
Claremont Colleges
Scholarship @ Claremont

Interface Compendium of Student Work HMC Student Scholarship

9-1-2013

Better Inferred Types for JavaScript
John Sarracino
Harvey Mudd College

This Research is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in Interface Compendium of Student Work by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
Sarracino, John, "Better Inferred Types for JavaScript" (2013). Interface Compendium of Student Work. Paper 8.
http://scholarship.claremont.edu/interface/8

http://scholarship.claremont.edu
http://scholarship.claremont.edu/interface
http://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Better Inferred Types for JavaScript
John Sarracino

Types Prevent Crashes
Statically typed languages guarantee that some
run-time errors cannot occur. For example, if the
user submits 0 to Figure 1, an integer gets treated
as an object. A type system would eliminate this
possible error.
var y , z ;
y = input (’ 1 or 0 ? ’) ;

i f (y == 1) {
z = { } ; // z is an object
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2 ; // z is an int

}

// type error if int
write(z.s1 + z.s2 + z.s3);

Figure 1: Possible type-error in JavaScript

JavaScript Lacks Types
JavaScript is a dynamically typed language, so
variable types are checked at run-time. For ex-
ample, the type of variable z in Figure 2 is de-
termined to be either object or int during the
program’s execution.
var y , z;
y = input (’ 1 or 0 ? ’) ;

i f (y == 1) {
z = {}; // runtime object
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2; // runtime int

}

write (z . s1 + z . s2 + z . s3) ;

Figure 2: Dynamically typed variable in JavaScript

Added vs. Inferred Types
There are two approaches to the benefits of static
types to a dynamically typed language:

Explicit types are annotations added by the pro-
grammer, identical to a static type system. They
require much less work from the compiler, but
require a completely new language specifica-
tion.

Inferred types are calculated by the compiler.
They require no extra work by the programmer
and operate on the same base language, but are
less powerful than explicit types. For example,
in Figure 3, the compiler can infer the type of y
to be String.

Our work focuses on inferred types, but both
techniques are active areas of research.

var y , z ;
y = input(’1 or 0?’);
// input always returns string types

i f (y == 1) {
z = { } ;
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2 ;

}

write (z . s1 + z . s2 + z . s3) ;

Figure 3: Inferred String Type

Costs of Inferred Types

Unfortunately, due to undecidability, inferred
type systems often can’t assign a single type to
a variable. For example, an inferred type system
would determine z’s possible type in Figure 4 to
be both object and int.

var y , z;
y = input (’ 1 or 0 ? ’) ;

i f (y == 1) {
z = {}; // z could be object...
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2; // and could be int...

}

// so z could be
// either object or int
i f (typeof z == ” o b j e c t ”) {
write(z.s1 + z.s2 + z.s3);

} e l s e {
write(z);

}

Figure 4: Imprecise inferred types

Our Improvement
Our work takes advantage of information in con-
ditional checks to make an inferred type system
more precise [1]. For example, in Figure 5, our
work precisely determines the type of z to be
object in the true branches and int in the false
branches.

var y , z;
y = input (’ 1 or 0 ? ’) ;

i f (y == 1) {
z = { } ;
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2 ;

}

// typeof check forces z’s type
// no inferred errors!
i f (typeof z == ’ o b j e c t ’) {
write(z.s1 + z.s2 + z.s3);

} e l s e {
write(z);

}

Figure 5: Precise inferred types

Impact
Since our inferred types are more accurate, we
present fewer possible errors to the programmer.
For example, a naı̈ve type inference algorithm re-
ports possible errors in Figure 6, while our sys-
tem certifies it as error-free.

var y , z ;
y = input (’ 1 or 0 ? ’) ;

i f (y == 1) {
z = { } ;
z . s1 = 5 ;
z . s2 = 7 ;
z . s3 = 9 ;

} e l s e {
z = 2 ;

}

// inferred warnings
i f (typeof z == ’ o b j e c t ’) {
write(z.s1 + z.s2 + z.s3);

} e l s e {
write(z);

}

Figure 6: Unneccesary warnings due to imprecise
types

Acknowledgements & Ref-
erences
In addition to the authors, the Programming Lan-
guages Lab at UCSB was essential to this work.
All figures are intellectual property of Ben Wie-
dermann and John Sarracino. This work was
supported by NSF CCF-1117165.

[1] Vineeth Kashyap, John Sarracino, John Wag-
ner, Ben Wiedermann, and Ben Hardekopf. Type
Refinement for Static Analysis of JavaScript. In
Proceedings of the 9th Symposium on Dynamic
Languages, DLS ’13, pages 17-26, New York,
NY, USA, 2013. ACM. Located at http://doi.
acm.org/10.1145/2508168.2508175.

Advisors: Ben Wiedermann(HMC) , Ben Hardekopf(UCSB)

	Claremont Colleges
	Scholarship @ Claremont
	9-1-2013

	Better Inferred Types for JavaScript
	John Sarracino
	Recommended Citation

