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Abstract

A stochastic-delay differential equation (SDDE) model of a small neural
network with recurrent inhibition is presented and analyzed. The model
exhibits unexpected transient behavior: oscillations that occur at the bound-
ary of the basins of attraction when the system is bistable. These are known
as delay-induced transitory oscillations (DITOs). This behavior is analyzed
in the context of stochastic resonance, an unintuitive, though widely re-
searched phenomenon in physical bistable systems where noise can play
in constructive role in strengthening an input signal. A method for model-
ing the dynamics using a probabilistic three-state model is proposed, and
supported with numerical evidence. The potential implications of this dy-
namical phenomenon to nocturnal frontal lobe epilepsy (NFLE) are also
discussed.
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Chapter 1

Introduction

A revolution is underway in the field of neuroscience. The study of the
nervous system was once the sole domain of experimentalists, but in re-
cent years, there has been an increasing number of scientists who seek to
apply more quantitative methods and analysis. The result has been the
creation and growth of a new field, known as computational neuroscience,
which situates itself between the worlds of experimental biology, nonlinear
dynamics, and artificial intelligence.

In this thesis, a stochastic delay differential equation (SDDE) model of
a simple two-neuron network is presented and analyzed. This model has
previously been analyzed in the context of decision–making (Milton et al.,
2010), and belongs to the general class of Hopfield-type models. This par-
ticular network is small enough to be mathematically tractable, yet its be-
havior is much like that of larger networks (Pakdaman et al., 1998b). Our
exploration is centered around three topics:

1. Time delays are intrinsic to the dynamics of all biological neural net-
works.

2. Oscillations are a consequence of feedback, and here we examine two
types of periodic behavior.

3. Noise is inherent in many biological processes, neural networks in-
cluded.

We are particularly interested in how these three elements interact to pro-
duce different types of resonance in our system.

We place particular focus on a dynamical phenomenon known as delay-
induced transitory oscillations (DITOs). These oscillations occur at the
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boundary of the basins of attraction of stable fixed points, and have du-
rations significantly longer than the time delay. The analytical mechanism
for these transients has been previously examined (Pakdaman et al., 1998a;
Gopalsamy and Leung, 1996), but they have not been analyzed in the pres-
ence of noise.

Time delayed systems are by definition non-Markovian, which com-
plicates analysis of their stochastic properties. However, here we show
that in some cases, the dynamics of these systems can be described us-
ing Markovian models. Specifically, we present a three-state probabilistic
model that statistically models the structure of our neural network’s behav-
ior. This model takes direct influence from similar discrete models used to
study bistable systems that exhibit a phenomenon called stochastic reso-
nance. The possible application of these results to the study of “dynamical
diseases,” specifically nocturnal frontal lobe epilepsy (NFLE), is also dis-
cussed.

Chapter 2 introduces the necessary biological background for under-
standing this model. Chapter 3 details the mathematical concepts involved
in this model and its analysis. Chapter 4 presents a delay-differential equa-
tion model of two neurons in an inhibitory loop, and performs basic sta-
bility analysis. Chapter 5 examines two kinds of stochastic resonance that
can occur in the network. Chapter 6 formulates a Markov chain that can be
used to model the probabilistic qualities of the system. Chapter 7 discusses
the possible biological implications of our work.



Chapter 2

Biological Background: Neural
Networks

Neuroscience is primarily concerned with one type of cell, the neuron.
What set neurons apart from other cells is their electrical and signalling
properties, which can produce a variety of interesting temporal behav-
ior. Furthermore, it allows them to connect to form elaborate networks;
the human brain consists of hundreds of billions of neurons, and a single
neuron may connect to tens of thousands of others! Unsurprisingly, these
networks can have deep and complex dynamics, and significant compu-
tational power. Biologically, we see this in the central nervous systems of
animals, and theoretically, in the study of artifical neural networks (ANNs),
a subfield of artificial intelligence. Here, we provide all that a mathemati-
cian needs to know (and no more!) to understand this model.

2.1 Basic Neuroanatomy

The anatomy of a neuron can most simply be viewed as a composition of
three parts (Figure 2.1): the soma, dendrites, and the axon. The soma is the
main cell body, and contains the nucleus. From the soma extend branch-
like structures called dendrites, which receive chemical signals from other
neurons. The axon also projects from the soma, and constitutes the majority
of the neuron’s physical size. Its purpose is to carry electrical impulses,
called action potentials, away from the soma. The gap between connected
neurons is referred to as the synapse.
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Figure 2.1 A pyramidal neuron. Taken from Haykin (1994).
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2.2 Neural Signalling

Signalling between neurons is a complex process, with both electrical and
chemical components. A set of chemicals known as neurotransmitters are
used to pass messages between neurons. Neurotransmitters are released
into the synaptic cleft by the pre-synaptic neuron. Here, they have the op-
portunity to bind to receptor sites on the dendrites of the post-synaptic neu-
ron, each specific to a neurotransmitter. If a neurotransmitter binds to a re-
ceptor, it exerts influence on the behavior of the post-synaptic neuron. This
influence is primarily one of two types: excitatory and inhibitory. The bind-
ing of an excitatory neurotransmitter causes the neuron to be more likely
to spike, or produce an action potential. Equivalently, excitatory neuro-
transmitters increase the firing rate of the post-synaptic neuron. Likewise,
inhibitory neurotransmitters cause the opposite effect: a decrease in neu-
ronal activity. When a neuron fires, an action potential is propagated down
the length of its axon. Upon its arrival at the end of the axon, neurotrans-
mitters may be released from terminal buttons into various synapses, thus
transmitting the signal onward.

An important implication in terms of modelling is that interneural in-
fluence is rate-limited. That is, the amount by which one neuron can impact
the activity of another is restricted by the number of binding sites on the
post-synaptic neuron. Thus, activity in the pre-synaptic neuron will cease
to affect the post-synaptic one once it reaches a sufficiently high level.

2.3 Time Delays

Intrinsic to biological neural signalling is the presence a time delay. For ex-
ample, the fact that the conduction velocity of an action potential is finite
introduces a delay between when the pre-synaptic neuron fires, and when
the post-synaptic neuron’s activity is influenced. Transmission delays are
not the only component of the time delay observed in biological nervous
systems, there are also cellular and synaptic time delays, among others. For
a high-level model, such as the one considered in this document, the cause
of the delay is irrelevant; we simply add a delay term to any neural con-
nectivity terms. Many models of neural networks, particularly those used
in ANNs, ignore this delay component and treat communication between
neurons as instantaneous. As systems of ordinary differential equations
(ODE) are much better understood, this is convenient. However, in order
to accurately model biological neural dynamics, we must consider delays.





Chapter 3

Mathematical Background:
Dynamical Systems and Time
Delays

The primary tool for studying dynamics is systems ordinary differential
equations (ODEs). Here, we’ll discuss their extension to delay differential
equations (DDEs), and how the presence of a time delay complicates anal-
ysis of such systems. A discussion of stochastic resonance, an interesting
dynamical phenomenon that has been found to occur in many bistable sys-
tems, is also included. As our model, in the most interesting case, exhibits
bistability, the stochastic resonance literature provides a useful theoretical
framework for our analysis.

3.1 Dynamical Systems, Time Delays, and Noise

Here we cover the major mathematical components of our model. These
elements are not just specific to our system, but mathematical models of
biological systems in general.

3.1.1 Delay Differential Equations

A typical dynamical system is defined as a system of autonomous first-
order ordinary differential equations,

ẋ = f(x),
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where f : Rn → Rn, and is continuous. x is a vector of n state variables
whose dynamics are specified by the state function, f . It should be noted
that this definition specifies a system of first-order differential equations,
but given a system with higher-order differential equations, we can con-
struct an equivalent system consisting only of first-order differential equa-
tions. Solutions to such systems are specified by an initial condition, or a
single point in Rn. See Strogatz (1994) and Hale and Kocak (1991) for a
complete treatment of systems of ODEs.

Delay differential equations simply extend ODEs to depend on the state
of the system in the past, as well as in the present. Hence,

ẋ(t) = f (x(t), x(t− τ1), . . . , x(t− τn)).

One immediate consequence of this is that solutions to time delayed sys-
tems require that a continuous initial function be defined on the interval
[−max(τi ∀ i), 0]. Furthermore, delay differential equations cannot be
solved backwards in time, only forwards. Accordingly, we refer to a DDE
system as defining a semiflow.

This modification comes at significant cost. Whereas the solution to an
ODE system is determined by a single point in Rn, the state of the system at
t = 0 (the initial condition), DDEs depend on a the state at a point t = −τ in
the past. Thus, the phase space for a DDE is an infinite dimensional Banach
space, no matter how small the delay. Furthermore, linear stability analysis
often is complicated by the fact that the characteristic equations are often
transcendental, and typically have an infinite number of roots.

Despite the fact that time delays are ubiquitous in biological systems,
many researchers choose to ignore them as it restricts the set of analytical
machinery that can be used, and can significantly complicate the dynamics
of the system of interest. If the primary interest is in the asymptotics of a
system, then this simplification can be acceptable as the existence and local
asymptotic stability of equilibria is in some cases the same. On the other
hand, if our interest is in transient behavior, delays need to be taken into
consideration. That said, the last decade has seen an increased research
interest in time-delayed systems given their biological relevance.

Though time delays are analytically inconvenient, their inclusion can
lead to a certain richness in the dynamics. A prime example of this is the
Ikeda equation,

ẋ(t) = sin(x(t− τ)).

In the absence of the delay, this system’s behavior is simple: trajectories
quickly converge to the nearest stable fixed point which are located at π +
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2πk for k ∈ Z. When we add a delay, the system exhibits a broad range of
chaotic behavior depending on our choice of parameters. Figure 3.1 shows
several of these results.

3.1.2 Noise

A stochastic process is one for which the future states follow a probabil-
ity distribution, as opposed to be restricted to one possible outcome. We
call such a process Markovian if this probability distribution depends on
the current state of the process, and not any others. Most standard tech-
niques used in the study of stochastic processes rely upon the process in
question possessing the Markov property, or able to be transformed into an
equivalent Markov process.

Since the state equations of SDDEs are functions of time-lagged values
of the state vector, they are by definition non-Markovian. Thus, the in-
clusion of noise makes the already difficult problem of dealing with time
delays, even more difficult from an analytic perspective. Consequently, the
study of SDDEs consists of either analytical work with simple models, or
numerical investigations with more complex models.

Given the massive connectivity of neural systems, any given neuron is
subject to a large number of inputs. Of these, only some are significant (cor-
related), while the vast majority are uncorrelated and seemingly random.
While some thermal noise is present in the nervous system, the “noise”
used in neural network models (including the one used here) is simply a
model of this uncorrelated activity.

3.2 Stochastic Resonance

Stochastic resonance is an unintuitive effect that can occur in bistable sys-
tems under the influence of noise. In these cases, noise, which is typically
viewed as unwanted, can have the effect of strengthening the presence of a
weak, periodic input signal in the output of a system. It has been observed
in large variety of systems, among them bistable ring lasers, semiconductor
devices, chemical reactions, and mechanoreceptors in the tails of crayfish
(Gammaitoni et al., 1998). Here we examine how resonance with noise can
be observed in two ways.
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a. τ = 0.5, Initial Function =
3.14159.

b. τ = 1.571, Initial Function =
1.571.

c. τ = 4, Initial Function = 2.998. d. τ = 4, Initial Function = 2.999.

e. τ = 4.85, Initial Function =
1.69018.

f. τ = 5, Initial Function =
2.47558.

Figure 3.1 A wide variety of behavior can be produced by changing the pa-
rameters from the Ikeda equation. Interested readers can explore this on
http://demonstrations.wolfram.com/IkedaDelayDifferentialEquation/.

http://demonstrations.wolfram.com/IkedaDelayDifferentialEquation/
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Figure 3.2 Illustration of how a weak periodic signal raises and lowers the po-
tential barrier in a bistable system. From Gammaitoni et al. (1998).

3.2.1 Classical Stochastic Resonance

The mechanism can qualitatively be understood quite easily. Consider an
overdamped Brownian particle in a double-well potential. This can be
modeled by

V(x) = − a
2

x2 +
b
4

x4, (3.1)

ẋ(t) = −V ′(x) + A0 cos(Ωt + φ) + ξ(t), (3.2)

where x(t) is the position of the particle or output of the system, V(x) is the
potential, A0, a, b, Ω, φ are all constants, and ξ(t) is zero–mean unit Gaus-
sian noise. The second term in Equation 3.1 can be interpreted as an input
signal into the system, or external periodic forcing.

The behavior of this system is straightforward. The particle rolls down
this energy landscape, coming to rest at the bottom of these wells, the low-
est possible energy state. These are equivalent to the fixed points of the
system. When the system is deterministic (i.e., ξ(t) = 0 for all t), the parti-
cle will remain at the bottom of whichever well its trajectory led it to first.
If |A0| > 0, then the height of the potential barrier between the two wells
oscillates, as shown in Figure 3.2.

Now consider the stochastic case. Clearly, there is now some finite prob-
ability that the particle will cross the barrier, placing it into the other well.
This probability will be influenced by height of barrier at the specific time.
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Figure 3.3 Signal versus intensity of the noise. The peak indicates the reso-
nant condition. From Gammaitoni et al. (1998).

Since the periodic forcing is modifying the height of the barrier, noise–
induced hopping between basins becomes synchronized with this forcing.
Furthermore, there exists some optimal level of noise for which the input
signal’s presence in the output signal is maximized. This is stochastic reso-
nance.

There are several major features which characterize stochastic resonance.
First is the resonance peak seen when the signal is plotted as a function
of the noise intensity (Figure 3.3). Second, we can look at the switching
rate between the basins of attraction of the two stable fixed points. This
is known as Kramer’s rate (Gammaitoni et al., 1998), and is analytically de-
fined as

rk =
ω0ωb

2πγ
exp

(
∆V
D

)
, (3.3)

where ω2
0 = V ′′(xm)/m is the squared angular frequency of the potential in

the potential minima at ±xm, and ω2
b = |V ′′(xb)/m| is the squared angular

frequency at the top of the barrier, located at xb. If the noise level is tuned
so that the switching rate (the stochastic timescale) is half of the period
of the input signal (the deterministic timescale) are the same, we have the
resonant condition. This is known as the timescale matching condition, and is
formally written as

2Tk(D) = TΩ,

where Tk is mean waiting time between subsequent transitions, and TΩ is
the period of the periodic forcing.
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Figure 3.4 Synchronization between the input and output can be seen as
the intensity of the noise is varied. The dotted line is the input signal. Taken
from Gammaitoni et al. (1998).

Another feature of systems exhibiting stochastic resonance is input–
output synchronization. Figure 3.4 shows this. Notable is the phase shift
between the input signal and the system output. This can be approximated
with Equation 3.4:

φ̄ = arctan
(

Ω
2rk

)
. (3.4)

Finally, residence time distributions provide another way to characterize a
resonant system. Figure 3.5 shows the prototypical distribution for these
systems.

An important technique implicit in the above discussions is two-state
filtering, where each point in the output time series is categorized by which
basin it resides in. This reduced data is then used to verify probabilis-
tic binary models used to capture the essential stochastic dynamics of the
systems. These models can show the underlying structure of features in
the continuous system, such as residence times, switching rates, and reso-
nance.



14 Mathematical Background: Dynamical Systems and Time Delays

Figure 3.5 Typical residence time distribution of a resonant system as the
noise level is increased. The inset shows signal-to-noise versus the intensity
of the noise. From Gammaitoni et al. (1998).

3.2.2 Resonance with Delay

A kind of stochastic resonance phenomenon has also been found to occur
in systems without an explicit periodic term. Time delays are well known to
cause oscillations, and noise has been found to interact with these in a res-
onant sort of way. The mechanism for this is not nearly as well understood
as it is for classical stochastic resonance. Here we review two of the major
studies on this effect.

Ohira and Sato (1999) were the first to identify this phenomenon. They
presented a simple probabilistic model which depended on the state at time
τ in the past, though not the present. The model was motivated by a simple
first-order DDE with a hyperbolic tangent nonlinearity. By adjusting the
parameters for transition probabilities and the time delay, they found that
there was some optimal pairing of values such that switches an interval of
τ apart were maximized. That is, there was a form of resonance.

These results were extended by Tsimring and Pikovsky in 2001. They
proposed a similar two-state model which depended on both the current
state, as well as the lagged state. However, there were only two probabili-
ties that defined the system: one for when the current and past state were
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the same, and the other for when they were different. Thus, there was no al-
lowance for asymmetric potential wells, although this approach did result
in a model that was more mathematically tractable. This model was de-
signed to capture the dynamics of an overdamped particle in a double-well
quartic potential as described by the Langevin equation, a prototypical ex-
ample used in the stochastic resonance literature. They were able to derive
analytically values for the transition probabilities by deriving the rate equa-
tions for their model, and then equating it with Kramer’s rate and solving.
This effort was validated by numerical evidence.





Chapter 4

A Noisy Neural Network
Model with Time Delays

Here we present a stochastic delay differential equation model of a two-
neuron inhibitory network. This model belongs to the class of Hopfield
models (Haykin, 1994), which take the general form

dxi(t)
dt

= −xi(t) +
n

∑
j=1

aij f j(cjxj(t)) + Ii, i = 1, 2, . . . , n.

Here, xi(t) is the firing rate of neuron i; aij is the connection weight be-
tween neuron i and j; f j is some continuous, monotonic, and bounded
function (typically a sigmoid); cj is some constant; and Ii is the input into
neuron i. All constants are positive, with the exception of aij, whose sign
determines whether the influence is excitatory or inhibitory. These types of
models gained much attention in the late 1980s and early 1990s, when they
were used for their ability to act as content-addressable memories, allowing
them to perform tasks such as pattern completion (Haykin, 1994; Olien and
Bélair, 1997). These models exhibited multistability, with each equilibrium
point corresponding to a specific memory (Haykin, 1994). Hopfield mod-
els were the first major model used in artificial neural networks which were
dynamic in nature. They are not biologically accurate in that they don’t ex-
hibit the primary dynamical feature: spiking. However, they do describe
neural dynamics “at least metaphorically” (Pakdaman et al., 1998b), as they
contain many of the important features of such systems, namely time de-
lays and rate-limited influence. In this chapter, we formulate our model,
and discuss the basic aspects of its stability.
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4.1 Model Statement

In this thesis, we consider a neural network consisting of two mutually
inhibitory neurons as depicted in Figure 4.1. A time–delayed differential
equation model for this network is given by

ẋ = −x(t)− S2(y(t− τ2)) + I1(t) + σξ1(t), (4.1)
ẏ = −y(t)− S1(x(t− τ1)) + I2(t) + σξ2(t), (4.2)

where x, y are the firing rates of the neurons; I1, I2 represent external inputs;
τ1, τ2 are the conduction time delays between the two neurons; ξ1 and ξ2 are
unit Gaussian noise (and thus σ is their standard deviation); and

Sj(u) =
cju2

θ2
j + u

, j = 1, 2

describe sigmoidal functions representing inhibitory influences. Note that
these functions are nonnegative on u ≥ 0 and increasing. All constants in
the model are positive except the delays which are nonnegative. For the
remainder of this document, we only consider the case where the delays
are symmetric.

Under this formulation, we are making a distinction between correlated
and uncorrelated input into these neurons from other neurons. I1 and I2
represent correlated inputs, and can be perhaps be interpreted as meaning-
ful or significant. By contrast, we model uncorrelated or random inputs
with a stochastic process, specifically a Gaussian one, as we discussed in
Chapter 3. As we will see, both play an important role in the model’s dy-
namics.

This specific model was recently applied to context of decision making
on the neural level (Milton et al., 2010). Here, fixed points represented two
decision outcomes, and the initial function was the information relevant to
making one decision or the other. Under this interpretation, DITOs could
be seen as a neural corollary to indecision, or “choking”, when presented
with large amounts of information supporting. There was a brief discus-
sion of the impact of noise on the system, but the study was not compre-
hensive. They discussed how noise could lead to the “wrong” decision
being made, but didn’t consider noise-induced transitions, or investigate
the stochastic resonance features of the systems dynamics.
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Figure 4.1 Schematic representation of a neural network with mutually in-
hibitory neurons. “−” indicates an inhibitory connection and “+” indicates an
excitatory connection. From Milton et al. (2010).

4.2 Identification of Fixed Points

Stability analysis of this network has been carried out thoroughly in the
literature (Olien and Bélair, 1997; Gopalsamy and Leung, 1996; Pakdaman
et al., 1998b; Milton et al., 2010), so here we will just touch upon the major
points rather than rederive the same results. We consider the case where
the inputs into the system, I1 and I2, are constant. An equilibrium point
(x∗, y∗) of Equation 4.1 must satisfy

x∗ = I1 − S2(y∗) = f2(y∗), (4.3)
y∗ = I2 − S1(x∗) = f1(x∗). (4.4)

Substituting Equation 4.4 in Equation 4.3 yields a single equation for x∗:

F(x)
de f
= I1 − S2(I2 − S1(x∗))− x∗ = 0. (4.5)

Now limx→∞ F(x) < 0 if S2 is nonnegative. Thus if F(0) = I1 − S2(I2) > 0,
then F(x) will have at least one root with 0 < x∗ < I1. Consideration of
Equation 4.4 shows that the root will also have y∗ > 0 if I2 − S2(I1) > 0.
Thus, if these two conditions are satisfied there will be at least one equilib-
rium in the first quadrant. Note that the same argument also holds for any
nonlinearities, Sj, which are nonnegative and increasing.
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Figure 4.2 Determination of the equilibria for Equations 4.1. Equilibrium points
exist at the intersections of the two nullclines. Parameter values: T1 = T2 = 1,
c1 = 0.4, c2 = 0.6, I1 = 0.5, I2 = 0.4, n1 = 2, n2 = 2, θ1 = 0.2, and
θ2 = 0.2.

With the nonlinearity we have chosen, when the conditions defined
above are satisfied, we observe that there can be one, two or three equi-
libria in the first quadrant. We focus on the situation when there are three
fixed points in the first quadrant (Figure 4.2).

It should be noted that when there are three equilibria in the first quad-
rant it is possible to write Equations 4.1 in the form of two mutually excita-
tory neural populations (Pakdaman et al., 1998b, a).

4.3 Stability Analysis

A full derivation of the local asymptotic stability of equilibria is given in
Milton et al. (2010). Here we’ll review the results. In the case where there is
a single fixed point, it is locally asymptotically stable. When the system ad-
mits three fixed points, then the two “outer” fixed points are asymptotically
stable, and the “inner” one is an unstable saddle-type point. It was shown
in Olien and Bélair (1997) that the stability of these equilibrium points is
unaffected by the delay using the theory of monotone dynamical systems.
A monotone dynamical system is one for which, given two trajectories for
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a system φ1(x) and φ2(x), if φ1 > φ2 at t = 0, then φ1 > φ2 for all t > τ.
Note that a trajectory at time t is defined as a continuous function over the
interval [t− τ, t].

The stable manifold of the saddle-type equilibrium point is a separatrix;
that is, it separates the x, y plane into regions. Initial conditions which lie to
the left of the the separatrix yield solutions which asymptotically approach
equilibrium point A and those which lie to the right approach B. These
regions are called the basins of attraction of the equilibrium points A and B.
While the stability of the equilibrium points is unaffected by the presence
of the delay, describing the basins of attraction of the equilibrium points
becomes considerably more complex. As noted in the previous chapter,
when the delays are zero, the basins are subsets of the plane. However,
when at least one delay is not zero, the basins are subsets of an infinite
dimensional space consisting of the set of all initial functions.

Pakdaman et al. (1998b) have examined the effect of the delay on the
separatrix on the restricted set of constant initial functions. They found
that even under this restriction, the inclusion of time delays have complex
impacts on the location of the separatrix. They also provide proof that there
exists a boundary that divides the phase plane such that all trajectories
whose (constant-valued) initial functions are on one side converge to the
fixed point on that side of the boundary, and the same for trajectories with
initial function on the other side of the boundary.

4.4 Potential Function

Much of the theory of stochastic resonance revolves around the existence
of a potential function. For a first-order system, a potential function always
exists, and is defined by

f(x) = −dV
dx

.

For a second-order system, a potential function only exists if the equations
specify a conservative vector field. That is, there exists some function V(x)
such that

f(x) = −∆V.

Equivalently, there is a potential function if and only if

∂ f1

∂y
=

∂ f2

∂x
,

where f1 = ẋ and f2 = ẏ.
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Theorem 4.1. There does not exist a potential function for the system defined in
Equations 4.1 when ci and θi are nonnegative.

Proof. We first differentiate f1 with respect to y:

∂ f1(x, y)
∂y

=
∂

∂y
(−x(t)− S2(y(t)) + I1(t))

= − ∂

∂y
S2(y)

= − ∂

∂y

(
c2y2

θ2
2 + y2

)
= − 2c2θ2

2y
(θ2

2 + y2)2
.

Now we differentiate f2 with respect to x:

∂ f2(x, y)
∂x

=
∂

∂x
(−y(t)− S1(x(t)) + I2(t))

= − ∂

∂x
S1(x)

= − ∂

∂x

(
c1x2

θ2
1 + x2

)
= − 2c1θ2

1x
(θ2

1 + x2)2
.

The two quantities will never be equal under the restrictions we’ve placed
on ci and θi, so a potential function does not exist.

This lack of existence means that we will not be able to analytically
build off or use the major analytical approaches in the stochastic resonance
literature. This, however, obviously does not rule out a more numerical ap-
proach, and thusly one is taken. It should also be noted that some potential-
like quantity could be defined for the system, such as a Lyapunov function,
but this path was not pursued here.



Chapter 5

Resonance, Delays, and Noise

In this chapter we look at two types of oscillations that exhibit a form of
stochastic resonance in the presence of noise. First, we’ll consider the case
where there is some external periodic forcing on the system, as in classical
stochastic resonance studies. Then we’ll look at a type of periodic behav-
ior that occurs in the absence of any explicit periodic terms, delay–induced
transient oscillations. These, too, exhibit a kind of resonance with the noise.

5.1 Numerics

The system was numerically solved using either XPPAUT (Ermentrout,
2002) for manual exploration, or Python using Scipy, Numpy, and Pyde-
lay libraries for batch solving (Jones et al., 2001; Flunkert and Schöll, 2009).
With XPPAUT, a modified Euler solver was used. Accordingly, a small time
step (dt = 0.001) was used. Pydelay uses a standard order 4 Runge–Kutta
solver, modified (albeit crudely) for stochastic systems. The time step used
was also dt = 0.001.

Our interest primarily lies in the impact of varying the noise (σ) and
time delay (τ) on the system, and so all other parameters were kept con-
stant across all simulations, unless otherwise noted. The values used were
c1 = 0.4, c2 = 0.6, θ1 = 0.2, θ2 = 0.2, I1 = 0.5, and I2 = 0.4.

5.2 External Periodic Input Signal

We begin with the classical case, where where we have external forcing on
the system. We then examine how the system responds both in the absence
and presence of a time delay.
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Figure 5.1 The x-axis is the value of σ, and the y-axis if the value of the FFT
taken at the frequency of the input signal. We see a resonance peak as the
noise intensity (σ) is varied. Here, A1 = A2 = 0.15, ω1 = ω2 = 1.0, and
φ1 = φ2 = 0.

5.2.1 Absence of time delays

Consider our system under external periodic forcing:

T1 ẋ = −x− S2(y(t− τ2)) + I1(t) + ξ1(t) + A1 sin(ω1t + φ1), (5.1)
T2ẏ = −y− S1(x(t− τ1)) + I2(t) + ξ2(t) + A2 sin(ω2t + φ2). (5.2)

If we set the time delay to τ = 0, then the system exhibits many of the char-
acteristic features of stochastic resonance. Most significantly, there exists
some optimal noise level for which the signal-to-noise ratio is maximized,
as shown in Figure 5.1.

5.2.2 Presence of Time Delays

Figure 5.2 shows the impact of increasing the value of τ above 0. Even
when the delay is small (τ = 1.0), we see that the presence of the output
signal is destroyed. So while our system does exhibit the classical features
of stochastic resonance under external periodic forcing when there is no
delay, in the more biologically realistic time-delayed case, we do not see
this effect.
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Figure 5.2 The impact of introducing time delays on the strength of the input
signal. Black is when τ = 0, green is when τ = 1.0, and blue is when τ = 10.0.
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5.3 Delay–Induced Transient Oscillations

Our system exhibits another kind of oscillatory behavior when we have a
sufficiently large time delay, delay-induced transient oscillations (DITOs).
Most interestingly, these oscillations occur in the absence of an explicitly
periodic component. This state is characterized by the following traits:

1. Period of oscillation is twice the delay (2τ).

2. Direction of oscillation is approximately parallel to the separatrix.

3. Duration of oscillatory state is many times the length of the delay.

Pakdaman et al. (1998a) examined the underlying analytical cause for
DITOs, by considering a simplification of this system. Using this, they were
able to clearly identify the mechanism for the oscillation. Furthermore, by
using geometric arguments to construct a one-dimensional map to describe
the temporal evolution of these oscillations, they demonstrated that the
duration of the transient scaled exponentially with the length of the time
delay.

This state can induced in the deterministic case by placing the initial
function close to the unstable fixed point. Figure 5.3 shows such behavior
occurring. Under the influence of some stochastic process, these oscilla-
tions may become noise-induced. For a given set of parameter values, the
length of this state can vary greatly, though it always exists in some form
whenever a trajectory crosses the separatrix.

5.3.1 Resonance

These oscillations also exhibit a form of stochastic resonance. As Figure 5.5
shows, there is some value for which the presence of the DITO frequency is
maximized. Ohira and Sato classify this type of phenomenon as “stochastic
resonance-like” (1999).

5.3.2 Identification

Given the periodic nature of DITOs, it is natural to characterize them in
the frequency domain. These transient states can identified by taking the
discrete Fourier transform of sequential intervals (“windows”) of a time
series produced by numerically solving our equations, and then isolating
the power in the DITO frequency, f = 1

2τ . Collecting all of these, we can
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Figure 5.3 A Delay–Induced Transient Oscillation (DITO).

Figure 5.4 Power spectrum of a time series containing a DITO.
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Figure 5.5 A plot of signal-to-noise as the noise level is increased. The peak
of this value identifies the resonant condition.

Figure 5.6 A time series from the system (top) with temporal evolution of the
DITO frequency (bottom). This particular instance involves the transition of the
trajectory from one stable fixed point to the other.
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Figure 5.7 This shows the dependence of the probability of a DITO of a certain
length occuring (> 100 time steps) as the inputs, I1 and I2, are varied. This was
achieved by running 1000 trials at each point on a grid covering the parameter
range shown. Here, τ = 8.0 and σ = 0.05.

produce a new time series which shows when these oscillatory states arise.
The results of such a sequence of processing is shown in Figure 5.6.

As we would expect, these states have a clear signature in the frequency
domain, which makes detecting their presence straightforward. We can au-
tomate this process by setting some threshold above which we consider the
system oscillating. This threshold needs to be set and confirmed manually,
and only holds for nearby parameter values. Using this method, we can
determine many of the statistical features of this state, namely the distribu-
tion of oscillation durations. For example, Figure 5.7 shows the probability
of a DITO of duration greater than 100 time units occuring, as a function of
the values of I1 and I2.

5.4 Summary

We have shown that our model displays resonance of two kinds: with pe-
riodic external forcing, and in the presence of delay. An interesting thing
to note is that these cannot both exist simultaneously. In the external forc-
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ing case, increasing the delay eliminates the effects of stochastic resonance.
Similarly, when we have a delay present, and thus DITOs, adding forcing
destroys this oscillating state.

As shown, collecting data about DITOs is a reasonably simple process
using standard time series techniques in the frequency domain. While this
is sufficient to recover many of the statistical properties of the state, it lacks
the ability to describe the structure to these dynamics, the way binary mod-
els can for stochastically resonant systems. Furthermore, it requires some
oscillation threshold to be set and confirmed manually, allowing automated
analysis to only be carried out on parameters local to the ones which such
a threshold was specifically determined for. The development of a model
and estimation method to remedy these issues is the topic of Chapter 6.
Unsurprisingly, its construction follows the ones described in Chapter 3.



Chapter 6

A Discrete Model

Here we present a discrete model to describe the dynamics of our system,
similar to the binary ones used in stochastic resonance studies. In partic-
ular, it allows us to recover useful qualities about the system such as res-
idence time distributions, time until first oscillation, and expected dura-
tion of transient oscillations. The models are stochastic, and are defined
by probability of transitions between states. Although the other models
mentioned in Chapter 3 were able to derive values for these probabilities
analytically, the systems they considered were considerably simpler. Thus,
the primary method used here to estimate transition probabilities is empir-
ical. However, repeating this process for different parameter values reveals
the dependence of the transition probabilities on parameters, and therefore
the statistical properties of the dynamics of the system on the same pa-
rameters. The results derived from the method are not comprehensive, but
more serve to demonstrate the usefulness of this as a method of analysis.
Limits on the applicability of this model to different parameter ranges are
discussed.

6.1 Formulation

We propose a three-state probabilistic model for representing the dynam-
ics of our network. The model is schematically shown in Figure 6.1. The
S0 and S2 represent the states seen in many of the previously referenced
models; that is, a trajectory “firmly” in the basin of attraction for one of the
stable fixed points. This will be clarified momentarily. The middle state,
S1, represents a trajectory that is oscillating. We’ll refer to the stable fixed
points as r0 and r2, and the unstable one as r1.
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Figure 6.1 A diagram of the three-state model.

S0 S1 S2

S0 p0 1− p0 0
S1 p10 p1 p12
S2 0 1− p2 p2

Table 6.1 Transition probability matrix.

The transition probabilities between states determine the dynamics of
the model. These can be represented as a 3× 3 matrix (Table 6.1), which
we’ll denote P. Under this formulation, pi represents the probability of
remaining in state Si in the next time step.

6.2 Justification

Implicit in our choice of a Markov chain model is the assumption that the
system it is approximating is Markovian. This is certainly an issue as our
system is non-Markovian by definition. However, by analyzing the time
series produced by numerically solving our model, we can see that this
dependence on the past is still finite, and thus we can rescale our time
when transforming it to the discrete model in such a way that it satisfies
the Markovian property.

Typically in time series analysis, the autocorrelation of a data set is used
to determine the correlation of given values with time-lagged values of the
series. The partial autocorrelation goes a step further and removes the lin-
ear effects of earlier dependencies (smaller lags) from the calculation of cor-
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Figure 6.2 The partial autocorrelation function of a time series from our sys-
tem. Here τ = 8.0, and the standard deviation of our noise is 0.10. Data is
downsampled to one data point per time unit, and the first difference is taken
to make the series stationary. We see that there is moderate correlation up to
about 16 to 20 time steps in the past, after which correlation becomes statistically
insignificant.

relation of later values. More intuitively, it removes “echoes” of correlation
at smaller lag values at larger lags, thus painting a more accurate picture of
dependence on past states.

Figure 6.2 shows the partial autocorrelation function of one such time
series, where τ = 8.0. We see that there is significant negative correlation
with time-lagged values up to a point, after which the correlation drops to
statistically significant. The point of no correlation seems to roughly fall
between 2.0 and 2.5 times the value of τ. It then follows that if we rescale
our time so that one step of our discrete model correspond to an interval
of at least this length, then all dependencies will be contained within this
chunk.

We can test this hypothesis by downsampling our data so that the space
between data points is the length of this interval (2.5τ). As Figure 6.3
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Figure 6.3 The partial autocorrelation function of a time series from our system
(same as Figure 6.2) after downsampling to one data point per 20 time steps
(2.5τ). We only see significant correlation at a lag of 1, indicating that the system
behaves like a random walk at this time scale.

shows, when we take the partial autocorrelation of this series, there is no
significant correlation other than at lag 1. This means that our time se-
ries, statistically speaking, has the same correlation properties of a random
walk: it is only dependent on its previous state. Thus, if we let each time
step of our discrete model represent an interval of length 2.5τ, then the
Markovian property is satisfied.

6.3 Three-State Filtering

The next issue becomes how we would transform a time series from solv-
ing our system to our discrete model. We need a method to filter a time
series into three states, the way two-state filters are used in the stochas-
tic resonance literature to reduce the system down to a binary one. More
specifically, we need to determine how to classify intervals of length 2.5τ as
belonging to one of these states. We propose the following simple method:
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1. Divide the data into subsequent intervals of length 2.5τ.

2. If all of the points in an interval are within the approximated basin of
attraction of one of the stable fixed points, classify it as belonging to
the corresponding stable state, either S0 or S2.

3. Otherwise classify the interval as belonging to S1.

As mentioned in Chapter 4, the delay impacts the location of the sepa-
ratrix in a complex way, and so we approximate it. This is done by system-
atically solving the system for different constant intial functions, and using
a binary search type algorithm to determine within an error tolerance of
0.001, the location of the boundary at various y values. These points were
then fit with a cubic polynomial, and we use this fit as an approximation of
our boundary. It should be emphasized, however, that the boundary that
we approximate only determines the basins of attraction for constant initial
functions, not the actual trajectories we are working with.

Figure 6.4 shows the results of this method of filtering. As shown, at
various parameter values, the time which is classified as S1 corresponds
quite reasonably to existence of an oscillatory state. Notable also is that
the transitions between states are relatively clean. This is to say that each
state that the system assumes remains relatively stable for reasonably long
intervals, and that transitions between them are usually paired with some
noticeable qualitative change in the behavior of the solution. This serves as
preliminary evidence of the validity of our method.

6.4 Estimation of Transition Probabilities

For the discrete models mentioned from the stochastic resonance literature,
the authors were all able to analytically derive at least some approxima-
tion of transition probabilites. This was done either by way of equating
Kramer’s rate with the theoretical switching rate, or by choosing probabil-
ities proportional to the size of the potential barrier. We cannot use either
approach for our system. For the first case, we can’t use Kramer’s rate as
our system has three states, while models of stochastic resonance use two
states. Additionally, there is no potential function for this system, as it is
not conservative as shown in Chapter 4, thus we cannot use that to pick
our value for transition probabilities. Both of these models were used to
describe a system that is simpler than our system, so we shouldn’t expect
that those analytical tools carry over. Thus, the primary method employed
in estimation is an empirical one.
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a b

c

Figure 6.4 An example of using three-state filtering of a time series containing
a DITO. Intervals classified as belonging to S1 correlate highly with oscillations
in the output.
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Figure 6.5 The estimated values of p1 at various values of τ, with σ held
constant at 0.08. Each estimate was found by averaging the estimates of 500
trials, 10,000 time units in length.

The process is as one would expect. We set the initial function to one of
the two stable fixed points, and run the solver for a relatively long period
(t f inal = 10, 000 time steps), so that the system has time for its dynamics to
play out and to reach an equilibrium if there is one. This is repeated many
times, and then repeated the same number of times but placing the initial
function at the other fixed point. Taking the time series from all of these
trials and three-state filtering them then allows us to estimate the transition
probabilities between states. The resulting estimates can then be used to
produce a transition probability matrix.

6.5 Results: Parameter Dependence

Figures 6.5 and 6.6 show the results of estimating p1 (continuation of oscil-
lating state) as the delay and noise level are varied. In both cases, we see a
very clear, sigmoid-like trend. We can also see the threshold level of noise
needed for there to be a nonneglible chance of reaching the separatrix.

These plots also make what values of τ and σ are valid for this model.
We can see that at large values of either, nearly all intervals get classified as
oscillating. While this does expose a limitation of this model and method
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Figure 6.6 The estimated values of p1 at different noise levels. τ = 8.0 for all
trials. Each point estimated was the result of 500 trials, each 10000 time units
long.

of estimation, it should also be noted that these parameter values are not of
much interest, biologically speaking. For τ, a large value is not realistic, and
for σ, the system looks roughly like white noise at these extreme values.

6.6 Computation of Features

Having now established some of the general relationships of parameter
values on the transition probabilities, we can now use those to estimate the
probabilities for parameter value combinations that we do not explicitly
estimate using the method from Section 6.4.

We can then by extension recover the statistical properties of the dy-
namics of our network in these cases quite easily. For a given state Si with
probability pi of remaining in the same state in the next time step, we can
calculate the expected duration of this state:

E[Ti] = τ
∞

∑
j=1

jpi(1− pi)
j−1 (6.1)

=
τ

pi
. (6.2)
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For the stable states, this defines the average residence time in that state,
as well as the expected first passage time. For state S1, this value represents
the expected number of oscillations for any given transient.

6.7 Validation

Here we compare the results of the discrete model to data from the real
model. Figure 6.7 compares the distribution of oscillation times from a time
series (using the Fourier method outlined in Chapter 5) with the distribu-
tion obtained from simulating our discrete model for an equivalent amount
of time. The two data sets are distributed similarly, but generally speaking,
the estimation for p1 tends to be low, but not unreasonably so. In the case
indicated in the figure, p1 was estimated to be 0.943, but a value of 0.97
would fit the data “best,” as will be discussed shortly.

This isn’t too much of a surprise given the simplicity of the method,
and the likely cause is quick switches between states that we can observe
when we three-state filter a time series. That said, the distribution of os-
cillation times does follow the type of distribution we are using quite well,
our estimates are simply a bit shy of the best value. This “best” value can
be calculated by solving

µ =
1
p

,

where µ is the mean oscillation duration of your time series.
We also compare the residence time distribution of one of the states.

Figure 6.8 shows the results of this effort. We have here pretty reasonable
agreement as well. It should be noted, however, that this comparison is
somewhat circular, as the definition for leaving a basin, and leaving a stable
state in the discrete model are the same.

6.8 Summary and Discussion

Here we have shown that the dynamics of our non-Markovian system can
be approximated by a three-state Markov chain. The transition probabili-
ties for this model can be estimated empirically from time series data using
a simple filtering scheme, and dependence on parameters can be deter-
mined. These estimates fit the data reasonably well, though they tended to
be on the low side. This, however, is too be expected given the simplicity of
the estimation method. More importantly, the residence time distributions
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Figure 6.7 Comparison of residence time distribution/oscillating distribution for
the original system (green) versus the discrete system (blue). τ = 10 and
σ = 0.08. Each system was run for the equivalent of 10,000 time steps over
500 trials.

follow quite closely to the type of distribution we are using to model it. If
a better method for estimation, or an analytical derivation of these values
could be found, a very good fit could likely be achieved.

While this model does show reasonable agreement with data classified
using Fourier characterization, it has two potential flaws. First, there is
no indication of a resonant condition that we found in Chapter 5. This
would be a desirable quality in such a model. Second, the model itself
does exhibit oscillations or periodic switching, rather we assign a state as
oscillating. This simplification, though it fits our intuitive understanding
of the dynamics, pulls it further away from similar models in the stochastic
resonance literature, and thus makes it more difficult to build on previous
results. Finally, its lack of analytically determined transition probabilities
fundamentally limits the range of parameters that it can explain.
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Figure 6.8 Residence time distribution for state S0 in original system (blue)
versus the discrete model (green). Here τ = 10 and σ = 0.10. Each system
was run for the equivalent of 10,000 time steps over 500 trials.





Chapter 7

Biological Significance

To this point, we have only considered our model as a mathematical object,
ascribing not particular interpretation. However, given that it is a model
of a biological system, our work clearly has some biological implications.
Here we present one potential application of our work to a specific kind of
epilepsy.

7.1 Nocturnal Frontal Lobe Epilepsy

Epilepsy is a neurological disorder that affects millions of individuals world-
wide. An epileptic seizure is a paroxysmal event in which there is wide-
spread synchronization of neural firing observed in the brain. Figure 7.1
shows an EEG (encephaloelectrogram) of an individual before and dur-
ing a seizure. The mechanisms that cause a seizure to occur are at present
poorly understood, though an very active area of research interest.

The characteristic feature of nocturnal frontal lobe epilepsy (NFLE) is
that seizures occur predominantly during sleep. Autosomal dominant NFLE
is associated with mutations in the α-4 subunit of neuronal acetylcholine
receptors (Mann and Mody, 2008). However, even in the same individ-
ual, seizures are highly variable with respect to their timing, semiology
and electroencephalographic features. These observations emphasize that
the NFLE genetic mutation is a necessary, but not sufficient, condition for
seizure occurrence in NFLE. In other words, there must be additional
factors that taken together with the receptor defect determine when the
seizure occurs.

The identification of these additional factors may make it possible to
develop methods based on seizure anticipation, such as delivery of well-
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Figure 7.1 Electrical features of a seizure, as measured by an EEG. From
Provini et al. (1999).

timed electrical stimuli (Osorio et al., 1998), to treat NFLE. In this way
investigations of NFLE can provide clues for the development of seizure-
prediction techniques in other types of epilepsy as well.

7.2 A Possible Mechanism

In many ways seizures have many of the same qualitative characteristics as
the DITOs seen in our model:

1. Spontaneous synchronization of activity

2. Duration significantly longer than the neural time scale

3. Low probability events (long duration ones)

We then conjecture that perhaps the delay-induced oscillations we see in
our simple model are equivalent to the oscillation events observed during
a seizure. We could then interpret the stable fixed points of our systems as
stages of sleep. Shifts between sleep stages could then be seen as the emer-
gence of a new fixed point, leading to the bistable state, and the eventual
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Figure 7.2 A possible explanation for NFLE. During sleep, the values of I1 and
I2 change, causing the temporary appearance of bistability in the system. It is
during this bistability that we see DITOs, and, we hypothesize, seizures. Altered
functioning to these neurons can change the path through this bistable zone,
potentially increasing the possibility of a long-lived oscillatory event.

noise-induced transition to the other stable fixed point as the previous one
disappears. Perhaps, then, predisposition to seizures during sleep can be
seen as equivalent to parameters in our model that are tuned in such a way
that long–lived oscillations become more probable. Figure 7.2 visualizes
this possibility. Pushing it even further, we could even consider seizure
events as a kind of stochastic resonance. These ideas are the topic of Milton
et al. (2011).

While these are interesting ideas, much work would need to be done to
validate this hypothesis. First, we’d need to increase the complexity of our
model, both in terms of the type of neuron model used, but also the size of
the network. We’d need to see that some of the behavior, namely DITOs,
that we see in our simple model, also is exhibited in the complexified ones.
The choice of network should also be based on actual neurobiology, and the
model used should be one capable of spiking. This effort would need to be
paired with the acquisition of some form of neurological data, to verify the
results of our models. In any case, this presents an interesting possbility,
and one which should be pursued.





Chapter 8

Conclusion

In this thesis, we have explored the interplay of noise, time delays, and res-
onance in a simple two-neuron network model. This system was shown to
exhibit two kinds of resonance. The first was classical stochastic resonance
under external periodic forcing, and our system’s behavior exhibited the
canonical features of this phenomenon. The second was a relationship be-
tween the noise level, and delay-induced transitory oscillations. We also
developed a three-state probabilistic model for describing the structure of
the dynamics of this systems, and particular, the transient oscillations. It
succeeded in being able to capture aspects of the non–Markovian behavior
of this system with a Markovian model. Although we were not able to de-
termine the parameters of this model analytically, we outline a method for
estimating them numerically. These probabilities demonstrate simple and
consistent dependencies on the systems parameters, which allowed predic-
tion of the statistical aspects of the systems behavior at untested parameter
values. The possible relevance of DITOs to mechanisms of seizure genesis
in NFLE was also discussed.

An obvious direction for future work is seeing if the behavior observed
at this level scales with model and network complexity. A spiking neu-
ral network model of a network from the neurobiological literature would
lead to further understanding of the relevance of simple models to actual
nervous system functioning. The three-state system proposed also could
be further developed, perhaps deriving analytical approximations of tran-
sition probabilities.





Bibliography

Ermentrout, Bard. 2002. Simulating, Analyzing, and Animating Dynamical
Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia :
Society for Industrial and Applied Mathematics.

Flunkert, Valentin, and Eckehard Schöll. 2009. pydelay—a Python tool for
solving delay differential equations. arXiv:0911.1633 [nlin.CD].

Gammaitoni, Luca, Peter Hänggi, Peter Jung, and Fabio Marchesoni.
1998. Stochastic resonance. Rev Mod Phys 70(1):223–287. doi:10.1103/
RevModPhys.70.223.

Gopalsamy, Gopal, and Issic Leung. 1996. Delay induced periodicity
in a neural netlet of excitation and inhibition. Physica D: Nonlin-
ear Phenomena 89(3-4):395–426. doi:10.1016/0167-2789(95)00203-0.
URL http://www.sciencedirect.com/science/article/B6TVK-3VS8HXG-1N/2/
1c338520068122581625a60e35680ba3.

Hale, Jack, and Huseyin Kocak. 1991. Dynamics and Bifurcations. New
York: Springer.

Haykin, Simon. 1994. Neural Networks: A Comprehensive Foundation. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1st ed.

Jones, Eric, Travis Oliphant, and Pearu Peterson. 2001. SciPy: Open source
scientific tools for Python. URL http://www.scipy.org/.

Mann, Edward, and Istvan Mody. 2008. The multifaceted role of inhibition
in epilepsy: Seizure-genesis through excessive GABAergic inhibition in
autosomal dominant nocturnal frontal lobe epilepsy. Current Opinion in
Neurology 21(2):155–160. doi:10.1097/WCO.0b013e3282f52f5f.

http://www.sciencedirect.com/science/article/B6TVK-3VS8HXG-1N/2/1c338520068122581625a60e35680ba3
http://www.sciencedirect.com/science/article/B6TVK-3VS8HXG-1N/2/1c338520068122581625a60e35680ba3
http://www.scipy.org/


50 Bibliography

Milton, John, Paulami Naik, Clarence Chan, and Sue Ann Campbell. 2010.
Indecision in neural decision making models. Mathematical Modeling of
Natural Phenomena 5.

Milton, John, Austin Quan, and Ivan Osorio. 2011. Epilepsy: The inter-
section of neurosciences, biology, mathematics, engineering, and physics, chap.
Nocturnal Frontal Lobe Epilepsy: Metastability in a Dynamic Disease?,
501–510. Boca Raton: CRC Press.

Ohira, Toru, and Yuzuru Sato. 1999. Resonance with noise and delay. Phys
Rev Lett 82(14):2811–2815. doi:10.1103/PhysRevLett.82.2811.

Olien, Leonard, and Jacques Bélair. 1997. Bifurcations, stability, and mono-
tonicity properties of a delayed neural network model. Physica D: Non-
linear Phenomena 102(3-4):349–363. doi:10.1016/S0167-2789(96)00215-1.
URL http://www.sciencedirect.com/science/article/B6TVK-3SPFDKG-Y/2/
89956648708079d0977b491daed13bc7.

Osorio, Ivan, Mark G. Frei, and Steven B. Wilkinson. 1998. Real-time auto-
mated detection and quantitative analysis of seizures and short-term pre-
diction of clinical onset. Epilepsia 39(6):615–627. doi:10.1111/j.1528-1157.
1998.tb01430.x.

Pakdaman, Khashayar, C. Grotta-Ragazzo, and C.P. Malta. 1998a. Tran-
sient regime duration in continuous-time neural networks with delay.
Phys Rev E 58(3):3623–3627. doi:10.1103/PhysRevE.58.3623.

Pakdaman, Khashayar, C. Grotta-Ragazzo, C.P. Malta, Ovide Arino, and
Jean-Francois Vibert. 1998b. Effect of delay on the boundary of the basin of
attraction in a system of two neurons. Neural Networks 11(3):509–519. doi:
10.1016/S0893-6080(97)00112-3. URL http://www.sciencedirect.com/science/
article/B6T08-3T3TKV8-C/2/4f392c2edfee66b6cd4150fc9d22400c.

Provini, Federica, Giuseppe Plazzi, Paolo Tinuper, Stefano Vandi, Elio Lu-
garesi, and Pasquale Montagna. 1999. Nocturnal frontal lobe epilepsy.
Brain 122(6):1017–1031. doi:10.1093/brain/122.6.1017. URL http://brain.
oxfordjournals.org/content/122/6/1017.abstract. http://brain.oxfordjournals.org/
content/122/6/1017.full.pdf+html.

Strogatz, Steven H. 1994. Nonlinear Dynamics And Chaos: With Applica-
tions To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinear-
ity). Studies in nonlinearity, Perseus Books Group, 1st ed.

http://www.sciencedirect.com/science/article/B6TVK-3SPFDKG-Y/2/89956648708079d0977b491daed13bc7
http://www.sciencedirect.com/science/article/B6TVK-3SPFDKG-Y/2/89956648708079d0977b491daed13bc7
http://www.sciencedirect.com/science/article/B6T08-3T3TKV8-C/2/4f392c2edfee66b6cd4150fc9d22400c
http://www.sciencedirect.com/science/article/B6T08-3T3TKV8-C/2/4f392c2edfee66b6cd4150fc9d22400c
http://brain.oxfordjournals.org/content/122/6/1017.abstract
http://brain.oxfordjournals.org/content/122/6/1017.abstract
http://brain.oxfordjournals.org/content/122/6/1017.full.pdf+html
http://brain.oxfordjournals.org/content/122/6/1017.full.pdf+html


Bibliography 51

Tsimring, Lev, and Arkady Pikovsky. 2001. Noise-induced dynamics in
bistable systems with delay. Physical Review Letters 87(25):250,602. doi:
10.1103/PhysRevLett.87.250602.


	Claremont Colleges
	Scholarship @ Claremont
	2011

	Noise, Delays, and Resonance in a Neural Network
	Austin Quan
	Recommended Citation


	Abstract
	Acknowledgments
	Introduction
	Biological Background: Neural Networks
	Basic Neuroanatomy
	Neural Signalling
	Time Delays

	Mathematical Background: Dynamical Systems and Time Delays
	Dynamical Systems, Time Delays, and Noise
	Stochastic Resonance

	A Noisy Neural Network Model with Time Delays
	Model Statement
	Identification of Fixed Points
	Stability Analysis
	Potential Function

	Resonance, Delays, and Noise
	Numerics
	External Periodic Input Signal
	Delay–Induced Transient Oscillations
	Summary

	A Discrete Model
	Formulation
	Justification
	Three-State Filtering
	Estimation of Transition Probabilities
	Results: Parameter Dependence
	Computation of Features
	Validation
	Summary and Discussion

	Biological Significance
	Nocturnal Frontal Lobe Epilepsy
	A Possible Mechanism

	Conclusion
	Bibliography

