines used to plan and guide learning. The term tradi-
tional mathematics is used to describe the conventional methods used in
mathematics instruction. The emphasis is on direct instruction, memoriza-
tion, and skill building as opposed to understanding and thinking about
mathematics. On the contrary, the term reform mathematics is used to de-
scribe approaches different from traditional mathematics and is based on
the ideas published in the 1989 National Council of Teachers of Mathemat-
ics (NCTM) document concerning a new vision of mathematics education.
More about the reform movement is described in the background.





Chapter 2

Background

There have been many reform movements in the history of American math-
ematics education. In the 1950s, there had already been concerns about the
inadequacy of the mathematics curriculum, but the launch of the Russian
satellite Sputnik in 1957 sparked the first mathematics reform movement
(Herrera and Owens, 2001). This event created the perception that the
United States was falling behind in the world of technology. However, new
math, as it was called, was short-lived. Many teachers felt unprepared to
implement the new curriculum, and the public believed that the new math
had failed. Thus in the 1970s, the country moved to the back to the basics era.
During this decade, the nation went back to emphasizing basic skills and
procedures similar to the pre-Sputnik era.

By 1980, results showed no improvements in students’ problem solv-
ing or even basic skills (Herrera and Owens, 2001). The National Coun-
cil of Teachers of Mathematics (NCTM) published An Agenda for Action
to emphasize that problem solving was needed in the mathematics curric-
ula. Many publishers began to incorporate word problems into their text-
books. However, the changes were usually trivial (Schoenfeld, 2004). Fi-
nally, in 1989, the NCTM published the Curriculum and Evaluation Standards
for School Mathematics. This document was revised and in 2000, the NCTM
published the Principles and Standards for School Mathematics, which was
later referred to as simply the Standards (Herrera and Owens, 2001). It was
based on a constructivist view of the learning process focusing on students’
confidence in mathematics, attitude towards mathematics, and higher-level
thinking and problem solving in mathematics (Schoenfeld, 2004).

Proponents of this new mathematics movement argue that it is impor-
tant for students to communicate and reason mathematically to solve prob-
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lems. They advocate student-centered, problem solving. Studies show that
when reform curricula are used in classrooms, students of those classes
show more confidence in their mathematical abilities, achieve higher scores
in mathematics, and even have a positive attitude towards mathematics
(Silver and Stein, 1996). The researchers argue that traditional mathematics
curricula do not foster students’ conceptual understanding and real-world
applications of mathematics. Traditional mathematics education mainly
focuses on procedural knowledge. Thus the reform curricula challenge
students to reason and communicate mathematics with a higher level of
intellectual capability. They emphasize group work, written and verbal
communication of mathematics, and deeper conceptual understanding of
mathematics through the connection of ideas whereas traditional curricula
emphasize procedures and arithmetic skills (Silver and Stein, 1996; Stein
et al., 1996).

In 2000, the NCTM published the Principles and Standards for School
Mathematics serving as an update to the 1989 Standards. In this document,
the NCTM states six principles for school mathematics: equity, curricu-
lum, teaching, learning, assessment, and technology. In learning, they em-
phasize that students must align “factual knowledge and procedural profi-
ciency with conceptual knowledge to be effective learners (National Coun-
cil of Teachers of Mathematics, 2000).” Thus a good balance between high-
and low-level cognitive tasks can make students effective learners.

Following the reform movement, the Quantitative Understanding: Am-
plifying Student Achievement and Reasoning (QUASAR) project in 1990-
1991 selected six schools to improve the mathematics education at the school
sites. At these schools, teachers had high expectations of students and
posed more complex problems to encourage a deeper conceptual under-
standing of mathematics. Through high-level cognitive tasks, collabora-
tion, and instruction that emphasized deeper mathematical understand-
ing, students showed greater achievement. To qualify for a grade 9 algebra
class, the percentage of students who passed the qualifying exam increased
by 8% after the first year and 40% after the fourth year. Furthermore, stu-
dents who qualified to take algebra were able to sustain their performance
throughout the course (Silver and Stein, 1996). These successes show that
high-level cognitive tasks can improve student achievement. Perhaps we
can find a difference in the cognitive level of these tasks within the text-
books themselves.
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2.1 The Role of the Written Curriculum

As mentioned previously, a curriculum is the set of materials and guide-
lines used to plan and guide learning, but the materials and guidelines
that affect students’ learning take on various forms. For instance, intended,
written, enacted, or attained curriculum. The intended curriculum is the
standards, or any guidelines to dictate what will be included in the written
curriculum, or textbook. The enacted curriculum is how the teacher im-
plements the written curriculum, and the attained curriculum is what the
student actually learns and retains. Historically, the written curriculum has
influenced mathematics practice in the classroom. Unlike objectives and
standards that guide the curriculum, textbooks are concrete and provide
the teacher with all of the information needed to implement lessons.

Textbooks are common resources in the classroom. They are frequently
used by teachers and students and influence the instructional designs that
teachers make for every lesson. In the 2000 National Assessment of Educa-
tional Progress, or NAEP, 72% of the eighth grade test takers reported using
the textbook for mathematics problems everyday (Jones and Tarr, 2007).
Another study has found that “70% of the teachers reported using their
mathematics textbook in 75% or more of the lessons during two 10-day
periods (Chávez-López, 2003).” These findings confirm that even though
textbooks restrict the content that teachers teach, they provide many activi-
ties teachers can use and have the potential to influence how and how often
the textbook is used for instruction.

From my observations of traditional textbooks, I found that many of the
classrooms in which traditional textbooks were used emphasized teacher-
directed instruction most of the time, which agrees with the traditional
view of mathematics. Reform-based textbooks, I have found, are designed
to develop conceptual understand through a variety of ways including big
picture open-ended problems. If this is true of most traditional and reform
textbooks, then from what we know of textbook use in mathematics in-
struction, examining textbooks may be helpful for understanding the con-
nection between content and student achievement.

2.2 Classification of Tasks

Cognitive demand is the amount of intellectual activity required to per-
form a task. Several studies have looked at the level of cognitive demand
of tasks as they are written and implemented in the classroom. Looking
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at the cognitive demand is important because it helps identify the level
of thinking processes that occur in a student’s mind. It is important for
students to think and reason about mathematics instead of simply mem-
orizing facts and practicing procedures so that they can use mathematics
meaningfully. Then students can develop critical thinking skills to succeed
in mathematics and in life. These higher-level processes are connected to
high-level cognitive tasks. In this way, cognitive demand is a way to find
out whether or not meaningful learning is happening.

There are several ways to categorize tasks based on cognitive demand.
One hierarchy of cognitive levels is Bloom’s Taxonomy of the Cognitive
Learning Domain. From lowest to highest, the categories are knowledge,
comprehension, application, analysis, synthesis, and evaluation. Knowl-
edge requires recall memory. Comprehension requires an understanding
of concepts. Application requires the use of concepts in different contexts.
Analysis requires the breaking down of concepts. Synthesis requires build-
ing or creating a structure from previous knowledge. Evaluation requires
making judgements about the concept or problem (Clark, 2010). These cat-
egories have been used to describe not only mathematical tasks but cogni-
tive tasks in general.

In coding how mathematical tasks were set up in reform classrooms,
Stein, Grover, and Henningsen (1996) classified tasks as one of three cat-
egories: “memorization, the use of formulas, algorithms, or procedures
without connection to concepts, understanding, or meaning; the use of for-
mulas, algorithms, or procedures with connections. . . ; and cognitive ac-
tivity that can be characterized as ‘doing mathematics,’ including complex
mathematical thinking and reasoning activities.” Because the levels are not
mutually exclusive, they coded a task with two or more categories when-
ever necessary.

Similar to Stein, Grover, and Henningsen’s classifications are the three
categories used to analyze the results of the Third International Mathemat-
ics and Science Study (TIMSS) 1999 Video Study. The three categories used
for the analysis were using procedures, stating concepts, and making con-
nections (Hiebert et al., 2005).

Another research group used the idea of cognitive demand in analyz-
ing elementary school mathematics textbooks published in the twentieth
century. The levels consisted of six levels in a continuum going from more
concrete to more abstract. These were: general strategy description, non-
conceptual strategy, physical representation and counting, representation
with fairly concrete items, moderately abstract representation, conceptu-
ally based shortcuts, and conceptual use of properties of operation and
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number (Baker et al., 2010). This was yet another way of setting up a scale
to analyze the cognitive demand level of a task. However, this type of cat-
egorizing does not work in all mathematical tasks. It has been specified to
elementary curricula.

Finally, Schoenfeld highlighted the difference between problem solv-
ing heuristics versus algorithms and described what is considered a higher
level of problem solving. Many textbooks provide sections with strate-
gies for solving word problems. The students are then given practice on
these strategies, and subsequently assessed on them. He claims that “when
strategies are taught this way, they are no longer heuristics. . . they are
mere algorithms.” (Grouws, 1992) When strategies are explicitly taught to
students, they use those in an algorithmic way, which requires little cogni-
tive demand. Heuristics require students to solve problems based on ex-
perience and previous knowledge, essentially making connections among
different concepts, ultimately requiring a high level of cognitive demand.





Chapter 3

Methods and Results

For my thesis, I investigated an absolute value equation lesson from each of
these textbooks: Holt McDougal Algebra 1, Glencoe McGraw-Hill California
Algebra 1: Concepts, Skills, and Problem Solving, Center for Mathematics Educa-
tion (CME) Project Algebra 1, and College Preparatory Mathematics (CPM)
Algebra Connections California Edition. These textbooks were chosen based
on availability and the lesson comes from the California Algebra 1 Content
Standard 3.0: Students solve equations and inequalities involving absolute
values (California State Board of Education, 2007). I chose a standard that I
personally enjoyed and a mathematics topic that all the textbooks taught. I
decided to look at only the first part of the standard because the size of this
task.

Algebra 1 by Holt McDougal is a traditional textbook with typical chap-
ters and sections. However, in the 2011 edition, labs, multistep problems,
study guides, chapter tests, quizzes, and writing are placed in several parts
of the text (Burger et al., 2011). This edition is based on the Common Core
State Standards (California State Academic Content Standards Commis-
sion, 2010).

California Algebra 1: Concepts, Skills, and Problem Solving by Glencoe
McGraw-Hill is another traditional textbook that is traditionally organized
as well. This textbook offers study guides, chapter reviews and tests, inter-
net resources, and many other useful supplements (Holliday et al., 2008).
It also provides the correlations to the California Content Standards (Cali-
fornia State Board of Education, 2007).

The CME Project curriculum can be seen as a hybrid of reform and tra-
ditional curricula. However, I call it a reform curriculum because it dif-
fers from the traditional in its fundamental ideas. Although the organiza-
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tion of the textbook is similar to that of a traditional textbook, the lessons
promote more discovery of concepts and less direct instruction (Cuoco,
2009). Their claim is that understanding develops “as a result of indepen-
dent (or guided) investigations and as the result of reading, discussing,
and internalizing mathematical exposition (Cuoco, 2010).” They also em-
phasize “reasoning by continuity, abstracting regularity from repeated cal-
culations, developing theories based on numerical evidence, and using
thought-experiments (Cuoco, 2010).” These are examples of habits of mind,
essential thinking skills that mathematics can help develop. Whether or not
students continue in mathematics, these habits help develop critical that
can be helpful in other subject areas as well.

CPM’s Algebra Connections California Edition was created by middle and
high school teachers working in collaboration with college professors. Al-
though the structure of the book is not tradtional, it is structured so that
learning is consistent. The book is organized in a way that reviews and
builds on previous material by integrating several topics throughout the
book (Dietiker and Baldinger, 2008). The curriculum supports collabora-
tion and discussion of mathematics, communication of mathematics, and
a deeper understanding of the material (College Preparatory Mathematics,
2011). There are several tasks in which students work in pairs or teams,
share their ideas, and communicate the mathematics through writing. In
addition, the end of every lesson has closure, in which the students reflect
on the lesson (Dietiker and Baldinger, 2008). All of these activities encour-
age a deeper understanding of mathematical ideas.

3.1 Identification of Tasks

In order to code tasks, I first had to identify them. I consider any statement
or question that required cognitive function related to the mathematics at
hand by students to be a task.

Instead of taking one numbered or lettered problem, I took parts of
problems because each part may require a different level of cognitive de-
mand. For example, if a problem is stated as, “How can you graph a line
with slope 0? Explain,” I considered “how can you graph a line with slope
0?” and “explain” as different tasks and therefore, coded them separately.
Tasks included questions from the teacher’s guide. Furthermore, any task
that asked students about other mathematical topics not related to the les-
son at hand was not considered. In addition, a factor that influenced the
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coding was context. Whenever I coded a task, the previous lessons, the se-
quence of instruction, and any examples provided beforehand influenced
the cognitive demand that a student will most likely experience. For this
reason, I made the following assumptions: teachers follow the teacher’s
guide thoroughly, teachers assign all problems in the textbook, and stu-
dents have some understanding of the content previously covered. Because
of the size of the task, I ignored any extraneous instructional material that
did not appear in the textbook.

3.2 Levels of Cognitive Demand

As mentioned in Section 2.2, there have been task analyses using different
scales. I could not apply the scale used by Baker et al. (2010) because it
did not apply beyond elementary mathematics. I also did not use Bloom’s
Taxonomy of the Cognitive Learning Domain because whenever I tried to
categorize a task, it seemed that the task fit into more than one category.

My next course of action was to simply take one task at a time and
describe its nature. After finding tasks related to the standard, I wrote those
tasks on separate papers, and later grouped them according to similar task
types.

I gave each group a brief description as follows, representing increasing
levels of cognitive demand: tasks require recall memory and are in direct
correspondence with definitions, formulas, and examples; tasks require un-
derstanding of concepts and are able to give an example of the concept
using some representation (e.g., sketch); tasks require comparison of equa-
tions, graphs, and so on. They also require the ability to look for patterns
and describe those patterns; tasks require that students apply concepts to
solve problems; tasks require the interpretation of equations and meanings
of results in context; tasks require creation of a context around the equation
or results; tasks require the ability to find errors, articulate them, and fix
them; tasks require justification of results, thoughts, or conjectures. How-
ever, this method led to problems. I realized the categories were often too
narrow.

For the scale I used, I extended the idea Schoenfeld described about
problem solving (Grouws, 1992) as described in Section 2.2. I also inte-
grated the procedures with and without connections that Stein et al. (1996)
used in their research. The foundation of the scale can be seen in terms of
the procedures. Level 1 tasks require no procedures. Level 2 tasks require
the use of previously known or taught procedures. Level 3 tasks require
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Figure 3.1 An example of a Level 1 task from the Holt McDougal textbook
(Burger et al., 2011). This task is considered Level 1 because it is a recall of
facts.

Figure 3.2 An example of a Level 2 task from the Holt McDougal textbook
(Burger et al., 2011). This task is considered Level 2 because students must
use the procedures explicitly taught to them at the beginning of the lesson in
order to solve the equation.

the development of own procedures. Level 4 tasks require the application
of learned or developed procedures in different contexts. Level 5 tasks re-
quire the mathematical justification of the procedures. A more detailed
description and examples of each level follows:

1. Tasks require no procedural knowledge; only recall memory. Most
are in direct correspondence with definitions, formulas, and exam-
ples. See Figure 3.1.

2. Tasks require use of procedures previously known or explicitly taught.
They also require applications of definitions, formulas, and so on. See
Figure 3.2.

3. Tasks require own development of new procedures whether or not by
combination of two or more old procedures. They also require that
students be able to articulate concepts in their own words. Thus they
are able to compare and contrast ideas (making connections among
concepts). See Figures 3.3 and 3.4.

4. Tasks require application of procedures from Level 2 or 3 in differ-
ent contexts. They also require the creation of a problem or situation
given a solution. See Figure 3.5.

5. Tasks require mathematical justification of results or steps in a proce-
dures. See Figure 3.6.

Whenever tasks did not fit the exact descriptions of my categories, I
used my best judgement to label the task a number from one to five de-
pending on what I thought was indicative of the level of cognitive demand.
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Figure 3.3 The boxed problem in this figure shows an example of a Level 3 task
from the CPM textbook (Dietiker and Baldinger, 2008). Students have not been
taught a procedure to solve absolute value equations. They have to develop it
on their own.

Figure 3.4 Two examples of a Level 3 task from the Holt McDougal textbook
(Burger et al., 2011). Both tasks require students to understand the concept of
absolute value in order to compare and contrast absolute value to parentheses.

Figure 3.5 The boxed task in this figure shows an example of a Level 4 task
from the CPM textbook (Dietiker and Baldinger, 2008). Students must use the
concept of absolute value in a different context. Furthermore, they are asked to
write an equation.

Figure 3.6 The boxed task in this figure shows an example of a Level 5 task
form the CPM textbook (Dietiker and Baldinger, 2008). Students must justify
their example of an absolute value equation with only one solution.
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Textbook n Level 1 Level 2 Level 3 Level 4 Level 5

Holt McDougal 82 16% 52% 9% 12% 11%
Glencoe McGraw-Hill 28 18% 50% 0% 14% 18%
CME Project 40 5% 55% 10% 17% 13%
CPM 18 0% 55% 17% 11% 17%

Table 3.1 Percentage of tasks that were Level 1, 2, 3, 4, or 5 for each of the
analyzed textbooks. n represents the number of tasks.

Textbook n Low-Level High-Level

Holt McDougal 82 68% 32%
Glencoe McGraw-Hill 28 68% 32%
CME Project 40 60% 40%
CPM 18 55% 45%

Table 3.2 Percentage of tasks that were either low-level or high-level for each
of the analyzed textbooks. n represents the number of tasks.

3.3 Results

After tabulating the codes, I calculated the percentage of tasks that were
Level 1, 2, 3, 4, or 5 (see Table 3.1). A complete list of the results are tab-
ulated in Appendix A. As expected, the two traditional textbooks had the
highest proportion of Level 1 tasks. Unexpectedly, Glencoe McGraw-Hill’s
textbook had the highest proportion of Level 5 tasks with CPM’s textbook
as a close second.

To look at the balance between low and high-level cognitive tasks, I
categorized Levels 1 and 2 as low-level tasks and Levels 3, 4, and 5 as high-
level tasks. I calculated the percentage of tasks that were either low-level or
high-level for each of the textbooks (see Table 3.2). From this broader look
at cognitive demand, the results show that the two traditional textbooks
have a slightly higher proportion of low-level tasks.
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Conclusion

Due to the scale of this analysis, it is unclear to what extent these findings
generalize. If the findings do generalize then it would appear that all four
textbooks have similar proportions of level one through five tasks. How-
ever, there is a difference in the number of tasks. Holt McDougal’s textbook
had a high number of procedural skill-based problems. From an overall
view of the textbooks, I have found from the Holt McDougal to Glencoe
McGraw-Hill to the CME Project to CPM, there is an increasing level of cog-
nitive demand in the lesson portion of absolute value equations. The two
traditional textbooks stated the definitions and provided examples of how
to solve absolute value equations before the student was asked to practice
problems. In contrast, the CPM textbook guided the students toward de-
veloping the procedures for solving absolute value equations. In this way,
I believe that further comprehensive examination of all the lessons within
these textbooks and other textbooks would result in conclusive evidence
that reform-based textbooks have tasks with high levels of cognitive de-
mand.

4.1 Implications

This research is relevant for mathematics education policy, especially for
textbook adoption. The more evidence is gathered in this area, the eas-
ier the push for more reform textbooks in the classrooms. With this, also
comes better preparation for teachers in implementing tasks that require
higher levels of cognitive demand. Teachers can modify their daily instruc-
tion according to their students’ needs by raising or lowering the cognitive
demand of the tasks in the textbooks they are required to use.



16 Conclusion

A more comprehensive investigation of the cognitive demand of tasks
in textbooks can be connected to research done on task implementation in
the classroom and its correlation to student achievement. Once that con-
nection is made, it will be easier to place better textbooks in the classroom
that will provide instruction based on reform values. Ultimately, this can
lead to higher student achievement.



Appendix A

Coding Results

The tables represent the coding results from all four textbooks. Each table
contains the page number, task number, task type, code, and the reason for
the code (for when I thought there would be confusion).

A.1 Holt McDougal

Table A.1 The following table represents the codes for the tasks in the Holt
McDougal textbook (Burger et al., 2011).

Page Task Type Code Reason

113 1a CW 2 Use of explicitly taught pro-
cedures.

1b CW 2 Use of explicitly taught pro-
cedures.

example 1
bullet 1

TGQ 1 Recall of definition.

example 1
bullet 2
task 1

TGQ 3 Comparing.

example 1
bullet 2
task 2

TGQ 3 Contrasting.

Continued on Next Page. . .
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Table A.1 – Continued

Page Task Type Code Reason

example 1
bullet 3

TGQ 1 Possibly a 3 if the student
says it in their own words
that show understanding.
This is said in the guided
instruction, so it gets a 1.
Possible that students make
a connection to answer the
question.

2a CW 2 Use of explicitly taught pro-
cedures.

2b CW 2 Use of explicitly taught pro-
cedures.

example 2
bullet 1

TGQ 1 Recall of short blurb in mid-
dle of page 113.

example 2
bullet 2

TGQ 1 Recall of short blurb in mid-
dle of page 113.

114 3 task 1 CW 2 Very similar to Example 3
3 task 2 CW 2 Use of explicitly taught pro-

cedures.
example 3
bullet 2

TGQ 3 Similar to short blurb in ex-
ample 3. However, the ques-
tion is more general, so it gets
a 3.

Think and
Discuss 1

CW 3 Student must articulate the
steps that they were explicitly
taught. They are not required
to justify anything, just ex-
plain how to do the steps.

Think and
Discuss 2

CW 4 Although students know
what kind of absolute value
equations have none, one,
or two solutions, they must
come up with their own
examples.

Continued on Next Page. . .
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Table A.1 – Continued

Page Task Type Code Reason

Close task 1 CW 1 Students most likely will
copy the steps highlighted on
page 113.

Close task 2 CW 1 Recall of definition.

115 1 CW 1 Requires hardly any think-
ing.

2 CW 2
3 CW 2
4 CW 2
5 CW 2
6 CW 2
7 CW 2
8 CW 1 Requires hardly any think-

ing.
9 CW 2 Application of fact that if

absolute value expression
equals a negative number,
then there is no solution.

10 CW 2
11 CW 2
12 CW 2
13 task 1 CW 3 Because of Example 3, this

gets a 3 instead of a 4.
13 task 2 CW 2
14 HW 1 Requires hardly any think-

ing.
15 HW 2
16 HW 2
17 HW 2
18 HW 2
19 HW 2
20 HW 2
21 HW 2
22 HW 2
23 HW 2
24 HW 2

Continued on Next Page. . .
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Table A.1 – Continued

Page Task Type Code Reason

25 HW 2
26 HW 2
27 HW 2
28 HW 2
29 task 1 HW 4
29 task 2 HW 2
30 task 1 HW 2 They only have to solve.
31 task 1 HW 3 Given problem 30, it gets a 3.
31 task 2 HW 2
32 task 1 HW 4
32 task 2 HW 2
33 task 1 HW 4
33 task 2 HW 2
34 task 1 HW 2
34 task 2 HW 5 Must be able to interpret the

meaning of the answer.

116 39 task 2 HW 5 Must give a justification for
their answer.

40 task 2 HW 5 Must give a justification for
their answer.

41 task 2 HW 5 Must give a justification for
their answer.

42 task 1 HW 4
42 task 2 HW 2
43a HW 4
43b HW 2
43c task 2
(Explain)

HW 5

43d HW 5
44a HW 4
44b HW 4
44c HW 2

117 45 task 2 HW 5
46 task 2 HW 5
47 HW 4

Continued on Next Page. . .
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Table A.1 – Continued

Page Task Type Code Reason

48 HW 2
49 HW 4
50 task 1 HW 2
50 task 2 HW 5
51 - 2 HW 1 Recall of properties.
51 - 4 HW 1 Recall of properties.
51 - 5 HW 1 Recall of properties.
52 HW 3 Students must come up with

some way to solve the equa-
tion with absolute values on
both sides.

Journal
task 1

CW 1 Recalling the steps.

Journal
task 2

CW 2

A.2 Glencoe McGraw–Hill

Table A.2 The following table represents the codes for the tasks in the Glencoe
McGraw–Hill textbook (Holliday et al., 2008).

Page Task Type Code Reason

322 TEACH
bullet 3

TGQ 4 Coming up with how to rep-
resent situation with an abso-
lute value equation.

323 1a CW 2 Solving by procedures explic-
itly taught.

1b CW 1 Like example 1.
add’l exam-
ple 1a

TGQ 2

325 1 task 1 CW 2
2 task 1 CW 2

Continued on Next Page. . .
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Table A.2 – Continued

Page Task Type Code Reason

3 task 1 CW 1
7 HW 2
8 HW 2
9 HW 1
10 HW 2
11 HW 2
12 HW 1
13 HW 1
14 HW 2
15 HW 2
16 HW 2
17 HW 2
18 HW 2

326 38 HW 4 Coming up with an
equation—implicit 2 when
student must solve it.

41 HW 4 Coming up with a situation
for an equation.

42 task 2 HW 2 Application of knowledge of
absolute value.

43 task 2 HW 5
45 task 2 HW 5
46b HW 4
47 task 2 HW 5
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A.3 CME Project

Table A.3 The following table represents the codes for the tasks in the CME
Project textbook (Cuoco, 2009).

Page Task Type Code Reason

204 8 CW 2
9 CW 2 Application of knowledge of

absolute value and how they
can’t equal something nega-
tive.

207 3a task 1 CW 4
3a task 2 CW 2
3b CW 2
4a CW 2
4b CW 2
4c CW 3 Discovery of what happens

when the equation equals 0.
4d CW 1
4e CW 2
4f CW 2
6a CW 4
6b CW 4
6c CW 4
6d CW 4
6e CW 4
6f CW 4

208 9 HW 5
10a task 2 HW 5 They must either explain rea-

soning or provide a coun-
terexample.

10b task 2 HW 5
10c task 2 HW 5
10d task 2 HW 5

209 11a HW 2
11b HW 2
11c HW 2

Continued on Next Page. . .
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Table A.3 – Continued

Page Task Type Code Reason

11d HW 2
11e HW 2
12 HW 2
13 HW 3 They must combine what

they learned about abs value
equations and extend it.

14 HW 1
15a HW 2
15b HW 2
15c HW 2
15d HW 2
15e HW 3 Articulating a pattern.
16a HW 2
16b HW 2
16c HW 2
16d HW 2
16e HW 3 Articulating a pattern.

A.4 CPM

Table A.4 The following table represents the codes for the tasks in the CPM
textbook (Dietiker and Baldinger, 2008).

Page Task Type Code Reason

781 10-51b HW 2 They are applying their
knowledge of absolute value.

782 10-52a HW 2
10-52b HW 2
10-52c HW 2
10-52d HW 3

786 10-60a task
2

CW 5

Continued on Next Page. . .
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Table A.4 – Continued

Page Task Type Code Reason

10-60c task
1

CW 3 Combination of absolute
value and using what they
know about solving equa-
tions.

10-61a task
1

CW 2

10-61a task
2

CW 4

10-61a task
3

CW 5

10-61b task
1

CW 4

10-61b task
2

CW 5

10-62
Learning
Log

CW 3 Making connections between
the number of solutions of
equations in perfect square
form and those with absolute
value.

790 10-69a CW 2
10-69d CW 2
10-69f CW 2

792 10-73b HW 2
10-73d HW 2
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