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Quadratic forms

Let K be a number field, i.e. a finite exten-

sion of Q. Let

F(X, Y ) =
N
∑

i=1

N
∑

j=1

fijXiYj

be a symmetric bilinear form in N ≥ 2 vari-

ables with coefficients in K. Write

F(X) = F(X , X)

for the associated quadratic form. We will

also write F for the symmetric coefficient

matrix (fij)1≤i,j≤N . Notice that

F(X, Y ) = XtFY .

Clearly,

F(0) = 0.

We will say that F is isotropic over K if it

has a non-trivial zero with coordinates in K.

2



How can we tell if F is isotropic over K?

A criterion is provided by the famous Hasse-

Minkowski theorem: F is isotropic over K if

and only if it is isotropic over every comple-

tion of K.

This is an example of a non-effective state-

ment: it provides no information about non-

trivial zeros of F over K, only a criterion for

their existence. We will be interested in ef-

fective questions, such as the following.

Question 1. Assuming F is isotropic over

K, how do we find a non-trivial zero of F

over K?

More generally, let Z ⊆ KN be a subspace of

KN of dimension L, 1 ≤ L ≤ N . We write

(Z, F) for the quadratic space defined on Z

by F .
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We say that (Z, F) is isotropic if there ex-

ists 0 6= x ∈ Z such that F(x) = 0; we call

(Z, F) anisotropic otherwise. A subspace V

of (Z, F) is called totally isotropic if

F(V ) = 0.

All maximal totally isotropic subspaces have

the same dimension, called Witt index of

(Z, F).

Question 2. If (Z, F) is isotropic, how do

we find a maximal totally isotropic subspace

of (Z, F)?

We generalize further. Two points x, y ∈ Z

are said to be orthogonal with respect to F

if

F(x, y) = 0.

In the same manner, we can talk about or-

thogonal subspaces of Z, where orthogonal-

ity will always be meant with respect to F .
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If two subspaces, V and W of Z are orthog-

onal, we will write

V ⊥ W

for their orthogonal direct sum.

The singular component of (Z, F) is the sub-

space

Z⊥ = {x ∈ Z : F(x, y) = 0 ∀ y ∈ Z},

so Z⊥ is orthogonal to every subspace of Z.

The rank of F on Z is

r = L − dimK Z⊥.

If Z⊥ = {0}, we say that (Z, F) is nonsingu-

lar or regular: in this case r = L.

A subspace H = spanK{x, y}, where x, y ∈ Z

are such that

F(x) = F(y) = 0, F(x, y) = 1,

is called a hyperbolic plane.
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Witt Decomposition: Let k be the Witt

index of (Z, F). There exist hyperbolic planes

H1, . . . , Hk and an anisotropic subspace W of

Z such that

Z = Z⊥ ⊥ H1 ⊥ · · · ⊥ Hk ⊥ W.

Witt decomposition for a quadratic space is

not unique.

Question 3. How do we find a Witt decom-

position for a quadratic space?

In what follows we demonstrate an approach

to Questions 1, 2, and 3 which not only sug-

gests a search algorithm for objects in ques-

tion, but also proves the existence of such

objects with special nice arithmetic proper-

ties.

For this we need to introduce the machinery

of height functions.
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Absolute values

Let K be a number field of degree

d = [K : Q]

over Q. We will write M(K) for the set of

places of K, and for each v ∈ M(K), let

dv = [Kv : Qv]

be the local degree of K at v, where Kv and

Qv are the completions of K and Q at v, re-

spectively. If absolute values from v ∈ M(K)

extend absolute values from u ∈ M(Q), we

write v|u. Then for each u ∈ M(Q),
∑

v∈M(K), v|u
dv = d = [K : Q].

We choose a representative | |v so that it

extends either | |∞ on Q, if v ∈ M∞(K), or

some p-adic absolute value | |p if v ∈ M0(K).

Artin-Whaples Product Formula: For each

0 6= a ∈ K,
∏

v∈M(K)

|a|dv
v = 1.
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Height functions

We can define local norms on each KN
v by

|x|v =







max1≤i≤N |xi|v if v ∈ M0(K)
(

∑N
i=1 |xi|2v

)1/2
if v ∈ M∞(K)

for each x = (x1, ..., xN) ∈ KN
v . Then define

a global height function on KN by

H(x) =
∏

v∈M(K)

|x|dv/d
v

for each x ∈ KN . This product is conver-

gent because only finitely many of the local

norms for each vector x ∈ KN are different

from 1. Moreover, because of the normaliz-

ing power 1/d in the definition, H is absolute,

i.e. does not depend on the field of defini-

tion. Also notice that because of the product

formula, H is well defined on the projective

space PN−1(K), i.e.

H(ax) = H(x), ∀ 0 6= a ∈ K, x ∈ KN .
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In general, one can define a variety of differ-

ent height functions by selecting different lo-

cal norms while making sure that the defining

product is still convergent. For our purposes

this height function turns out to be conve-

nient. It is easy to see that H(x) ≥ 1 for all

non-zero x ∈ KN . The main property, for our

purposes, that all height functions satisfy is

Northcott’s theorem: For a height function

H on KN the set

{x ∈ PN−1(K) : H(x) ≤ B}

is finite for every positive real number B.

Heights can be extended to polynomials: if

F(X1, ..., XN) ∈ K[X1, ..., XN ]

we write H(F) to mean the height of its co-

efficient vector.
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We can also talk about height of subspaces

of KN . Let V ⊆ KN be a J-dimensional

subspace, and let x1, ..., xJ be a basis for V .

Then

x1 ∧ ... ∧ xJ ∈ K(N
J )

under the standard embedding. Define

H(V ) = H(x1 ∧ ... ∧ xJ).

This definition is legitimate, i.e. does not

depend on the choice of the basis. Hence we

have defined a height on points of a Grass-

manian over K.

Finally, define height on elements of GLN(K)

by viewing them as vectors in KN2
.
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Northcott’s theorem has the following most

important consequence.

Suppose we want to find a point satisfying

some arithmetic condition, and assume that

we can prove the existence of a point of

height ≤ B satisfying this condition. But

there are only finitely many such points. This

suggests a search algorithm, and so B is a

search bound.

Moreover, height measures arithmetic com-

plexity, and so a point of relatively small height

is “arithmetically simple”, which makes it even

more interesting.

We are now ready to apply this machinery to

quadratic forms.
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Effective theory

As discussed above, one way to approach

Questions 1, 2, and 3 is to prove the exis-

tence of objects in question of bounded height

with explicit bounds. Here we demonstrate

such results. The subject begins with the

following classical result in the direction of

Question 1.

Theorem 1 (Cassels 1955, Raghavan 1975).

If F is isotropic over K, then there exists

0 6= x ∈ KN such that F(x) = 0, and

H(x) ≤ C1(K, N)H(F)
N−1

2 ,

where C1(K, N) is an explicit constant.

This theorem has been generalized and ex-

tended in a variety of ways by a number of

different authors. We only review two such

generalizations.
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As before, let (Z, F) be an L-dimensional

quadratic space in N variables, 1 ≤ L ≤ N ,

of rank r and Witt index k. In the direction

of Question 2 we have:

Theorem 2 (Schlickewei 1985, Vaaler 1987).

There exists a maximal totally isotropic sub-

space V ⊆ Z with

H(V ) ≤ C2(K, L, k)H(F)
L−k
2 H(Z),

where C2(K, L, k) is an explicit constant.

Building on Theorem 2, we can prove the

following effective version of Witt decompo-

sition for (Z, F).
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Theorem 3 (F. 2005). There exists a de-

composition for (Z, F) of the form

Z = Z⊥ ⊥ H1 ⊥ · · · ⊥ Hk ⊥ W,

where Z⊥ is the singular component, H1, . . . , Hk

are hyperbolic planes, and W is anisotropic

component with

H(Z⊥) ≤ C3H(F)
r
2H(Z)

and

max{H(Hi), H(W )}

≤ C4

{

H(F)
L+2k

4 H(Z)

}

(k+1)(k+2)
2

,

for each 1 ≤ i ≤ k, where the constants are

explicit and depend on K, r, N , L, and k.
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Effective theory over Q

From now on assume that (Z, F) is defined

over Q, and is regular, meaning that

Z⊥ = {0},

and so r = L. Then the Witt index is

k =

[

L

2

]

,

and we can prove the following analogue of

Schlickewei-Vaaler theorem.

Theorem 4 (F. 2005). There exists a max-

imal totally isotropic subspace V of (Z, F)

with

H(V ) ≤ 12
√

2 3
k2(k+1)2

4 H(F)
k2

2 H(Z)
k2+k+2

2k ,

if L is even, and

H(V ) ≤ 32k(k+1)3H(F)k2
H(Z)

4k
3 ,

if L is odd.

15



• If (Z, F) is defined over a number field

K, it is possible to find an extension E of

K large enough so that (Z, F) has Witt

index k =
[

L
2

]

over E, and then apply

Vaaler’s theorem to it. The constant in

Vaaler’s bound, however, will depend on

the discriminant of E, which can be quite

large. In this case the bounds of Theo-

rem 4 can be better.

• Theorem 4 is a statement in the general

spirit of “absolute” results, in particular

it parallels the development of Siegel’s

lemma (results on existence of points of

bounded height in a given vector space),

the number field version of which was

proved in 1983 by Bombieri and Vaaler,

and the Q “absolute” version in 1996 by

Roy and Thunder.
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• The Schlickewei-Vaaler method relies on

Northcott’s theorem about finiteness of

projective points of bounded height over

a number field; this is no longer true over

Q, which does not allow to extend this

method.

• Our argument uses the Roy-Thunder ab-

solute Siegel’s lemma along with a ver-

sion of arithmetic Bezout’s theorem due

to Bost, Gillet, and Soulé, which provides

a bound on the height of a projective in-

tersection cycle in terms of the heights

of intersecting projective varieties.
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Witt decomposition for a regular space (Z, F)

over Q becomes

Z = H1 ⊥ · · · ⊥ Hk ⊥ W, (1)

where W is zero if L = 2k, and is a one-

dimensional anisotropic subspace if L = 2k+

1. Then we obtain the following effective

version of Witt decomposition over Q.

Theorem 5 (F. 2005). There exists an or-

thogonal decomposition as in (1) such that

for each 1 ≤ i ≤ k =
[

L
2

]

H(Hi) ≤ 3
12k4(k+1)

(

3
2

)k

×

×
{√

k H(F)k2+1H(Z)
6k+5
4k+2

}

(k+1)(k+2)
2

(

3
2

)k

,

and W = {0} if L = 2k, or W = Qy with

H(W ) = H(y) ≤ 2
√

2k + 1 3
(2k+3)k

2 H(Z)
2k+3
4k+2,

if L = 2k + 1.
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Another orthogonal decomposition that ev-

ery quadratic space has is decomposition into

orthogonal one-dimensional subspaces, i.e. ev-

ery quadratic space has an orthogonal ba-

sis. In fact, using the same approach we

can prove the existence of such a basis of

bounded height.

Theorem 6 (F. 2005). Let (Z, F) be an L-

dimensional quadratic space in N variables,

not necessarilly regular, over a number field

K with 1 ≤ L < N . Then there exists a basis

x1, ..., xL over K for Z such that F(xi, xj) = 0

for all i 6= j, and

L
∏

i=1

H(xi) ≤ (N |DK|)
L2+L−2

4 H(F)
L(L+1)

2 H(Z)L,

where DK is the discriminant of K. There

also exists a basis y1, ..., yL over Q for Z such

that F(yi, yj) = 0 for all i 6= j, and

L
∏

i=1

H(yi) ≤ 3
(L−1)2(L+2)

4 H(F)
L(L+1)

2 H(Z)L.
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Isometry group

In this section K will be either a number field

or Q, and (Z, F) a quadratic space over K,

as above.

The classical version of Witt decomposition

theorem can be deduced from a variation of

the famous theorem of Cartan and Dieudonné

on the representation of isometries of a bilin-

ear space. From here on assume that (Z, F)

is regular. Let O(Z, F) be the group of all

isometries of (Z, F), i.e. O(Z, F) consists of

all σ ∈ GLN(K) such that

F(σx, σy) = F(x, y)

for all x, y ∈ Z. Let σ ∈ O(Z, F). There exist

reflections τ1, ..., τl ∈ O(Z, F) such that

σ = τ1...τl

where 0 ≤ l ≤ L.

The following is a slightly weaker effective

version of Cartan-Dieudonné theorem, where

by height of an isometry we mean height

of the corresponding matrix from GLN(K)

viewed as a vector in KN2
.
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Theorem 7 (F. 2005). Let (Z, F) be a reg-

ular quadratic space over K with Z ⊆ KN

of dimension L, 1 ≤ L ≤ N , N ≥ 2. Let

σ ∈ O(Z, F). Then either σ is the identity,

or there exist an integer 1 ≤ l ≤ 2L − 1 and

reflections τ1, ..., τl ∈ O(Z, F) such that

σ = τ1 ◦ · · · ◦ τl,

and for each 1 ≤ i ≤ l,

H(τi) ≤ C5

{

H(F)
L
3H(Z)

L
2H(σ)

}5L−1

,

where C5 is an explicit constant depending

on K, N , and L.

There are two interesting corollaries of the

method. One is a bound on the height of

the invariant subspace of an isometry. The

second is a statement about the existence of

a reflection of relatively small height.

21



What is next?

It is interesting to also consider the case of a

symplectic space, in other words let F(X, Y )

be an alternating bilinear form over the co-

efficient field K. If Z is an even-dimensional

subspace of KN such that the corresponding

symplectic space (Z, F) is regular, the goal is

to provide effective decomposition theorems

for (Z, F). In other words, what would be the

appropriate analogues of Theorems 3 - 6 in

this case?

One distinguishing feature of this situation is

that it seems to admit an entirely combina-

torial argument, which allows K to be any

global field (i.e. any field with a product for-

mula), which is quite different from the sym-

metric case, where situations over different

fields had to be considered separately. This

is work in progress.
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