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A center manifold reduction and numerical calculations are used to demonstrate the presence of
limit cycles, two-tori, and multistability in the damped harmonic oscillator with delayed negative
feedback. This model is the prototype of a mechanical system operating with delayed feedback.
Complex dynamics are thus seen to arise in very plausible and commonly occurring mechanical and
neuromechanical feedback systems.1@95 American Institute of Physics.

I. INTRODUCTION "
f(X2)=—a 7w
Time delays are intrinsic and important features of many 6"+ Xx;
physical and biological control systerhs! The time delays wheren, ¢, andk are positive constants. Negative feedback
most commonly occur as a consequence of finite conductiogontrol arises far more commonly in practical applications
and production times. Here we study the dynamics of differthan nonmonotone types of feedback do. Thus, the observa-
ential delay equations that arise in the delayed feedback cofpn that complex dynamics can arise from generic second-

trol of mechanical systemts:™ Considerations of Newton's order differential delay equations with monotone negative
laws of motion lead to second-order delay-differential equateedback is of great interest.

+k, 2

tions of which the prototype is the damped harmonic oscil-  Here we integratél) with negative feedback, i.€2),
lator with a delayed restoring fordgig. 1), numerically and determine the nature of the bifurcations of
the two-tori. The local stability analysis ¢1) is outlined in
X+bx+ax=f(x,) (1)  Sec. Il and the center manifold reduction is discussed in Sec.

IIl. Numerical studies demonstrate that in certain parameter
wherea,b are constantsy is the time delayx,x, are the ranges there is a coexistence of stable two-tori and two quali-
displacement at timest—7, respectively, and the function, tatively different limit cycles. In Sec. V it is shown that this
f, describes the feedback. Equatidn also arises as an ap- multistability can be explained by the inclusion of higher-
proximation to second-order systems acting under the influerder termg(i.e., fifth ordej into the center manifold analy-
ence of feedback, which is a function of displacement andis.
velocity: a functiong(x,X) is replaced byg{x(t),[x(t) —x(t
—1)]/ 7}=p[x(t),x(t—7)]. Applications of (1) include the 1. LOCAL STABILITY ANALYSIS

neuromuscular regulation of movement and posture, . : . .
acousto-optical bistabilit, metal cutting?'® the cascade Here we briefly discuss the local stability analysis bt

: . 1112 . More details can be found in Refs. 7 and 15-19.
control of fluid level devices:? and the electronically % . .
13.14 The steady-state value &f X*, is obtained as a solution

“clamped” pupil light reflex: of
Complex oscillations, including chaos and two-tori, have

been shown to occur ifl) when f is a nonmonotone ax* =f(x*),

function.ll'l.2 Recently, it has been demonstrated analytically, 4 jinearization of1) aboutx

by performing a center manifold reduction that two-tori can _

also be produced bft) whenf is simple monotone negative u+bu+au=du,,

feedback'® i.e.

* leads to

whereu=x—x* andd=f'(x*). We make the usual ansatz
u=exp(t), where\ is a complex number, and obtain the
3To whom, correspondence should be addressed. characteristic equation,
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FIG. 1. Schematic diagram of a damped harmonic oscillator with a delayed 0
restoring force.

o
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A+bh+a—d exp(—\7)=0. (3 FiG. 3. stability diagrams in théb,7) plane for(a) d=—1.05(n=3.5), (b)

il * o _ d=-0.63(n=2.1), (c) d=—0.525(n=1.75), and(d) d=-0.225(n=0.75.
Stability changes ok™ can only occur fol=iw: sub In all casesa=1, c=1, k:%, and :é. Parameter values for which the

stituting the latter int3) and rearranging, we obtain equilibrium is stable are to the right of the solid lines, i.e. toward latger
2 The vertical scale is the same for all graphs, but note differences in hori-
a-o” . . . zontal scale.
T+I q =exp —iwT). (4)

Equation (4) can be solved graphicallyFig. 2): the

right-hand side of4) describes the unit circle in the complex 1 w.b
plane. We only consider systems that are stable for small Tj+ =" tan 1| — +2jm|,
i.e.a>0, andd <0 for negative feedback. Thus, the left-hand @+ w;—a
side of (4) starts at the poing/d<0 when w=0 and asw j=0,x1,+2,... . (6)
increases describes a parabola that traverses the complex
plane from left to right. The solutions 6#), denotedw, , are The ratioa/d can be identified with the gairG, of the
the positive solutiongin w) of the equation feedback, i.e.
w*+(b?—2a)w’+(a’—d?)=0. (5) a\ !

The values of the delay; ., , at which a potential change in

stability occurs must have one of the values _ . . .
and plays an important role in the local stability analysis. If

a/d>—1, then it is always possible to destabilize the steady
state by increasing. On the other hand, i&/d<—1, then
Im increases inr may or may not result in destabilization. In
particular, there will be two positive roots of5) if
V2a—2ya?—d? = b > 0 and no positive roots otherwise.
Thus it is necessary to estimate the magnitude/of
Two-dimensional tori arise from mode interactions be-
tween two pairs of complex eigenvalues, the real parts of
which become positive simultaneously. Since each solution,
w, , of (5) is associated with a pair of complex eigenvalues,
this condition for the existence of a two-tori requires that
there be two solutions_. of (5), and hence tha/d<<—1.
Under this last restriction, the stability of the steady state
of (1) depends on the values of the damping coefficient,
and the time delay (Figs. 2 and 3 When

ale

d
—=b>0, Region | (7)

Ja

it can be shown that there is only a single change of stability
FIG. 2. Graphical method of the solution of Ed). as 7 increasegFig. 3@]. This follows from the fac{shown
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in Ref. 16 that no tangency of the roots can take place on H,
the imaginary axis, and that stability is indeed lost when
A=iw. As b is increased further to

d
\/Za—Z\/az—d2>b>T, Region ||, (8) . H,
a S
there can be a switching of stability asincreases® This S
behavior gives rise to the characteristic “Christmas tree” sta- -
bility diagram®” Depending on the exact values of the pa- 157"

rameters, a variety of Christmas tree stability diagrams can
arise, some of which have one or more disjoint branches
[Figs. 3b)—3(d)]. Finally, for

b>+\2a—2ya’—d? Region IlI, 9)
FIG. 4. Bifurcation set near the first intersection pdint5.04,b=0.07) at

the steady state dfl) is stable for allr. a=1, d=—0.63[the box in Fig. 8v)]. Filled circles represent fixed points
It should be noted that if the control mechanism is over-(periodic solutions predicted by the theory, open circles represent fixed
o . . points not predicted by theory but observed numerically. The letgrsd)
_damped, theib > y4a and hence the st_atlpn_ary solutigh indicate the parameter values for the simulations of Figs. 5 and 6.
is stable for all whena/d<<—1. Thus, if limit cycles and
two-tori are to be generated K§$), then the control mecha-

nism must be underdamped, ite< /4a. dinates of the intersection point ate=0.070=b;,, and
7=5.043=7,,, which corresponds t@;=0.609= wy;,; on the
IIl. CENTER MANIFOLD REDUCTION first branch andw,=1.274=w,;,; on the second branch. At

. _ . this point the flow on the center manifold is described by the
When one branch of the stability boundary shown in F'g-following system of four ordinary differential equatiofes-

3 is crossed, the steady state destabilizes as a pair of complgx; 5 reduction to normal form and transformation to polar
conjugate eigenvalues passes through the imaginary axiggordinatey

This is the signature of a Hopf bifurcation, and we might ]

expect a stable limit cycle to appear. This Hopf bifurcation ~ F1=—0.024#3—0.194rr3,
can be either supercritical or subcritical, and thus the limit . _ 2 3
cycle may be stable or unstable, depending on the values of r=0.043#1r,+0.00687,
the parameter® This situation should be contrasted to that 'glzwlmt,
of a first-order differential equation with delayed negative
feedbacKwith function (2)] in which the Hopf bifurcation is 02= waint.

. 3
always supercritical’ For parameter values close to this double bifurcation point

Here, we concentrate on the situation where twWoihe gynamics of the system can be described by the unfold-
branches of the stability boundary intersgste the box in ing

Fig. 3(b)]. At such points there are two valuesw@fatisfying

(4) for the same value of andb and thus, correspondingly, r1=muir,—0.024%5-0.194 15,
there are two pairs of pure imaginary eigenvaluesw,, . 3
+iw,. These points are called double Hopf bifurcation o= pal o+0.0437%1,+0.00683,
points. The behavior of a system of ordinary or delay differ- ;91: ®1ints
ential equations having eigenvalues with zero real parts can

be determined by using the techniques of center manifold  62= @aint,

reductiorf® and normal form analys_@. In our case there  yhere the parameteys, and u,, respectively, represent di-
are four such eigenvalues, and thus it is possible to construgtetions in parameter space perpendicular to the second and
a four-dimensional manifold. The flow on this manifold rep- st Hopf bifurcation curves of Fig. (). Locally, we may
resents the long term behavior of the full system in thegpresent these curves as straight lines and thus expgess
neighborhood of the bifurcation point. This algebraucallylu2 in terms ofb. 7 viz.:

daunting taskfor a discussion see Ref. lBas recently been

facilitated with the use of symbolic manipulation computer ~ #1= @1(7= Tin)) + B1(D—biry)

(10

11

23
software: o , o = —0.470( 7 7p) —0.883b—byyy),
The emphasis in this study is on the dynamicgHfin (12)
the neighborhood of the double Hopf bifurcation paing., o= ar(T7— Tine) + B2(b—Dbine)

along the linea—b—c—d in Fig. 4). In this section we
briefly summarize the results of the center manifold reduc- =0.470(7= 7in)) = 0.88ID—byny).
tion carried out to terms of third order. A detailed derivation Note that in(11) the equations for,,r, do not depend on
and analysis can be found in Ref. 15. the variable%,,6,. Thus, by employing the substituti¢t?2)

At the first intersection point in the bifurcation set of we need only consider the following two equations to com-
Fig. 3(b) (see the bo)k we find thatd=—0.63 and the coor- pletely determine the dynamics of the system:
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TABLE I. Solution correspondence. (a) (b)
— — 0.92 0.92
Solution in Eqs(13) Solution in(11)
Fixed point at origin Fixed point at origin
Fixed point(r,,0) Periodic solution with period 2wy z W\/\N\N\N\N\N\/\N\N\A z
Fixed point(0,f,) Periodic solution with period 2/ wyin
Fixed point §,T5,) Two-torus(quasiperiodic solution with two
frequencies 0.76 0.76
Periodic solution Three-torugjuasiperiodic solution with three 0 : 200 0 : 200
p -
requencies © (d)
0.92 1.0
A
r1=(2.432-0.470r—0.88%)r,—0.024%3 z ‘ Ul @
—0.194 13,
(13) 0.76 0.7
f,=(—2.308+0.470r—0.883)r,+0.043%%r, 0 y 200 0 : 200
+0.00683.

] FIG. 5. Numerical simulation of(1) at 7=5.03 for (a) b=0.073, (b)
The correspondence between solutions(tf) and of  b=0.071,(c) b=0.069, andd) b=0.067. Parameter values are the same as

(13) is shown in Table I. Equatioﬁl3) with generalcoefﬁ— used in Fig. 3. Initial functionp=x, coqw,s) with w,=1.274,x,=0.1, and
cients has been studied by Guckenheimer and Hoftiese 5L~ 70
parameter values considered here correspond to the Case Vla
of Ref. 20.(Other cases can also be obseridd. i

The relationship between these solutions is summarize@"d @ we cross the lin6H, to (b), a two-torus appears.
in Fig. 4, which shows the bifurcation set f¢t3) in b, 7 However, the other two simulations yield more surprising
parameter space. The intersection point of all the bifurcatiofeSU/ts-

lines represents the first intersection point of Figh)3The On crossing the lindH to (c), the analysis of Sec. Il
lines H, ,H, are the curves of loss of stability of Fig(8 predicts that the two-torus should be unstable. However, we

(which appear as straight lines at this sgaEhese are su- see a more c_omplicated pha_se portrait. Although somewhat
percritical and subcritical Hopf bifurcations that give rise, CONfusing, this phase portrait appears to represent a two-
respectively, to periodic solutions with frequencieg, and

i The other lines indicate secondary Hopf bifurcations

(SH;,SH,), giving rise to quasiperiodic solutions with two

frequencies and a tertiary Hopf bifurcatiolil) giving rise (a) (b)

to quasiperiodic solution with three frequencies. It is likely
that this three-torus is destroyed via a homoclinic
bifurcation?® However, the exact location of this bifurcation
cannot be computed froifi3), we have thus represented it
by a dashed line in Fig. 4. The small pictures illustr@tethe
r,r, plang the existence and stability of solutions(i8) at
parameter values in each region.

IV. MULTISTABILITY

For comparison with the analysis of Sec. Ill, we per-
formed numerical simulations of the original equatitk)
using a fourth-order Runge—Kutta scheme adapted for delay
equations. The result of each simulation is displayed in two
formats: time historiegx(t) vst]in Fig. 5 and pseudophase
space[x(t) vs x(t) vs x(t—7)] in Fig. 6. The simulations
were performed at parameter values in a neighborhood of the
double bifurcation point depicted in Fig. 4. Further, we fixed
the value ofr =5.03 and varied as our bifurcation param-
eter. The values used ftr are indicated by the sequence of
letters in Fig. 4, which correspond to the labels in Figs. 5 and
6.

The ﬁ'_'St tWF’ S_imU|ati0n§ confirm our analysis. That is, atrig. 6. phase plane diagrams corresponding to the time histories of Fig. 5.
(@ there is a limit cycle with frequency wq;,/2m=0.097,  Coordinates ar&(t—7) vs x(t) vs x(t).
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(a) the fifth ordey into the center manifold reduction 6f) near
0.92 ®) its stationary solution. This yields the following system:

r,=(2.432-0.470r—0.88%)r,—0.0247%3

‘ z ~0.194,r2-0.13887%,
- f)=(~2.308+0.470r—0.88%)r,+.04372r, ¥
’ 0.2
0 i 20 0 200 +0.00683+0.13702r3-0.06183.

Consider first the effect due to the coefficient of the
FIG. 7. Numerical simulations dfl) showing bistability. Parameter values term_m (14). _S!nce It 'S_ negative _Whlle th_e term} has a
are as in Fig. &) (~=5.03 andb=0.69 with different initial conditionst¢ ~ POSitive coefficient that is smaller in magnitude, one expects
as in Fig. 5 with, respectively,=0.2 andx,=0.5). (&) Limit cycle, (b) to find a region in parameter space where two fixed points of
period two limit cycle. the form (0f,) of (14) exist. Thus, we would expect to ob-
serve two limit cycles in this region for the original system:
a small-amplitude, unstable orereated by the Hopf bifur-
Eation H,) and a large-amplitude, stable one. These two
cycles annihilate each other in a saddle-node bifurcation.
. . Note that the large-amplitude stable cycle exists on both
+0.038 sirfw,t), and thew; are the values of the frequencies sides of theH, Hopf bifurcation curve. More details on this

of the two Hopf bifurcations (w;=0.60947 and d : X : . .
" técod Hopf bif t be f
w,=1.274 2).] We shall address the apparent contradiction Z?egzra écodimension 2Hopf bifurcation can be found in

between our analysis and this numerical result in the next | principle, (14) can also be used to estimate the loca-

section. tion of the homoclinic bifurcation and hence to determine the

| ':'na"y_’trﬁ (d) we see thezap_pga;rggce ocl)f z_atr?ew per_'gd'cstability of the three-torus referred to previously. This mainly
S0 L;)I'OT Wi requl_etngy@wfim/thw_d_ﬁ andwi ?ccl)nm I- numerical(albeit careful work is left for a future investiga-
erably larger amplitudénote the difference in vertical scale tion. However, numerical simulations performed on the nor-

betvv_een Figs. @-5(c) and .E(d)]' The ane_llysis in_ Sec_. - mal form (14) itself, indicate that this three-torus should be
predicts that no stable solution should exist at this point. We'stable

shall address the origin of this limit cycle, and how it raises
the possibility of multistability at other parameter values, in
the next section.

To explore this multistability we carried out numerical
simulations with various initial conditiondi.e., ¢(s)

torus in which the amplitudes of the two frequencies are jus
about equal[Figure Gc) is comparable to a plot of(t) vs
x(t) vs x(t—7), where x(t)=0.8333+0.038 siriw;t)

We can further us€l14) to refine the bifurcation curves
of Fig. 4. The main result is that the three-torus is predicted
to occur in some “curved wedge” between two parabolas
that emanate from the double Hopf point. Since some of the
. X _ coefficients of the third-order terms of the normal form are
=X COS;S)+Y SiN(w;S) +X, COYw;S) Y, SiNwys) — with quite small, this refined wedge agrees with the previous one
@,=0.609, w,=1.274,s <[—70], and variousx; y;] on a only when they; are also small. This indicates that the third-

diverse set of parameters, including those used 1o genera&erder analysis is only valid for parameter values very close to

glgs. 5 arfld 6'le) pﬁ”{ﬁ”""}r’ at the plfsttr?jmelt_er_tvalue;of Flgthe double Hopf point. Our simulations were not within this
(), we found bo e large-amplitude limit cyci€ig. small region. Thus, not all of our numerical results can be

7({;\)] and an even Iarger-amplitude period two limit cycle predicted by the third-order analysis.
[Fig. 7(b)] coexisting with the two-torus.

The limit cycle is observed numerically in other regions
of parameter space as well: these are indicated in Fig. 4 by|. DISCUSSION
an open circle. Of particular interest is its existence in the o . . »
region of stability of the fixed point. We note that the ampli- e have shown that limit cycles, two-tori, multistability,
tude of the limit cycle in Fig. @) is not particularly “large” ~ @nd other more complex dynamics can be generated by a
in comparison with the amplitude of the coexistent two-9€neric second-order differential-delay equation with mono-
torus. This would indicate that the limit cycle is near to an-tone negative feedback. Equations of this form arise in con-
nihilation in a saddle node bifurcatideee Sec. Y. In fact, it siderations of mechanical, or neuromechanical, systems op-
is not observed in simulations carried out farther fromkhe erating under th_e_inﬂuence of a delayed restoring force. The
Hopf bifurcation curveat the parameter values of Figgap  necessary conditions for these complex dynamics to occur,
and 5b), for exampld. i.e. an underdamped control systehK(\/E) with low gain

The period two limit cycle was found to coexist with the (G<—1) are easily satisfied by many mechanical systems.
other solutioiis) for a large set of parameter values, almostFor example, we estimate from published data on a human
everywhere that we carried out simulations. postural control syster(Fig. 49, p. 359, Ref. 28thatb=4.1
s landa=1044.552(i.e.,b < a).

Typically numerical methods form the mainstay of tech-
niques for exploring the behavior of nonlinear dynamical

In order to understand the origin of the multistability systems. Our studies emphasize the necessity of analytical
discussed in Sec. IV, we included higher-order tefopsto  work to guide these numerical experiments. Indeed, the ex-

V. HIGHER-ORDER TERMS
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