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Figure 3.5  Cladogram of HDI hierarchy  

The top left panel shows a hierarchical structure of HDI depicted in a circular 

cladogram. The top right panel shows a module containing candidate genes 

functionally enriched for chromosome condensation processes. while the bottom 

panel shows, the module containing candidate genes functionally enriched for DNA 

damage and mitotic cell cycle processes.  
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Figure 3.6 Suppressors of smc2-8 and condensin-cohesin genes suppress the mHtt 

toxicity (103Q) in yeast.  

A group of 36 smc2-8 mutant suppressors and seven condensin/cohesion related 

genes were tested. 23 genes were found to suppress mHtt (103Q) toxicity in yeast 
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Figure 3.7 Hypothesis model of suppressors of smc2-8 mutation suppressing mHtt 

toxicity 

Overexpression of SPC24, a yeast homolog from one of the significant protein 

complexes detected in HDI, suppresses smc2-8 mutation and also suppresses mHtt 

toxicity. Hence, we hypothesize that overexpression of a set of genes known to 

suppress smc2-8 mutant, can also suppress mHtt toxicity. 
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Chapter 4 

4 Predicting physical interactors of the Huntingtin 

protein using Supervised Machine Learning 

methods. 

Experimental approaches such as Y2H (yeast two-hybrid) mass spectrometry (MS), 

Tandem Affinity Purification (TAP) and protein microarrays have been the most 

widely adopted method to identify protein-protein interactions (PPIs). While Y2H 

is sensitive to detection of potential protein partners, it cannot detect interactions 

involving more than two protein partners. Additionally, these interactions are 

detected by virtue of their occurrence in the Y2H system and do not affirm their 

interaction in a physiological state.  

The biological data generated using these experimental approaches though 

valuable, is subject to disadvantages; a high number of false positives being an 

important one of them. Machine learning approaches utilize the existing knowledge 

of protein interactors generated using these experimental approaches and help 

predict protein interactors. These methods use various protein features related to 

their structure, function or sequence to make PPI predictions to achieve better 

accuracy (A. Theofilatos et al., 2011). Other computational methods that integrate 
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various protein features into one predictor-classifier model have been able to 

accomplish higher accuracy (A. Theofilatos et al., 2011; Chen and Liu, 2005)  

In this study, we integrate various protein features such as motifs, domains and their 

topological properties in a PPI network, to predict protein interactors of mutant Htt 

(mHtt) protein. We propose a Gradient Boosting Modeling (GBM) based classifier 

that helps to predict Htt-interacting proteins. This classifier examines the 

relationships between the topological characteristics of proteins within a protein-

protein interaction network along with the structural and functional properties of 

the proteins to group them as interactors or non-interactors of mHtt protein. We 

study the extent of information captured by structural and topological aspects of 

proteins and investigate whether this information is sufficient enough to predict wt 

and/or mHtt protein interactors. 

4.1 Data 

4.1.1 Model development dataset: 

The machine learning model was built using a set of primary interactors of Htt 

protein experimentally detected in wild-type and BACHD mouse brains. This 

dataset is spatiotemporal collection of 747 candidate proteins identified using AP-

MS that form complexes with Htt in both wild-type and BACHD mouse brains 

(Shirasaki et al., 2012). This dataset was divided into 3 separate, non-overlapping 

groups as follows: Group 1 – containing proteins that interact with wt Htt protein 
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only, Group 2 – containing proteins that interact with mHtt only and Group 3 – 

containing proteins that interact with both wt and mHtt proteins.  

4.1.2 Input features 

4.1.2.1 Motif and domain properties  

Motif and domain information related to each of the three groups in the dataset were 

obtained from the Uniprot database (Magrane and Consortium, 2011) and used as 

features for the input data.  

4.1.2.2 PIN graph-theoretic properties  

Additionally, graph properties were computed for each protein in the dataset and 

used as feature inputs to the machine learning classifier. To compute these network 

properties, we used the protein-protein interactions in mouse, curated by the 

BIOGRID database. The mouse PPI network obtained from BIOGRID consists of 

8629 proteins and 19828 interactions. The following graph properties were 

calculated for candidate proteins in the input set: 

(a) Average Shortest Path Length: also, known as the characteristic path length. It 

measures the expected distance between two connected nodes in a network. 

(Assenov et al., 2008) 

(b) Betweenness Centrality: If p,q is the number of shortest paths between 

proteins p and q, and p,q(r) is the number of shortest paths between p and q 

that pass through protein r in a protein interaction network, then betweenness 
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centrality of the protein r is defined as p,q(r) /p,q , where the sum is taken 

over all distinct pairs p and q. The betweenness value for each node r is 

normalized by dividing by the number of node pairs excluding r: (Freeman, 

1977) 

(c) Closeness Centrality: it measures the extent to which a protein r is close to all 

the proteins in the network. If d(r, s) is the shortest distance between proteins 

r and s in a protein network, then the closeness centrality of protein r is 

defined as (n - 1)/Σq d(r, s), where n is the total number of proteins in the 

network (Beauchamp, 1965). 

(d) Clustering Coefficient: it is the fraction of the total possible interactions 

among direct neighbors of a protein in a protein interaction network. It is 

always a number between 0 and 1 (Watts and Strogatz, 1998). 

(e) Degree: is the number of edges connected to a node. 

(f) Eccentricity: it the maximum (non-infinite) length of a shortest path between r 

and another node in the network. If r is an isolated node, the value of this 

attribute is zero. 

(g) Neighborhood Connectivity: The neighborhood connectivity of a node r is 

defined as the average connectivity of all neighbors of r. The neighborhood 

connectivity distribution gives the average of the neighborhood connectivities 

of all nodes r with k neighbors for k = 0, 1…. Therefore, if the neighborhood 

connectivity distribution is a decreasing function of k, then the network 
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displays edges between low connected and highly connected nodes (Maslov 

and Sneppen, 2002) 

(h) Radiality: it is an index computed as follows:  

(Diameter of the connected component of node r) – (Average shortest path 

length of a node r) + 1. 

It is a number between 0 and 1.  

(i) Stress Centrality: is the number of shortest paths passing through a node. 

(j) Topological Coefficient: this is a measure attributed to those protein in the 

network that are not necessarily directly connected to each other. The measure 

is given by TCp = average(J(p,j)/kp), where J(p, j) denotes the number of 

nodes to which both p and j are linked, plus 1 if there is a direct link between 

p and j and kp is the number of links of node p (Stelzl et al., 2005). 

The graph properties of the proteins were calculated using the Network Analyzer 

application in Cytoscape (Assenov et al., 2008; Shannon et al., 2003) 

4.1.3 Dataset formatting 

Variable names for motif and domain information were coded, instead of their long 

raw names, with numerical identifiers for classifier models. Additionally, presence 

of motif or domain for a certain protein was denoted as ‘1’ while absence of a motif 

was denoted as ‘0’. The resultant master dataset had 554 proteins as 

rows/observations and motifs, domains and graphical properties (n=779) as 

columns/dimensions. Detailed characteristics of the master dataset are given in the 
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Table 4.1. Evidently, the master dataset is sparsely populated and has a higher 

number of variables than the number of observations. This requires variable 

reduction and dimension reduction methods, which is explained in Section 4.2.1   

4.1.4 Classification target 

For classification, a multivariate prediction approach was initially used to 

accommodate the three response variables. However, we later moved on to a 

binomial prediction approach for better prediction power and simply focused on 

two response variables/groups of proteins viz. (a) proteins that interact with wHtt 

only (n = 116) (group1) and (b) proteins that interact with mHtt (n = 438) (group 2 

(n = 108) + group 3 (n= 330)). This binary approach to analysis showed an 

improvement in the model’s predictive power. The three classifiers used for model 

development are addressed in the next section. 
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4.2 Methods 

4.2.1 Variable and dimension reduction methods 

The set of variables that best capture the relationship between the response variable 

and the predictor variables was determined by calculating the Information Value 

(IV) of the predictor variables (Shannon, 1948). Information value helps in variable 

selection during model building. Information value of x for measuring y is a number 

that attempts to quantify the predictive power of x in capturing its relationship with 

y. Assuming that the target variable y is binary in nature, IV is defined as, 

𝑰𝑽 =  ∑(𝒃𝒂𝒅𝒊 −  𝒈𝒐𝒐𝒅𝒊) 𝐥𝐧
𝒃𝒂𝒅𝒊

𝒈𝒐𝒐𝒅𝒊

𝟏𝟎

𝒊=𝟏

 

 

where,  

i ranges from 1 to 10, in which the data is divided, 𝑏𝑎𝑑𝑖 is the proportion of bad 

accounts captured in the ith division out of all bad accounts in the population and 

𝑔𝑜𝑜𝑑𝑖 is the proportion of good accounts in the ith division. 

Additionally, Principal Component Analysis (PCA) of motif and domain variables 

was used for dimension reduction (Hotelling, 1933; Pearson, 1901). PCA converts 

a set of observations into a smaller set of linearly uncorrelated variables called as 

principal components through orthogonal transformation thus leading to variable 

reduction. Each principal component depicts variability in the data, in a descending 

order of magnitude, with the first component capturing the maximum variability.  
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4.2.2 Logistic regression with regularization 

A logistic regression model depicts the relationship between the categorical 

dependent variable (response variable) and the independent feature variables 

(predictor variables) by estimating probabilities through a cumulative logistic 

distribution function (Wedderburn, 1974). Considering that the response variable 

for our dataset is binary in nature, the logistic regression model takes the form of a 

Generalized Logistic Model (GLM) through the following equation: 

log (
𝜋(𝑥)

1 −  𝜋(𝑥)
) = 𝛼 +  𝛽𝑥 

The output of a logistic regression model is the probability that a given protein is 

an interactor of either wt Htt, mHtt or both wt and mtHtt protein.  

Logistic regression with regularization was used to obtain stable fit to the sparse 

data in this study. Regularization methods work by penalizing the coefficients of 

the features and minimize the error between the predicted and actual observations 

either through L2 regularization (Ridge regression) or through L1 regularization 

(Lasso regression) (Tibshirani, 1996).  The cost function that needs to be minimized 

is also called as RSS (Residual Sum of Squares) and is given by the equation: 

Cost (W) = RSS(W) = ∑ {𝑦𝑖 − 𝑦�̂�}
2𝑁

𝑖=1  =  ∑ {𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗
𝑀
𝑗=0 }

2𝑁
𝑖=1  
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where X is the matrix of input features, y is the actual outcome variable, ŷ is the 

predicted value of y, w is the weights or the coefficients, N is the total number of 

data points available, and M is the total number of features. 

Penalizing the coefficients with a regularization parameter helps to avoid a large 

emphasis on any one particular feature and also helps to reduce the model 

complexity. Lasso regression performs L1 regularization by adding a penalty equal 

to the absolute value of the magnitude of the coefficients and is given by the 

following equation: 

Cost (W) = RSS(W) +  * (sum of absolute value of weights) 

=  ∑ {𝑦𝑖 −  ∑ 𝑤𝑗𝑥𝑖𝑗

𝑀

𝑗=0

}

2

+   ∑|𝑤𝑗|

𝑀

𝑗=0

𝑁

𝑖=1

 

Ridge regression performs L2 regularization by adding a penalty equal to the square 

of the magnitude of the coefficients and is given by the following equation: 

Cost (W) = RSS(W) +  * [sum of square of weights] 

=  ∑ {𝑦𝑖 −  ∑ 𝑤𝑗𝑥𝑖𝑗

𝑀

𝑗=0

}

2

+   ∑|𝑤𝑗
2|

𝑀

𝑗=0

𝑁

𝑖=1
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4.2.3 Random forest 

Random Forest is an ensemble decision tree-based machine learning method that 

combines groups of weak tree models to result in a stronger model. This model 

grows multiple decision trees, wherein, each tree ‘votes’ for a class based on the 

attributes (predictor variables) the tree was built on. The model predicts new data 

by choosing the classification that receives the most votes over all the trees 

(Breiman, 2001). Random forest model thus reduces the variance of prediction 

while retaining a low bias. A lower bias and variance translates to a reduction in 

the prediction error and also avoids the issue of over-fitting the model to the training 

data. 

4.2.3.1 Implementation and Parameters used: 

We used the random forest package in R for analysis (Breiman, 2001; Liaw and 

Wiener, 2002). All the three types of predictor variables – motifs, domains and 

graphical properties were used as input for the Random Forest model. The data was 

scaled and centered prior to employing the model. The parameters used to run the 

model were as follows: 

 ntree – number of trees to grow. Higher number of trees gives a better 

performance., 

 mtry – number of variables randomly sampled as candidates at each split. 
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 Nodesize – minimum size of terminal node/leaf of the decision tree. A 

smaller node size causes the model to capture more noise in the train data.  

4.2.4 Gradient Boosting Machine (GBM) 

Gradient Boosting is also a process that generates an ensemble of trees. However, 

the main premise of this model is the concept of ‘boosting’ that serially adds new 

prediction models to the ensemble. A new weak, base-learner model is trained at 

every iteration based on the negative gradient of the loss function of the entire 

ensemble obtained till that point (Friedman, 2001; Natekin and Knoll, 2013). Since 

our response variable is binary in nature, we used a ‘binomial’ distribution of the 

variable to calculate the loss of function gradient. The model complexity is 

controlled by using a shrinkage factor that reduces the impact of each base-learner 

model added to the ensemble. Shrinkage penalizes the magnitude of each iteration 

and reduces the size of additional steps. Such a method helps to improve the model 

accuracy through a series of smaller steps rather than a few large steps (Natekin 

and Knoll, 2013) The parameters used to run the  model were as follows: 

 n.trees – the total number of trees to fit which is equal to the number of 

iterations  

 cv.folds – number of cross-validations to perform  

 interaction depth – the maximum depth of variable interactions 
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 n.minobsinnode – minimum number of observations in the terminal nodes 

of the trees. 

 shrinkage – also known as learning rate or step-size reduction parameter 

for the model that is applied to each tree during expansion.   

4.3 Results 

The master dataset was prepared before model training and testing, first, by 

imputing the missing values in the dataset. The missing values in the motif and 

domain predictor variables were replaced with “-1” while the missing values in the 

topology/graphical predictor variables were imputed with the mean of their 

respective column data. The 769 predictor variables in the master data, which 

consist of motif, domain, and graph-theoretic properties, were then reduced 

dimensionally using two approaches – (a) Information Value (IV) and (b) Principal 

Component Analysis (PCA)   

4.3.1 Variable and dimension reduction 

Figure 4.1 shows the information values of the predictors in descending order. The 

IV of the motif, domain, graph-theoretic variables ranged from 0.2256 to 0.0108. 

IV cutoffs of 0.1, 0.056 and 0.055 were initially selected for variable reduction. 

Among these, an IV cutoff ≥ 0.056 was chosen for variable reduction because of 

the large plateau, corresponding to 0.055, as seen in Figure 4.1. The accuracy of a 

lasso regression model using this cutoff value was found to be the best as well. 
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To reduce the dimension of the input variables, we also tried PCA analysis, 

applying only on motif and domain variables since they account for a vast majority 

of the input variables. 

PCA on the motif and domain variables (n = 769) revealed 554 principal 

components (PCs). The three leading PCs captured most of the variance in the input 

data viz. 33.5 %, 7.9 % and 5.3 % respectively (Figure 4.2). These top three PCs 

were then combined with 10 graph-theoretic variables to form a development 

dataset for further testing. 

4.3.2 Logistic regression with regularization 

We have performed a series of experiments using the logistic regression with Lasso 

regularization to determine the best variable/dimension reduction approach. The 

following set of experiments were considered with various configurations of input 

data: 

1. Experiment 1 – Raw input of master dataset with imputed missing values: 

779 predictor variables 

2. Experiment 2 – [Variable selection of motif and domain variables using an 

IV cutoff of ≥ 0.056]. + [Topology/Graphical predictors]:157 predictor 

variables 

3. Experiment 3 – [Variable reduction of motif and domain variables using 

PCA] + [Topology/Graphical predictors]: 13 predictor variables  
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Because of the small sample size, each experiment is evaluated using 10-fold cross-

validation. 10-fold validation splits the original dataset randomly into 10 samples 

of equal size. Out of these 10 samples, one is retained as a validation dataset, while 

the remaining 9 samples are used as a training set. This cross-validation process is 

repeated k times (k = 10 in this experiment), with each of the 10 samples used 

exactly once as a validation dataset. This method therefore makes sure that all the 

observations are used for both training and validation while each observation gets 

to be used exactly once as a validation sample.  

The AUC values of regularized logistic regression using the lasso, elastic-net and 

ridge regularization are given in the Table 4.2. AUC values for experiment 1 with 

10-fold cross-validation ranged from 0.611 (Lasso and Elastic-net) to 0.584 

(Ridge). For experiment 2, they ranged from 0.621 (Lasso and Elastic-net) to 0.619 

(Ridge). For experiment 3, AUC values were 0.615 (Lasso), 0.613 (Elastic-net) and 

0.599 (Ridge). Among the 3 different regularization methods, Lasso performed the 

best in all 3 experiments although the Elastic net results were very close to those of 

Lasso.  

Among the three experiments, experiment 2 with variable selection by IV gave the 

best prediction accuracy (AUC = 0.621) in 10-fold cross-validation. Note that the 

performance of all three experiments with Lasso is very close, with AUC values 
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ranging between 0.611 and 0.621. Such minimal differences can be explained by 

the built-in variable selection methods within Lasso itself. 

4.3.3 Lasso with data segmentation 

We further adopted a segmentation approach to achieve better prediction accuracy 

with the Lasso model by dividing the Experiment 2 dataset into four segments as 

follows: 

1. Lasso Segment 1-  Motif-Topology segment - containing proteins with 

only motif and topological properties as the predictor variables (48 

proteins, 157 predictor variables) 

2. Lasso Segment 2-  Domain-Topology segment – containing proteins with 

only domains and graphical properties as the predictor variables, (231 

proteins, 157 predictor variables) and 

3. Lasso Segment 3-  Motifs and Domain-Topology segment- containing 

proteins with motifs, domains and graphical properties as the predictor 

variables (35 proteins, 157 predictor variables) 

4. Lasso Segment 4 – Only Topology segment – containing proteins with 

only graphical properties as the predictor variables (240 proteins, 157 

predictor variables). 

Considering the low sample size of Segments 1 and 3, in-sample predictions were 

obtained for these segments using LOOCV (Leave one out cross-validation). The 
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AUC values for all the four data segments range from 0.6 to 0.85 (Table 4.3 and 

Figure .4.3) Though these values suggest a better prediction accuracy, it should be 

noted that in-sample predictions usually depict an optimistic picture of the model 

fit and the model accuracy more than often drops after using repeated cross-

validation.  

Nonetheless, these AUC values, encouraged us to believe that a segmentation 

approach using other models could help us reach better prediction accuracies. 

4.3.4 Random forest 

Random forest is a decision-tree based ensemble model known to reduce the 

variance and also retain a low bias in its model predictions, thus balancing accuracy 

and complexity of the model. A series experiments were conducted by varying two 

main hyper-parameters used in Random forest, the number of trees (ntree) and the 

number variables available for splitting at each node (mtry). The 10-fold cross-

validated AUC values from these experiments are given in Table 4.4. 

The AUC values ranges from 0.54 to 0.594, which are lower than the logistic 

regression with Lasso regularization. Experiment 2 with variable selection by IV 

again revealed the best prediction accuracy (AUC = 0.594, ntree = 500, mtry = 12) 

in 10-fold cross-validation among all the parameter tuning experiments. The 

variable importance for proteins interacting with mutant Htt in experiment 2 is 



107 

 

 

 

shown in Figure 4.4. It was found that Random forest relies heavily on the graphical 

properties of the proteins while fitting the model.  

One of the explanations for a lower predictive power of the Random forest model 

could be the small sample size in our data. Random forest works well by 

intentionally overfitting the data with deep bushy trees and averaging out these 

overfit and diverse trees. The small samples size in our data makes it difficult to 

create diverse overfit trees, thus hindering Random forest’s performance. 

4.3.5 Gradient Boosting Machine (GBM) 

GBM is another tree-based ensemble model by reducing bias step-by-step using 

shallow trees. A GBM model was used to fit the input data for all the three 

experiments, which examine the effect of variable and dimension reduction. For 

these initial experiments, the following parameters were used:  

 5000 trees with 10-fold cross-validation to determine the optimal number 

of trees 

 interaction depth of 1 

 number of minimum observation in each node equals to 1 

 shrinkage of 0.001  

Initial implementation of the GBM algorithm on all the three experiments showed 

that the AUC ranged from 0.584 to 0.6, with experiment 2 obtaining the highest 

AUC (0.6) among the three experiments (Table 4.5). Experiment 2 selects variable 
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by using Information value >= 0.056 and this turns out to be consistently the best 

method across all machine learning algorithms we tested. 

Since GBM has more hyper-parameters to tune than the other machine learning 

methods we tested so far, we decided to conduct additional experiments to check 

the sensitivity to different hyper parameters. The hyper-parameter tuning 

experiments were conducted after the variable selection by IV (Experiment 2). The 

experimental design and the AUC values from 10-fold cross-validations are shown 

in Table 4.6. In these experiments, the interaction depth were set to 1 to avoid 

overfitting and 5000 trees with 10-fold cross validation was used within the fitting 

process to determine the optimal number of trees. Two key parameters, shrinkage 

and the minimum number of observation in each node, were varied. 

It was found that a shrinkage factor of 0.001 and a minobsnode of 10 gave the 

highest AUC of 0.61 for experiment 2. This result is better than that of Random 

forest (AUC = 0.594) but is not as good as the logistic regression with Lasso 

(0.621). 

4.3.6 GBM with data segmentation 

Encouraged by the prospect of better prediction accuracy using data segments, we 

adopted a segmentation approach with the GBM model and divided the master 

dataset into three segments as follows: 



109 

 

 

 

5. Segment 1-  Motif-Topology segment - containing proteins with only 

motif and topological properties as the predictor variables (48 proteins, 60 

predictor variables) 

6. Segment 2-  Domain-Topology segment – containing proteins with only 

domains and graphical properties as the predictor variables, (231 proteins, 

596 predictor variables) and 

7. Segment 3-  Motifs and Domain-Topology segment- containing proteins 

with motifs, domains and graphical properties as the predictor variables 

(35 proteins, 143 predictor variables) 

Note that the number of input predictor variables vary for each segment since the 

set of proteins in each segment contains a different number of motifs and/or 

domains. 

PCA analysis was used for motif and domain variable reduction for the above 

segments. The following set of GBM experiments were considered with various 

configurations of input data: 

1. GBM Segment Experiment 1 – [Variable selection of motif variables 

using PCA]. + [Topology/Graphical predictors]: 22 predictor variables 

2. GBM Segment Experiment 2 – [Variable selection of domain variables 

using PCA]. + [Topology/Graphical predictors]: 95 predictor variables 
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3. GBM Segment Experiment 3 – [Variable reduction of motif and domain 

variables using PCA] + [Topology/Graphical predictors]: 23 predictor 

variables  

For these experiments, the following parameters were used:  

 5000 trees with 10-fold cross-validation to determine the optimal number 

of trees 

 interaction depth of 1 

 number of minimum observation in each node equals to 1 

 shrinkage of 0.001  

The 10-fold cross-validated AUC values from these experiments are given in Table 

4.7.  AUC values for all the three experiments range from 0.55 to 0.88. GBM 

Segment Experiment 1 with motifs and topology as predictor variables revealed the 

best prediction accuracy (AUC = 0.88, ntree = 5000, shrinkage factor = 0.001, 

n.minobsnode = 1, interaction depth = 1).  

4.3.7 Important Predictor variables 

The above results demonstrate that logistic regression with Lasso gives better 

prediction accuracy for experiment 2 among the three experiments that use IV for 

variable reduction. However, data segmentation allows us to achieve much better 

prediction accuracy using the GBM model, with GBM Segment Experiment 1 

revealing the best AUC among the three data segment models (Figure 4.5).  
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We therefore proceeded to examine the variables of importance found from the 

GBM Segment Experiment 1. Table 4.8 shows the top 5 important variables for 

GBM Segment Experiment 1 in predicting proteins that interact with mutant Htt 

protein. Among the graphical properties of proteins, degree, average shortest path 

length, betweenness centrality and neighborhood connectivity were found to be the 

most important predictor variables. This is indeed true to imagine intuitively as a 

protein with numerous interacting proteins is more likely to interact with 

Huntingtin protein. Next, we examined the motif variables that contributed to the 

PC4, PC6 and PC10. Important motifs in the list were found to encode for an amino 

acid sequence relating to nuclear localization signals in proteins (Table 4.9). These 

specific proteins are encoded by genes such as RAB3D, RAB3A and RAB3B which 

are known to function in GTPase mediated signal transduction pathways and 

vesicle mediated transport. We also find the gene NPM1 that encodes for a protein 

that is essential for ribosome biogenesis, centrosome duplication, histone assembly 

and suppression of p53/TP53. Another set of proteins SLC25A4p and SLC25A5p 

are involved in chromosome segregation and in catalyzing exchange of ADP with 

mitochondrial ATP across the inner mitochondrial membrane. The above findings 

recapitulate the observations made in various animal and cell models of HD and 

therefore lend support to the results obtained by the GBM model.  

We also examined motifs and domains of relative importance as found by the Lasso 

regression model (Table 4.10). Important motifs in the list were found to encode 
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for an amino acid sequence relating to nuclear localization signals in proteins 

(Table 4.11). Other motifs were found to encode a SUMO paralog- specific binding 

sequence in proteins. Proteins containing these motifs are encoded by genes such 

as HNRNPQ, HNRNPA2B1 and LMNB1. HNRNPQ, HNRNPA2B1 are nuclear 

ribonucleoproteins involved in pre-mRNA processing in the nucleus, mRNA 

processing, RNA binding and splicing. HNRNPA2B1 has been shown to bind to 

telomeric DNA sequences thus protecting telomeric DNA from digestion. It is also 

involved in chromatin regulation and telomere extension. LMNB1 is a component 

of the inner nuclear membrane and is thought to interact with chromatin. DDX4p, 

a protein encoded by the gene DDX4 has ATP-dependent helicase activity and is 

involved in translational control and gene silencing processes by RNA in the 

mitotic cell cycle phase.  

Similarly, proteins containing domains of importance are encoded by genes such as 

HIST1H1C, HIST1H1E and HIST1H1B that are members of the histone family 

(Table 4.11). Histones are required for condensation of nuclear chromatin and are 

known to regulate gene transcription to chromatin remodeling and DNA 

methylation. Histones are also involved in cellular response to stress.  Another set 

of proteins containing domains of importance are encoded by the genes such as 

RAD23A and RAD23B that are known to play an important role in DNA nucleotide 

excision repair and in generating a cellular response to DNA damage. RAD23B is 
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specifically involved in global genome nucleotide-excision repair (GG-NER) and 

in modulating proteasomal degradation of ubiquinated proteins. 

4.4 Conclusion 

Our results demonstrate the informative value of motifs, domains of proteins in 

predicting interactors of mHtt. We show that graph theoretic properties of these 

protein interactors also help to determine a possible existence of interaction with 

Htt. Considering the sparse nature of predictor variables, we show that while using 

Information Value (IV) for variable reduction to provide us with better prediction 

accuracy, a segmentation approach using the GBM model coupled with PCA for 

dimension reduction, enables us to reach a higher prediction accuracy. The GBM 

model specifically reveals the importance of motifs and topology variables in 

predicting protein interactors of mutant Htt. The protein motifs of relative 

importance detected using this approach are known to annotated with functions 

such as vesicular transport, mitochondrial permeability and GTPase activity; all of 

which are established cellular processes known to be affected in HD. Additionally, 

we show that motifs and domains of importance required to predict proteins 

interacting with mHtt, as found by the Lasso model are annotated with functions 

such as condensation of nuclear chromatin, DNA nucleotide-excision repair, DNA 

and chromatin binding and cellular response to stress. These findings, support our 

assumption that mHtt interferes with chromosome condensation and DNA repair 
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processes and leads to accumulation of DNA damage in neuronal cells eventually 

leading to apoptosis. 
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4.5 Tables and Figures 

Table 4.1 - Characteristics of data fed to the classifiers 

Proteins 
M1 … 

Mxx 

Myy- 

Mzz 

D1 ... 

Dxx 

Dyy … 

Dzz 
Topology 

Response 

variables 

P1 –  

Px 

Only motif 

information 
      

 
 

Topology 

Px – 

 Py 
  

Both motif and 

domain 
information 

  

 Group 1, 

Group 2, 
Group 3 

Topology 

Py - Pz       

Only 

domain 
information 

 

Topology 

Pz – 
P554 

    

Only 

Topology 

information 

 

* Number of rows (proteins) = 554 

* Number of predictors (motifs, domains and topology) = 779  

* Response variables (Group 1, Group 2 and Group 3) are binary in nature.  
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Table 4.2 – Area under curve for regularized logistic regression using Lasso, 

Ridge and Elastic-net models from 10-fold cross-validation experiments.  

The predictor variables include motifs, domains and graphical properties of the 

proteins. 

Regularized Regression - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing 

values 

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.611 0.584 0.61 

     

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.621 0.619 0.62 

     

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors]  

 Lasso (  = 1) Ridge ( = 0) Elastic net ( = 0.5) 

10-fold CV 0.615 0.599 0.613 
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Table 4.3 Area under curve for data segments of Experiment 2 obtained using the 

Lasso regression model.  

The predictor variables include motifs and/or domains and graphical properties of 

the proteins. 

Experiment 2 - Data Segmentation 

Lasso regression - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Segment 1 – Motif - Topology Segment (48 proteins and 157 predictor 

variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.787 

   
Segment 2 – Domain - Topology Segment (231 proteins and 157 

predictor variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.597 

   
Segment 3 – Motif and Domain - Topology Segment (35 proteins and 

157 predictor variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.848 

  

Segment 4 – Only Topology Segment (240 proteins and 157 predictor 

variables) 

 Lasso (  = 1) 

In-sample predictions (LOOCV) 0.669 
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Table 4.4 - Area under curve for random forest model from 10-fold cross-

validation experiments.  

Predictor variables include motifs, domains and graphical properties of the 

proteins 

Random Forest - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing values 

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.566 0.573 0.563 0.57 0.57 

10-fold cv 

(ntree = 1000) 
0.559 0.576 0.577 0.58 0.575 

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.585 0.577 0.594 0.58 0.581 

10-fold cv 

(ntree = 1000) 
0.584 0.581 0.59 0.581 0.579 

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors] 

 mtry = 5 mtry = 10 mtry = 12 mtry = 13 mtry = 15 

10-fold cv 

(ntree = 500) 
0.564 0.57 0.554 0.569 0.569 

10-fold cv 

(ntree = 1000) 
0.567 0.569 0.571 0.569 0.569 
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Table 4.5 - Area under curve for GBM model from 10-fold cross-validation 

experiments. 

 Predictor variables include motifs, domains and graphical properties of the 

proteins 

Gradient Boosting Machine (GBM) - AUC values 

(Predictor variables include motifs, domains and graphical properties) 

Experiment 1 – Raw input of master dataset with imputed missing values 

10-fold CV 0.591 

Experiment 2 – [Variable selection with an IV cutoff >= 0.056]  

10-fold CV 0.6 

Experiment 3 - [Top 3-PCs on all motif/domain information without IV 

filtering] + [Topology/Graphical predictors]  

10-fold CV 0.584 

 

Table 4.6 – Experiment 2 – Parameter tuning for GBM 

Experiment 2- Variable selection by IV >= 0.056 

GBM parameter tuning 

 cv.folds 
Interaction 

depth 
n.tree shrinkage n.minobsinnode AUC 

1 10 1 5000 0.001 5 0.608 

2 10 1 5000 0.001 10 0.61 

3 10 1 5000 0.005 1 0.6 

4 10 1 5000 0.005 5 0.6 

5 10 1 5000 0.005 10 0.601 

6 10 1 5000 0.01 1 0.597 

7 10 1 5000 0.01 5 0.605 

8 10 1 5000 0.01 10 0.607 
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Table 4.7 - Area under curve for GBM with data segmentation using 10-fold 

cross-validation.  

Gradient Boosting Machine (GBM) with data segmentation- AUC values 

(Predictor variables include motifs, domains and graphical properties) 

GBM Segment Experiment 1 - [Variable selection of motif variables 

using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.88 

GBM Segment Experiment 2 - [Variable selection of domain variables 

using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.549 

GBM Segment Experiment 3 - [Variable selection of motif and 

domainvariables using PCA]. + [Topology/Graphical predictors]: 

10-fold CV 0.588 

 

Table 4.8 – Overall importance of top 5 variables in predicting proteins 

interacting with mutant Htt protein using GBM model. 

Predictor Variable 

Relative 

Influence 

Degree 12.17 

PC4 11.70 

Average Shortest Path Length 10.88 

PC10 9.16 

PC6 8.98 
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Table 4.9  Genes and their encoded proteins containing motifs of importance for GBM Segment Experiment 1 

Motif name Mouse 

Uniprot 

Protein 

ID 

Human 

Ortholog 

Protein Function 

MOTIF 153 158 Nuclear 

localization signal 

MOTIF 686 690 DXDXT 

motif 

MOTIF 697 701 LXXIL 

motif 

Q99PI5 LPIN2 nuclear transcriptional coactivator for PPARGC1A to 

modulate lipid metabolism 

Fatty acid metabolism 

MOTIF 51 59 Effector 

region 

MOTIF 51 59 Effector 

region 

P35276 

P63011 

Q9CZT8 

RAB3D 

RAB3A 

RAB3B 

GTPase mediated signal transduction, protein (vesicular) 

transport 

Exocytosis, regulation of synaptic vesicle fusion, 

neurotransmitter release 

Protein transport (vesicular traffic of proteins) 

MOTIF 55 65 HIGH region 

MOTIF 718 722 KMSKS 

region 

Q8BMJ2 LARS nucleotide binding and aminoacyl-tRNA editing activity 

MOTIF 372 377 Selectivity 

filter 

MOTIF 493 495 PDZ-

binding 

P16388 KCNA1 ion channel activity and potassium channel activity 

primarily in the brain 

MOTIF 152 157 Nuclear 

localization signal 

MOTIF 190 196 Nuclear 

localization signal 

Q61937 NPM1 ribosome biogenesis, centrosome duplication, histone 

assembly, cell proliferation, and regulation of tumor 

suppressors p53/TP53 
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Motif name Mouse 

Uniprot 

Protein 

ID 

Human 

Ortholog 

Protein Function 

MOTIF 235 240 Substrate 

recognition 

P48962 SLC25A4 Catalyzes the exchange of cytoplasmic ADP with 

mitochondrial ATP across the mitochondrial inner 

membrane. 

MOTIF 235 240 Substrate 

recognition 

P51881 SLC25A5  Role in chromosome segregation, Catalyzes the exchange 

of cytoplasmic ADP with mitochondrial ATP across the 

mitochondrial inner membrane. 
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Table 4.10 – Overall importance of top 10 variables in predicting proteins 

interacting with mutant Htt protein using Lasso Regression model. 

Predictor variable 
Overall 

importance 

Betweenness Centrality 55.73068938 

Closeness Centrality 3.79704057 

DOMAIN 36 109 H15 0.391185768 

MOTIF 564 578 Bipartite nuclear localization signal 0.262330373 

MOTIF 416 421 Nuclear localization signal. 0.236135785 

MOTIF 9 15 Nuclear localization signal. 0.212858651 

Topological Coefficient 0.202029349 

MOTIF 89 95 Required for SUMO paralog-specific binding. 0.155780768 

DOMAIN 1 79 Ubiquitin-like. 0.141763696 

MOTIF 261 289 Q motif 0.138626675 
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Table 4.11 Genes and their encoded proteins containing motifs and domains of importance found using Lasso 

regression for Experiment 2. 

Motif/Domain 

name 

Mouse 

Uniprot 

Protein ID 

Human 

Ortholog 

Protein Function 

MOTIF 564 578 

Bipartite nuclear 

localization signal. 

Q7TMK9 HNRNPQ RNA binding and splicing, mRNA processing, 

Component of the GAIT (gamma interferon-activated 

inhibitor of translation) complex, mediates interferon-

gamma-induced translation inhibition in inflammation 

processes. 

MOTIF 416 421 

Nuclear localization 

signal. 

P14733 LMNB1 provides a framework for the nuclear envelope, 

interacts with chromatin. 

MOTIF 9 15 

Nuclear localization 

signal.  

O88569 HNRNPA2B1  pre-mRNA processing in the nucleus, mRNA 

metabolism and transport, involved in chromatin 

regulation and acetylation and telomere extension, 

protecting telomeric DNA repeat against endonuclease 

digestion, 

MOTIF 89 95 

Required for SUMO 

paralog-specific 

binding. 

P57080 USP25  

 

peptidase activity and thiol-dependent ubiquitin-

specific protease activity. 

MOTIF 261 289 Q 

motif 

Q61496 DDX4  nucleic acid binding and ATP-dependent helicase 

activity, involved in gene silencing processes by RNA 

in mitotic prophase. 
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Motif/Domain 

name 

Mouse 

Uniprot 

Protein ID 

Human 

Ortholog 

Protein Function 

DOMAIN 36 109 

H15 

P15864 

P43274 

P43276 

HIST1H1C  

HIST1H1E  

HIST1H1B 

condensation of nucleosome chains, DNA, RNA and 

chromatin binding, DNA methylation, cellular 

response to stress, chromatin regulation/acetylation 

DOMAIN 1 79 

Ubiquitin-like 

P54726 

P54728 

RAD23A 

RAD23B 

nucleotide excision repair, and recognition of DNA 

repair and DNA damage, delivery of polyubiquitinated 

proteins to the proteasome,  
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Figure 4.1- Information Value of Motif and domain variables.  

The red dotted line (IV = 0.056) represents the cutoff IV selected for model building.  
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Figure 4.2 - Full scree plot of variance explained by the top 150 principal components of motif and domain variables.  
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Figure 4.3- Receiver Operating Curves (ROC) of data segments for Experiment 2 using Lasso regression  

Motif-topology segment (in Red), domain-topology segment (in Green) and motif and domain - topology segment (in 

Blue), only topology segment (purple)   
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Figure 4.4 - Variable importance of proteins interacting with mutant Htt as shown by the Random Forest.   
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Figure 4.5 – Receiver Operating Curves (ROC) for data segments of the master dataset using GBM model. 

Motif-topology segment (in Red), domain-topology segment (in Green) and motif and domain - topology segment (in 

Blue). 
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5 Summary 

Although extensive studies on Huntington’s disease (HD) have revealed the 

complex pathophysiology of this severely crippling disorder, the sequence of 

events through which the mutant Huntingtin (mHtt) protein executes its action still 

remains elusive. The complexity of the pathophysiology of HD can be attributed to 

the tendency of mHtt to abnormally interact with various other proteins that either 

do or do not interact with the wild-type Htt protein in normal conditions. The 

presence of Htt protein at various subcellular locations and its association with 

numerous other protein partners during its normal course of action also complicates 

the picture. The phenotype of HD is therefore an outcome of numerous processes 

initiated by the mHtt protein along with other proteins that act as either suppressors 

or enhancers of the effects of mHtt protein and PolyQ aggregates. To address this 

complexity, researchers have detected and analyzed proteins that physically interact 

with wild-type and mHtt proteins and have provided valuable information on 

various molecular and cellular processes affected in the mutant cells. 

We hypothesized that integration of physical and genetic interactors of wild type 

and mHtt protein would enable us to predict unknown interactors of Htt protein 

using both unsupervised and supervised machine learning approaches. We built a 

Huntington’s disease integrome (HDI) integrating human orthologs of protein 
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interactors of wild-type and mHtt in a mouse model of HD, with genetic modifiers 

of mHtt toxicity found in yeast HD models.  

We used an unsupervised machine learning algorithm to partition the network into 

clusters and in the process discovered a novel connection linking Huntington’s 

disease with chromosome condensation, DNA damage and apoptosis. We 

identified 27 candidate genes and validated three (NPLOC4, TUBGCP2 and 

NLRC4) of those genes in a drosophila model of HD These findings are novel and 

remarkable for Huntington’s disease and help establish our model implicating the 

role of mHtt in causing abnormal chromatin condensation, DNA damage, and 

neuronal cell death. 

We used a separate supervised machine learning approach to create a model that 

built on the structural and graphical properties of protein interactors of both wild 

and mHtt protein. This model demonstrated that the information contained in 

proteins such as their motifs, domains and graphical properties have the ability to 

predict an interaction with Huntingtin protein, and offer a way to test and predict 

other interactors of wild type and mHtt protein.  

Despite extensive research, researchers are still working to close gaps between the 

molecular processes affected in HD and their transition to clinical symptoms in HD 

patients. We postulated a systems biology approach utilizing machine learning 

techniques to reconcile the space between the HD genotype and phenotype. Indeed, 
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the machine learning approaches applied here put forth a system to identify 

molecular processes yet unknown to be involved in HD, in the hope of developing 

curative therapeutic options for this disabling disease. 
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6 Appendices 

6.1 Network Properties of HDI 

Given a graph G with vertices {v1, v2, ……, vn}, the adjacency matrix of G is 

defined to be as follows: 

𝐴 = (𝑎𝑖𝑗) with 𝑎𝑖𝑗 =  {
1 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗)𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑖𝑛 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
  

For an unweighted network, the adjacency 𝑎𝑖𝑗 = 1 if the nodes i and j are connected 

and 0 otherwise while for a weighted network, 0 ≤ 𝑎𝑖𝑗 ≤ 1. 

6.1.1 Network heterogeneity 

The connectivity of a node is denoted by the number of its direct neighbors (for 

unweighted networks) and by the sum of the strength of its connections to other 

nodes (for weighted networks)(Dong and Horvath, 2007) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖 =  𝑘𝑖 =  ∑ 𝑎𝑖𝑗

𝑗 ≠𝑖

 

Network heterogeneity is the coefficient of variation of the connectivity.(Dong and 

Horvath, 2007)  

𝐻𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  
√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑘)

𝑚𝑒𝑎𝑛 (𝑘)
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A network with high heterogeneity has a tendency to exhibit hubs in its 

structure.(Dong and Horvath, 2007) 

6.1.2 Average number of neighbors 

It denotes the average connectivity of a node in the network.(Assenov et al., 2008) 

(See Network density) 

6.1.3 Network density 

For a given network with n nodes, the connectivity of n, is denoted by kn, which is 

a set of numbers of its neighbors. The average number of neighbors of the node n, 

indicates its average connectivity (average number of neighbors) in the network. 

Network density is a normalized version of the average connectivity(Dong and 

Horvath, 2007) and is given by: 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝛼𝑖𝑗𝑗≠𝑖𝑖

𝑛(𝑛 − 1)
=  

𝑆1 (𝑘)

𝑛(𝑛 − 1)
=

𝑚𝑒𝑎𝑛(𝑘)

𝑛 − 1
 

The density of a network lies between 0 and 1; as the value leans towards 1, the 

density of edges in the network increases. Network density does not consider 

duplicated edges or self-loops. 

6.1.4 Network diameter 

Network diameter is the largest distance between two nodes in a network.  
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6.1.5 Clustering coefficient 

The clustering coefficient of a node is ratio N/M, where N is the total number of 

edges between the neighbors of n, and M is the total number of edges that can 

possibly exist between the neighbors of n. This is represented by the following 

equation(Dong and Horvath, 2007): 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑒𝑓𝑖 =  
∑ ∑ 𝑎𝑖𝑙𝑎𝑙𝑚𝑎𝑚𝑖𝑚≠𝑖,𝑙𝑙 ≠𝑖

(∑ 𝑎𝑖𝑙𝑙≠𝑖 )2 − ∑ 𝑎𝑖𝑙
2

𝑙≠𝑖

 

 

It can also be defined as (Assenov et al., 2008) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑒𝑓𝑖 =  
2𝑒𝑖 

𝑘𝑖 (𝑘𝑖−1 )
 

where, 𝑘𝑖 is the number of neighbors of node i, and 𝑒𝑖 is the total number of 

connected pairs between all neighbors of node i. The clustering coefficient of a 

node always lies between 0 and 1. The network clustering coefficient is the average 

of clustering coefficients of all the nodes in the network.  

6.1.6 Average shortest path length 

It is also known as the characteristic path length. It measures the expected distance 

between two connected nodes in a network.(Assenov et al., 2008) 
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6.2 Rscripts 

To ensure reproducibility of results, Rscripts used for analysis have been 

documented in the form of Jupyter notebooks and uploaded on GitHub. 

6.2.1 IV calculation and Lasso Regression – Experiment 2 

################################################################## 

## STEP I - Calculate Information values of variables 

## STEP II - Lasso regularization 

################################################################## 

## Read files 

setwd("C:/PhD folder/SVM project/AnalysisOutputs/MLProject_PhaseII") 

library(dplyr) 

df2 <- read.delim(file = "mergedfiles_all_withNA.txt", header = T, sep = "\t") 

df2[1:5, 778:781] 

rownames(df2) <- df2$Row.names 

predictorX <- df2[,3:781] # identify the columns representing the variables and 

convert to matrix. 

dim(predictorX) 

predictorX[1:5,775:779] 

class(predictorX) 

 

### Data prep ###################################################### 

### STRATEGY - Impute missing values in the data  

### Step 1 - Impute missing values in motif-domain segments with -1 

### Step 2 - Impute missing values in topology columns with the mean of each 

column. 

### Step 3 - Find Information Values of the predictor variables  

##################################################################  

### Imputation of missing values in motif, domain segments with -1 

predictorX[,1:769][is.na(predictorX[,1:769])] <- -1 # replace all NA in the 

categorical variables (motif and domain) with -1 

 

# Imputation of missing values in topology columns with mean of the column 

values. 

library (zoo) 

predictorX[,770:779] <- na.aggregate(predictorX[,770:779]) 

sum(is.na(predictorX)) # check ..should be zero 
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# Linking the uniprot IDS with their respective group labels. 

predictorX$uniprot_swissprot <- row.names(predictorX) # create a column with 

uniprot IDs based on the row names. 

class(predictorX$uniprot_swissprot) # must be character 

dataf <- read.delim(file= "all_uniprotIDs.txt", header = TRUE, sep= "\t") ## Data 

frame containing Uniprot Swiss ID 

dataf$uniprot_swissprot <- as.character(dataf$uniprot_swissprot) # convert factor 

to character. 

class(dataf$uniprot_swissprot)# must be "character" 

target <- left_join (predictorX,dataf,by="uniprot_swissprot") # this function will 

link the unique protein ids with their group labels !! 

mytarget <- target[,c(1:780,782)] 

mytargetvariable <- mytarget[,781] # the target variable 

 

x = predictorX[1:779] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# recreate binary tags 

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

y.mtOnly <- ifelse(y=="group2", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

table(y.mtOnly,y) 

 

class(y.wtmt); class(y.wtOnly) # both (target variables) have to be numeric 

class(x$M.18) 

x[,c(1:769)] <- lapply(x[,c(1:769)], factor) # convert independent categorical 

variables to factor 

#data[cols] <- lapply(data[cols], factor) 

 

x <- cbind(x,y.wtmt); x[1:5,775:780] # bind target variable to the predictor 

variables. 

 

################################################################## 

# Compute Information value and WOE 

# NOTE: The binary target variable is set to "Binding to mutant (mutant only vs. 

mutant+WT)" 

################################################################## 

library (Information) # load library 
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library(xlsx) 

IV <- create_infotables(data=x, y="y.wtmt", bins=10, parallel=FALSE) # all 554 

entries 

#summary of IV values of all independent variables 

V_Value = data.frame(IV$Summary) 

range_V_Value <- range(V_Value$IV) 

#write.xlsx(V_Value, file = "IVvalues.xlsx", col.names = TRUE, row.names = 

FALSE) 

V_Value <- V_Value[order(- V_Value$IV),] # order the IV values in descending 

order. 

#plot IV values in bar plot 

barplot(V_Value$IV[1:157], col = "darkgreen", xlab = "Variables", ylab = "IV 

value", names.arg = names(IV$Summary$Variable), main = "Information Value 

Summary") 

 

####### Select variables with IV value >= 0.056 

V_Value <- subset(V_Value, IV>= 0.056) 

 

# Subset predictorX with the variables with IV >= 0.056 

myvec <- as.vector(V_Value$Variable) 

predictorX.subset <- predictorX[, myvec]; dim(predictorX.subset) # subset and 

check. 

# Note: the predictor subset has missing values imputed as -1 for motif domain 

variables and mean of  

# column values for topology variables. 

 

###################################### 

###### Logistic Regression on the new subset  

###################################### 

# Input Data prep  

# Linking the uniprot IDS with their respective group labels. 

predictorX.subset$uniprot_swissprot <- row.names(predictorX.subset) # create a 

column with uniprot IDs based on the row names. 

class(predictorX.subset$uniprot_swissprot) # must be character 

dataf <- read.delim(file= "all_uniprotIDs.txt", header = TRUE, sep= "\t") ## Data 

frame containing Uniprot Swiss ID 

dataf$uniprot_swissprot <- as.character(dataf$uniprot_swissprot) # convert factor 

to character. 

class(dataf$uniprot_swissprot)# must be "character" 

target <- left_join (predictorX.subset,dataf,by="uniprot_swissprot") # this 

function will link the unique protein ids with their group labels !! 
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mytarget <- target[,c(1:158,160)] 

mytargetvariable <- target[,160] # the target variable 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# recreate binary tags 

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

y.mtOnly <- ifelse(y=="group2", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

table(y.mtOnly,y) 

 

# ############### Lasso Group 2 + Group 3########################## 

## AUC = 0.652 for IV cutoff >= 0.056 

################################################################ 

library(glmnet) # load library 

set.seed(1) 

lasso <- glmnet(as.matrix(x), y.wtmt, alpha = 1,family = "binomial") 

plot(lasso, label = TRUE) 

plot(lasso, xvar = "lambda", label = TRUE) 

print(lasso) 

 

set.seed(2) 

cvfit_lasso <- cv.glmnet(as.matrix(x),y.wtmt,alpha = 1, family = 

"binomial",type.measure = "deviance") 

plot(cvfit_lasso) 

 

#lambda minimum of cvfit which gives minimum mean cross-validated error.(k-

means cross validation) 

cvfit_lasso$lambda.min 

cvfit_lasso$lambda.1se 

 

#coefficients for  the lambda minimum (lambda.min) and most regularized 

lambda (lambda.1se) values. 

coef(cvfit_lasso, s = "lambda.min") 

coef(cvfit_lasso, s = "lambda.1se") 

 

## prediction using lambda min for lasso regression 

mypc.comp <- as.matrix(x); class(x) 
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lasso_pred <- predict(lasso, newx = mypc.comp, type = "response", s = 

cvfit_lasso$lambda.min) 

lasso_pred 

class(y.wtmt) 

class(lasso_pred) 

 

## ploting the ROC curve using the above predictions 

library(pROC) 

lrocobj <- roc(y.wtmt,as.numeric(lasso_pred)) 

plot.roc(lrocobj, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),print.thres=TRUE, main = "Lasso ROC - All-in-one| IV>=0.056|group 2 & 

3") 

# plot.roc(smooth(lrocobj)) 

auc(lrocobj) # area under curve for lasso ROC 

 

# Variable importance  

# use caret package 

library(caret) 

varimp_lasso <- varImp(lasso, lambda = cvfit_lasso$lambda.min) 

# write.xlsx(varimp_lasso,file = "varimp_lasso.xlsx", sheetName = 

"Varimp_lasso") 

 

# ##Lasso - 10-fold cv - Grp 2 +Grp 3 ############################### 

# ## AUC - 0621 for IV >= 0.056 

############################################################## 

library(cvTools) #run the above line if you don't have this library 

library (glmnet) 

 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(x), K=k) 

x$kfoldlpred <- rep(0,nrow(x)) 

 

kfoldprediction <-  

  for(i in 1:k){ 

    train <- x[folds$subsets[folds$which != i], -158] #Set the training set  

    train_response <- y.wtmt[folds$subsets[folds$which != i]] # set the training set 

response 

    validation <- x[folds$subsets[folds$which == i], -158] #Set the validation set 

    lasso_newglm <- glmnet(as.matrix(train), train_response, alpha = 1,family = 

"binomial") #Get your new logistic regression model (just fit on the train data) 
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    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    lasso_cvglm <- cv.glmnet(as.matrix(train), train_response, alpha = 1, family = 

"binomial",type.measure = "deviance") 

    lasso_newpred <- predict(lasso_newglm,newx = as.matrix(validation), type = 

"response", s = c(lasso_cvglm$lambda.min)) #Get the predicitons for the 

validation set (from the model just fit on the train data) 

    x[folds$subsets[folds$which == i], ]$kfoldlpred <- lasso_newpred #Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(x$kfoldlpred) # predictions for all proteins using k-fold validation ! 

(10-fold) 

 

# ROC curve  

class(lasso_newpred) 

lrocobj1 <- roc(y.wtmt,as.numeric(x$kfoldlpred)) 

plot.roc(lrocobj1, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),print.thres=TRUE, main = "Lasso ROC|All-in-one|IV>=0.056\n|k-

foldpredictions - group 2 & 3") 

# plot.roc(smooth(lrocobj)) 

auc(lrocobj1) # area under curve for lasso ROC 

 

### END!! DO NOT RUN 

################################################################## 
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6.2.2 Random forest – Experiment 2 

# Identify features and variables. 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# ## Random Forest ############################################ 

# ## RF parameters - ntree = 500, mtry = 12 

############################################################# 

library (cvTools) 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(x), K=k) 

x$kfoldlpred0 <- rep(0,nrow(x)) 

x$kfoldlpred1 <- rep(0,nrow(x)) 

kfoldprediction <-  

  for(i in 1:k){ 

    train <- x[folds$subsets[folds$which != i], c(1:157)] # training set  

    train_response <- y.wtmt[folds$subsets[folds$which != i]] # training set 

response 

    validation <- x[folds$subsets[folds$which == i], c(1:157)] # validation set 

    rf_grp1 <- randomForest(as.factor(train_response)~., data = train, importance = 

TRUE)# get the RF model (just fit on the train data) 

    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    rf_newpred <- predict(rf_grp1, newdata = validation, type = "prob", norm.votes 

= TRUE, predict.all = FALSE) #Get the predicitons for the validation set (from 

the model just fit on the train data) 

    x[folds$subsets[folds$which == i], ]$kfoldlpred0 <- rf_newpred[,1] 

    x[folds$subsets[folds$which == i], ]$kfoldlpred1 <- rf_newpred[,2]#Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(x[,158:159]) # predictions for all proteins using 10-fold validation  

 

# ROC curve for Random forest 10-fold cv  

library(pROC) 

rocobj_grp1 <- roc(y.wtmt, x$kfoldlpred1) 

plot.roc(rocobj_grp1, print.auc = TRUE, legacy.axes = TRUE, grid=c(0.1, 

0.2),main = "Random Forest| 10-fold cv|IV>= 0.056|\nmutant binding 

(Grp2+Grp3)|mtry = 12|ntree = 500") 
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6.2.3 Gradient Boosting Machine – Experiment 2 

# Identify features and variables. 

x = predictorX.subset[1:157] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# ## GBM ################################################### 

# ## GBM parameters – minobsnode = 10, shrinkage =0.001, ntrees = 5000 

############################################################# 

library (cvTools) 

train <- data.frame(x, y.wtmt) 

k <- 10 #the number of folds 

set.seed(123) 

folds <- cvFolds(NROW(train), K=k) 

train$kfoldlpred <- rep(0,nrow(train)) 

 

kfoldprediction <-  

  for(i in 1:k){ 

    training <- train[folds$subsets[folds$which != i], -159] #Set the training set  

    training_response <- y.wtmt[folds$subsets[folds$which != i]] # set the training 

set response 

    validation <- train[folds$subsets[folds$which == i], -159] #Set the validation 

set 

    fit.gbm <- gbm(y.wtmt~., data=training, distribution = "bernoulli", 

                   n.trees = 5000,  

                   interaction.depth = 1, 

                   n.minobsinnode = 10, 

                   shrinkage = 0.001, 

                   cv.folds = 10 

    ) 

    #gbm.perf(fit.gbm)     

    randomseed = 123 + (i-1)*10 

    set.seed(randomseed) 

    gbm_newpred <- predict(fit.gbm, newdata=validation, 

gbm.perf(fit.gbm,plot.it=F),type="response") #Get the predicitons for the 

validation set (from the model just fit on the train data) 

    train[folds$subsets[folds$which == i], ]$kfoldlpred <- gbm_newpred #Put the 

hold out prediction in the data set for later use 

  }  

as.data.frame(train$kfoldlpred) # predictions for all proteins using 10-fold 

validation 
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# ROC curve for GBM 10-fold cv  

library(pROC) 

roc(train$y.wtmt, train$kfoldlpred, plot= TRUE,  

    legacy.axes = TRUE, grid=c(0.1, 0.2), print.auc = T,  

    main = "GBM | All-in-one | Binary Target=Mutant (Grp 2+Grp 3) \n| 10-fold 

cv | n.minobs = 10, shrinkage = 0.001, ntrees = 5000") 

 

### create a graph with all ROC curves for Exp 2 - Lasso, Random Forest, GBM 

roc(train$y.wtmt, train$kfoldlpred, plot= TRUE,  

    legacy.axes = TRUE, grid=c(0.1, 0.2), print.auc = T,  

    main = "Experiment 2 | ROC curves\n Lasso, Random Forest and GBM |Binary 

Target=Mutant (Grp 2+Grp 3)") 

plot.roc(lrocobj1, print.auc = TRUE, add = TRUE, col = "red", legacy.axes = 

TRUE, grid=c(0.1, 0.2),print.auc.y = 0.8,print.auc.x = 0.2) 

plot.roc(rocobj_grp1, print.auc = TRUE,add = TRUE, col = "green", legacy.axes 

= TRUE, grid=c(0.1, 0.2), print.auc.y = 0.6,print.auc.x = 0.4) 

legend("bottomright", col = c("black", "red", "green"), legend = c("GBM", 

"Lasso", "Random Forest"), lty = 1) 
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6.2.4 Gradient Boosting Machine – with Data segmentation 

## GBM for Motif-Topology segment 

################################## 

# Identify features and variables 

x = predictorX[1:60] #dataframe of features 

y = mytargetvariable #dependent variable 

 

# Creating binary tags 

# group 2 and group 3 proteins are tagged with 1 and group 1 proteins with 0  

y.wtmt <- ifelse(y %in% c("group2", "group3"), 1, 0) 

y.wtOnly <- ifelse(y=="group1", 1, 0) 

table(y.wtmt,y) 

table(y.wtOnly,y) 

 

train5 <- data.frame(y.wtmt, x) 

 

# .. PCA analysis to reduce motif variables 

pc.motif <- prcomp(train5[,12:61]) 

summary(pc.motif) 

plot(pc.motif, type='l') # .. scree plot  

# check R's PCA list object 

names(pc.motif) 

# variable loadings: projections of the original variable onto the PC-space 

head(pc.motif$rotation) 

head(pc.motif$x) 

# variance explained by top PCs 

plot(pc.motif$sdev/sum(pc.motif$sdev)*100) # .. full scree plot 

# keep only top 12 PCs 

pcs <- pc.motif$x 

pcs12 <- pcs[,1:12]  

############################################################## 

Repeated 10-fold cross validation - Motif- Topology Segment 

# AUC 0.88 for nsim = 1 

# AUC - 0.86 for nsim = 100 

############################################################## 

library (gbm) 

library(cvTools) 

library(ROCR) 

library(pROC) 

library(xlsx) 
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# create empty roc plot to plot roc curves  

plot.roc(0:1, 0:1, type = "n", legacy.axes = TRUE, main = "GBM | Binary 

Target=MT binding with PCA | repeated 10-Fold CV") 

 

k <- 10 #the number of folds 

x = cbind(predictorX[1:10], pcs12) 

y <- y.wtmt 

set.seed(1234) 

 

folds <- cvFolds(NROW(x), K=k) 

nsim <- 1 # number of repetitions 

myauc <- rep(0, nsim) 

mypreds <- data.frame(matrix(0, nrow(x),ncol = 100)) # create a dataframe to 

store results of all 100 nsim repetitions 

row.names(mypreds) <- row.names(x) # row names for the dataframe 

names(mypreds) <- paste("K", (1:100), sep = "") # column names 

j <- 1 

x$kfoldlpred <- rep(0,nrow(x)) # append a column to original dataframe to 

temporarily store results of each k-fold 

ptm <- proc.time() 

 

repeatcv <- function(){ 

  while (j <= nsim){ 

    for(i in 1:k){ 

      train <- x[folds$subsets[folds$which != i], -23] #Set the training set  

      train_response <- y[folds$subsets[folds$which != i]] # set the training set 

response 

      validation <- x[folds$subsets[folds$which == i], -23] #Set the validation set 

      randomseed = 7842 + (i-1)*10 +j 

      set.seed(randomseed) 

      new_gbm.fit <- gbm(train_response~., data=train, distribution = "bernoulli", 

                         n.trees = 5000, 

                         interaction.depth = 1, 

                         n.minobsinnode = 1, 

                         shrinkage = 0.001, 

                         cv.folds = 10) 

      new_gbmpred <- predict(new_gbm.fit, newdata=validation,  

                             gbm.perf(new_gbm.fit,plot.it=F), 

                             type="response")  

      x[folds$subsets[folds$which == i],]$kfoldlpred <- new_gbmpred  

    }  
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    mypreds[,j] <- x$kfoldlpred 

    rocobj2 <- roc(y.wtmt, as.numeric(mypreds[,j])) 

    myauc[j] <- rocobj2$auc # assign auc value to the jth item of your numeric 

vector 'myauc' 

    plot.roc(rocobj2,add = TRUE) 

    j <- j+1 

  } 

  predictions <- as.data.frame(mypreds[,1],row.names = row.names(mypreds)) 

  write.xlsx(predictions, file = "predictions_gbmmotiftop.xlsx", col.names = 

TRUE, row.names = TRUE) 

  returnlist = list(predictions,myauc,mean(myauc), sd(myauc)) 

  returnlist 

  roc(train5$y.wtmt, mypreds[,1], plot= TRUE,legacy.axes = TRUE, grid=c(0.1, 

0.2), print.auc = T, main = "GBM|Motif-Top with PCA| Binary Target = 

Mutant(Grp2+Grp3)") 

} 

repeatcv() 

proc.time() – ptm 

 

# create ROC chart for motif-topology segment 

gbm_motiftop <- read.xlsx(file = "predictions_gbmmotiftop.xlsx", sheetIndex = 

1, sheetName = "Sheet1") 

roc(train5$y.wtmt, gbm_motiftop$mypreds...1., plot = TRUE, col = "red", 

legacy.axes = TRUE, grid=c(0.1, 0.2),print.auc = TRUE, print.auc.y = 

0.2,print.auc.x = 0.75, main = "GBM ROC| Data segmentation with PCA|\nBinary 

Target = Mutant (Grp 2 & 3)") 
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