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Abstract

The Fibonomial numbers are defined by[
n
k

]
=

∏n
i=n−k+1 Fi

∏k
j=1 Fj

where Fi is the ith Fibonacci number, defined by the recurrence Fn = Fn−1 +
Fn−2 with initial conditions F0 = 0, F1 = 1. In the past year, Sagan and
Savage have derived a combinatorial interpretation for these Fibonomial
numbers, an interpretation that relies upon tilings of a partition and its
complement in a given grid.

In this thesis, I investigate previously proven theorems for the Fibono-
mial numbers and attempt to reinterpret and reprove them in light of this
new combinatorial description. I also present combinatorial proofs for some
identities I did not find elsewhere in my research and begin the process of
creating a general mapping between the two different Fibonomial inter-
pretations. Finally, I provide a discussion of potential directions for future
work in this area.
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Chapter 1

Background

The Fibonomial coefficients, denoted [ n
k ], are a specific instance of the general-

ized binomial coefficients, an important set of combinatorial objects. In Sagan
and Savage (2010), for the first time there were detailed two combinatorial
interpretations for the Fibonomial coefficients and other generalized bino-
mial coefficients based on sequences with ideal initial conditions. Prior to
this, proofs of Fibonomial identities had consisted purely of algebraic ma-
nipulations, but this new interpretation presented an opportunity to view
these previously proven identities in a new light.

1.1 Basic Combinatorial Objects

The Fibonacci numbers are the sequence of numbers defined by the recur-
rence Fn = Fn−1 + Fn−2 with initial conditions F0 = 0, F1 = 1. The Lucas
numbers are defined to be the sequence of numbers given by the Fibonacci
recurrence with initial conditions L0 = 2, L1 = 1.

Note that Fn+1 = fn represents the number of tilings of a strip of length
n using length 1 squares and length 2 dominos. Similarly, Ln represents the
number of circular tilings of a strip of length n using length 1 squares and
length 2 dominos. In this case, we count all usual tilings of a strip, plus we
allow the use of a circular domino in our tiling; that is, a domino that crosses
the starting and ending edges of the strip to cover the first and nth cells.

We define an integer partition of the positive integer n as a way of writing
n as a sum of nonincreasing nonnegative integers. We denote a partition as
λ = (λ1, λ2, . . . , λm), where each λi is called a part of our partitions. Note
that λi ≥ 0 and λi ≥ λi+1.

In this report, I am primarily concerned with partitions that fit inside



2 Background

Figure 1.1 A noncircular and circular partition tiling in a 5× 4 grid.

an m× n grid; that is, partitions with m parts, none of which is greater than
n. We denote such a partition by λ ⊆ m× n. Note that such a partitition
is equivalent to a lattice path from the bottom left to the top right corner of
our grid and that the partition defines a unique complementary partition λ∗

such that λ∗ ⊆ n × m (namely, this is the partition below the lattice path
whose parts are determined by the lengths of the columns).

1.2 Partition Tilings

A noncircular tiling of λ ⊆ m× n is obtained by tiling each individual part
of λ with squares and dominos in the same way as Fibonacci tilings. A
circular tiling of λ ⊆ m × n is obtained by tiling each individual part of
λ with squares and dominos, allowing for circular dominos, in the same
way as Lucas tilings. Denote the set of all noncircular tilings of a particular
partition λ by Lλ and the set of all circular tilings by Cλ. Addititionally,
define the set of all noncircular tilings of a partition λ such that the first tile
of any part’s tiling is a domino to be L′λ.

We define a noncircular partition tiling for λ ⊆ m× n as a tiling in Lλ ×
L′λ∗ . Notice that using L′λ∗ forces the first tile in every column to be a
domino.

Similarly, we define a circular partition tiling for λ ⊆ m× n as a tiling in
Cλ × Cλ∗ . See Figure 1.1 for examples of partition tilings.

The Fibonomial coefficient [ n
k ] is then defined by[

n
k

]
=

Fn · Fn−1 · · · Fn−k+1

Fk · Fk−1 · · · F1
.
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In their recent paper, Sagan and Savage (2010) demonstrated two possi-
ble combinatorial interpretations for the Fibonomial coefficients. In the first
case, we sum over all possible partitions fitting in a given grid and then
over all possible noncircular partition tilings corresponding to that particu-
lar tiling; any particular noncircular partition tiling is counted exactly once.
These summations gives us the following formula:[

m + n
m

]
= ∑

λ⊆m×n
∑

T∈Lλ×L′
λ∗

1.

For the second interpretation we sum over all possible partitions fitting
in a given grid and then over all possible circular partition tilings corre-
sponding to that particular tiling. In this case, each circular partition tiling
is given a weight corresponding to the number of zero parts in λ and λ∗. In
particular, if we define the number of zero parts in a partition λ ⊆ m× n as
Z(λ), then the weight of a circular partition tiling T is

w(T) = 2Z(λ)+Z(λ∗).

For example, the circular partition tiling in Figure 1.1 has weight 2, since
the partition λ has exactly one zero part. Similarly, the noncircular tiling
in the same figure has weight 2 when regarded as a circular partition tiling
due to λ∗ having one zero part.

Using this definition of a weight function, we have that

2m+n
[

m + n
m

]
= ∑

λ⊆m×n
∑

T∈Cλ×Cλ∗

w(T).





Chapter 2

Combinatorial Proofs for
Fibonomial Identities

In this chapter, I investigate previously proven theorems for the Fibonomial
numbers and attempt to reinterpret and reprove them in light of the new
combinatorial descriptions. I also present combinatorial proofs for some
identities I did not find elsewhere. Each proof given here uses exactly one
of the two combinatorial interpretations of Fibonomial numbers; in Chap-
ter 3 I will discuss my work to try to connect the two approaches such that a
proof using one interpretation would directly imply a proof with the other.

2.1 Previously Existing Identities

The first major aspect of my work involves combinatorially proving Fi-
bonomial identities. The first of these identities follows straightforwardly
from the Sagan and Savage (2010) noncircular partition tiling interpretation
because, in fact, the interpretation was built off of this recurrence.

Proposition 1. [ m+k
k ] = Fm+1[ m+k−1

m ] + Fk−1[
m+k−1

k ].

Proof. We prove this proposition by combinatorial argument using the non-
circular tiling interpretation. We will count the number of ways to noncir-
cularly partition tile a k×m grid.

As Sagan and Savage (2010) demonstrated, the number of ways to non-
circularly partition tile a k×m grid is [ m+k

m ].
Now, consider any partition λ ∈ k×m and corresponding partition λ∗.

Consider the top right cell of the k×m grid. This cell is included either in
the partition λ or the partition λ∗.
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If the top right box is in λ, then we know we know we will be tiling
the entire top row, which has length m, with squares and dominoes. The
number of ways to tile a full row is fm = Fm+1. We then must partition tile
the remainder of the grid that has dimensions k− 1×m. We know we can
tile this segment of the grid [ m+k−1

m ] ways.
If, on the other hand, the top right box is in λ∗, we know we must tile

the entire rightmost column with squares and dominos. This column has
length k, but we know that the first tile we use must be a domino, so there
are fk−2 = Fk−1 ways to tile this column. Now we want to partition tile the
remainder of the grid that has dimensions k×m− 1. We know we can tile
this section in [ m+k−1

k ] ways.
Thus, overall, the total number of ways to partition and appropriately

tile an m× k grid is

Fm+1

[
m + k− 1

m

]
+ Fk−1

[
m + k− 1

k

]
.

Because these two quantities count the same thing, they must be equal.
Thus we have[

m + k
k

]
= Fm+1

[
m + k− 1

m

]
+ Fk−1

[
m + k− 1

k

]
as desired.

We also obtain the following, similar result:

Corollary 1. [ m+k
m ] = Fm−1[ m+k−1

m ] + Fk+1[
m+k−1

m−1 ].

Proof. This result follows by a proof identical to the previous proposition;
we simply use an m× k grid rather than a k×m grid.

By similar logic using the circular partition–tiling interpretation, we can
prove another Fibonomial recurrence involving the Lucas numbers.

Proposition 2. 2m+n[ m+n
m ] = 2m+n−1Lm[ m+n−1

m ] + 2m+n−1Ln[ m+n−1
n ].

Proof. This identity is often written more simply as

2
[

m + n
m

]
= Lm

[
m + n− 1

m

]
+ Ln

[
m + n + 1

n

]
.

We prove this identity by combinatorial argument using the circular
partition–tiling interpretation. We will count the number of ways to parti-
tion and circularly tile an m× n grid.
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As shown by Sagan and Savage (2010), the number of ways to partition
and circularly tile an m× n grid is 2m+n[ m+n

m ].
Now consider the top right box of our m× n grid. This cell must be part

of either λ or λ∗ for any given partition λ ⊆ m× n. If the cell is part of λ, we
know we are circularly tiling the entire top row of length n. The number of
ways to tile a full row is Ln. We must then partition and circularly tile the
remainder of our grid, which we know we can do in 2m+n−1[ m+n−1

n ] ways.
The other possibility is that the top right box is included in λ∗. In this

case, we know we must circularly tile the entire right column of length
m, which we can do in Lm ways. We then have 2m+n−1[ m+n−1

m ] ways to
partition and circularly tile the rest of the grid. Overall, the number of
ways to partition and circularly tile an m× n grid is

2m+n−1Ln

[
m + n− 1

n

]
+ 2m+n−1Lm

[
m + n− 1

m

]
.

Because these two quantities count the same thing, they must be equal.
Thus we have

2m+n
[

m + n
m

]
= 2m+n−1Lm

[
m + n− 1

m

]
+ 2m+n−1Ln

[
m + n + 1

n

]
as desired.

With binomial coefficients, one of the most well-known identities states
that (n

k) = ( n
n−k). I proved the following identity, a Fibonomial version of

this familiar binomial coefficient theorem:

Proposition 3. 2m+k[ m+k
k ] = 2m+k[ m+k

m ].

Proof. Note that, written in a simpler form, this identity becomes[
n
k

]
=

[
n

n− k

]
.

We prove this identity using the circular partition–tiling interpretation.
Consider a partition λ ⊆ m × k with corresponding partition λ∗ whose
parts are determined by the lengths of the columns of the complement of
λ in our m × k grid. Clearly, λ∗ ⊆ k × m with corresponding partition λ,
whose parts are determined by the lengths of the columns of the comple-
ment of λ∗ in our k×m grid.

Thus, because we can bijectively map each circular tiling of λ and com-
plement λ∗ in an m× k grid to a circular tiling of λ∗ and complement λ in
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an k×m grid, we can see that the number of such tilings are equal. Because
the number of ways to partition and then circularly tile a partition and its
complement in a m× k grid is 2m+k[ m+k

m ], we have

2m+k
[

m + k
k

]
= 2m+k

[
m + k

m

]
,

as desired.

2.2 New Identities

In addition to proving these previously proven identities, I used some prop-
erties of the combinatorial interpretation of Fibonomials to derive some
new identities that I did not find in my survey of previous literature.

Proposition 4.
[

m + n
m

]
= f m

n +
m−2

∑
i=0

f i
n fm−i−2

[
m + n− i− 1

m− i

]
.

Proof. We prove this identity by a combinatorial argument using the non-
circular partition tiling interpretation. Consider how many ways there are
to noncircularly partition tile a grid of size m× n. From Sagan and Savage
(2010), we know that the answer to this problem is [ m+n

m ].
Next, consider how many “full rows” there are in our partition tiling;

that is, how many parts in λ are of size n. The number of such parts can
range between 0 and m. Note, however, that there cannot be exactly m− 1
parts of size n as such a scenario implies the existence of a column tiling
of length 1. Due to the domino restriction, we cannot properly tile such a
column, so one cannot exist. Thus, we can have from 0 to m− 2 or m full
rows.

Consider first the case where there are m full rows. Each row is of length
n and is tiled with squares and dominos. The number of ways to tile such a
strip is fn, and, because there are m rows, each of whose tilings are chosen
independently, there are f m

n ways to tile the entire grid.
Next, consider the case where there are i full rows (0 ≤ i ≤ m − 2).

There are, as above, f i
n ways to tile these i full rows. Additionally, because

there are exactly i full rows, we know that the far–right column must have
exactly m− i cells below the lattice path (i.e., the largest part of λ∗ is m− i).
Due to the domino restriction, there are fm−i−2 ways of tiling this column
with the bottom tile being a domino. The remainder of the grid has dimen-
sions (m− i)× (n− 1). The number of ways to partition tile a grid of this
size is [ m+n−i−1

m−i ].
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Summing over all possible numbers of full rows, we realize that the
number of ways to partition tile an m× n grid is

f m
n

m−2

∑
i=0

f i
n fm−i−2

[
m + n− i− 1

m− i

]
.

Because we have two answers to the same counting problem, we realize
that they must be equal. Thus, we see[

m + n
m

]
= f m

n +
m−2

∑
i=0

f i
n fm−i−2

[
m + n− i− 1

m− i

]
as desired.

The following is a related proposition which can be proven by a similar
argument, counting the number of full columns rather than full rows. Note
that there can be any number of full columns, so the identity can be written
compactly as a single summation.

Corollary 2.
[

m + n
n

]
=

m

∑
j=0

f j
m−2 fn−j

[
m + n− j− 1

n− j

]
.

Finally, we have a circular version of this argument. The lack of restric-
tions means that this identity holds whether we condition on full rows or
full columns.

Proposition 5. 2m+n
[

m + n
m

]
=

m

∑
i=0

2m+n−i−1Li
nLm−i

[
m + n− i− 1

m− i

]
.

Proof. We prove this identity by a combinatorial argument using the circu-
lar partition–tiling interpretation. Consider how many ways there are to
circularly partition tile a grid of size m× n. From Sagan and Savage (2010),
we know that the number of ways is 2m+n[ m+n

m ].
Next, consider how many “full rows” there are in our partition tiling;

that is, how many parts in λ are of size n. The number of such parts can
range between 0 and m.

Consider the case where there are i full rows (0 ≤ i ≤ m). There are
Li

n ways to circularly tile these i full rows using squares and dominos. Ad-
ditionally, because there are exactly i full rows, we know that the far–right
column must have exactly m− i cells below the lattice path (i.e., the largest
part of λ∗ is m− i); there are Lm−i ways of circularly tiling this column. The
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remainder of the grid has dimensions (m − i) × (n − 1). The number of
ways to circularly partition tile a grid of this size is 2m+n−i−1[ m+n−i−1

m−i ].
Summing over all possible numbers of full rows, we realize that the

number of ways to partition tile an m× n grid is

m

∑
i=0

2m+n−i−1Li
nLm−i

[
m + n− i− 1

m− i

]
.

Because we have two answers to the same counting problem, we realize
that they must be equal. Thus, we see

2m+n
[

m + n
m

]
=

m

∑
i=0

2m+n−i−1Li
nLm−i

[
m + n− i− 1

m− i

]
as desired.

2.3 Current Incomplete Work

Most recently, I have been focusing on why, conceptually, the combinatorial
interpretation Sagan and Savage proposed holds. To do so, I have been
investigating the basic Fibonomial definition; that is,[

m + n
m

]
=

Fm+n · Fm+n−1 · · · Fn+1

Fm · Fm−1 · F1
.

Rearranging this definition gives us the more workable form of

Fm · Fm−1 · F1

[
m + n

m

]
= Fm+n · Fm+n−1 · · · Fn+1.

Individually, we can identify each term of this equation with a combina-
torial object involving tilings. I consulted with Jacob Scott, who suggested
multiplying both sides of this equation by FnFn−1 · · · F1. Doing so, we can
view both sides of the expression as some form of tiling of a right triangle
with both legs of length m + n− 1. In particular, the expression

Fm+nFm+n−1 · · · F1

represents the number of ways to tile a strip of length m + n− 1, a strip of
length m + n− 2, and so on down to a strip of length 0 with squares and
dominos. Aligning these horizontal strips so that their right ends match
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up, we end up with a triangle with legs both length m + n− 1 (we ignore
the null tiling).

Alternatively, we can view the expression

(FmFm−1 · · · F1)(FnFn−1 · · · F1)

[
m + n

m

]
by fixing the m × n grid of the Fibonomial tiling in the top right corner
of our triangle. To the left of the ith row from the top of this Fibonomial
grid, we align a horizontal strip tiling of length m− i. To the bottom of the
jth column from the right of the Fibonomial grid, we align a vertical strip
tiling of length n− j. Note that this arrangement also yields a triangle grid
with legs of length m + n − 1, though here we have both horizontal and
vertical tilings along with some restrictions imposed by the borders of the
Fibonomial grid and the lattice path inherent in a partition tiling.

Jacob also noted that simply by taking a triangular grid of the form
described above and creating a lattice path from some point on the “hy-
potenuse” of the triangle to the top right corner, we find that by considering
columns below the path as vertical strips and rows above the lattice path as
horizontal strips, we end up with stips of every length from 1 to m + n− 1.
By tiling each of these strips with squares and dominos, we have a different
arrangement of Fm+nFm+n−1 · · · F1.

If we fix the “starting point” of our lattice path at the bottom left corner
of a given grid cell on the hypotenuse, the number of lattice paths from that
starting point to the top right corner of the triangle grid is (m+n

m ) where n is
the number of right steps to the far right of the grid and m is the number
of up steps to the top of the grid. Then with this starting point there are
exactly (

m + n
m

)
Fm+nFm+n−1 · · · F1

ways to draw a lattice path and tile the resulting horizontal and vertical
strips with squares and dominos. This lattice path gives us a sort of im-
pression of an m× n Fibonomial tiling in the grid, though not exactly since
we have not enforced the domino restriction and could have tiles crossing
the boundary between the grid and strip tilings.





Chapter 3

Connecting the Combinatorial
Interpretations

As mentioned earlier, Sagan and Savage (2010) provide two different in-
terpretations of the Fibonomial coefficient, noncircular partition tilings of
an m× n board corresponding to [ m+n

m ] and circular partition tilings of an
m× n board corresponding to 2m+n[ m+n

m ]. In the case of circular partition
tilings, a given tiling is assigned a particular weight, while in the case of
noncircular partition tilings, each tiling is counted exactly once. By giv-
ing each noncircular tiling weight 2m+n, we can create a mapping between
the two interpretations by mapping some number of circular tilings with
weights summing to 2m+n to a particular nonciruclar tiling.

3.1 The 1× n Case

Consider first the case where m = 1; that is, when we have a 1× n grid.
Given a particular noncircular partition tiling, we know that the partition
λ = (n) due to the domino restriction. Similarly, we could think of this as a
lattice path that takes n right steps followed by an up step. We execute the
following algorithm to determine which circular tilings match up with our
noncircular tiling:

1. Start with the circular partition tiling identical to our circular tiling.
The sum of weights of circular tilings we have counted starts at zero.

2. Examine the current partition tiling. Suppose our lattice path is i (i >
0) right steps, followed by an up step, followed by n− i right steps.
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(a) →

(b) →
Figure 3.1 An example of the procedure our algorithm follows in steps 2a and
2b, respectively.

Add 2i (the weight of this partition tiling) to our total weight. If i = 0,
our first step is up and this tiling has weight 2, which we add to our
total weight. Consider the tiling of λ (our horizontal tiling).

(a) If this tiling ends in a square, repeat step 2 after shifting the up
step one to the left (i.e., the new lattice path is i − 1 steps right
followed by an up followed by n− i + 1 right steps). If the first
step in our lattice path is already a step up, terminate the pro-
cess.

(b) If this tiling ends in a domino, cycle our tiling one to the right
(this cycling should introduce a circular domino into our hori-
zontal tiling). Note that this tiling has weight 2i as well. Add 2i

to our total weight, and terminate the process.

See Figure 3.1 for an illustration of these processes.

Note that this process means that if the rightmost domino in our non-
circular partition tiling covers cells k− 1 and k, then the total weight w of
the circular partition tilings mapped by our algorithm is

w = 2k +
n

∑
i=k

2i = 2n+1,

which is the target weight. If no dominos exist in our tiling, the weight is

w = 2 +
n

∑
i=1

2i = 2n+1,

which again matches our target weight. Thus we have mapped an ap-
propriate number of circular partition tilings to each noncircular partition
tiling. It is clear that any circular tiling has been mapped to exactly one
noncircular tiling, so we have a mapping for the 1× n case.
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3.2 The m× 1 Case

We can also create an algorithm for the case where n = 1; that is, the case
where we have an m × 1 grid. Given a particular noncircular partition
tiling, we do the following:

1. If our tiling consists of only squares, any circular tiling consisting of
only squares maps to this noncircular tiling. Note that, in total, these
tilings have weight

w = 2 +
m

∑
i=1

2i = 2m+1,

which is the target weight. At this point, we have a complete map-
ping for this case.

2. If we reach this step, it means the bottom tile is a domino due to the
domino restriction. Suppose our lattice path consists of k up steps,
followed by a right step, followed by m − k more up steps. Notice
that any tile above the lattice path must be a square. We match all of
the following circular partition tilings with this noncircular tiling:

(a) The circular tiling that is identical to the noncircular tiling. This
tiling has weight 2k.

(b) The circular tiling that is the same as the noncircular tiling with
the vertical tiling cycled down by one (introducing a circular
domino). This tiling also has weight 2k because the lattice path
has not changed.

(c) Remove a square from the top and move it to the bottom cell,
bumping everything else up one cell. This operation alters the
lattice path to consist of k + 1 up steps, then a right step, then
m− k− 1 more up steps. We can repeat this process until there
are no more squares above the path (that is, the path consists of
m ups followed by a right step). The total weight of all of these

is
m

∑
i=k+1

2i.

Note that the total weight of these tilings is 2m+1, so we have achieved
the target weight. An example mapping is shown in Figure 3.2. Note
that the weights in the example sum appropriately.
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→ →
Original (b) (a) (c) iteration 1 (c) iteration 2

Weight: 23 23 24 25

Figure 3.2 An example of the m× 1 mapping in step 2.

Again, we have mapped an appropriate number of circular partition
tilings to each noncircular partition tiling, and we can easily trace to where
a particular circular tiling maps to, so we have created a valid mapping for
the m× 1 case.

3.3 The m× n Case

While we are able to apply many of the same ideas from the 1× n and m× 1
cases to the general m× n case, these operations do not quite account for all
possible complications introduced. As a result, the mapping for this case is
still incomplete.

It does appear that we can still follow through with many of our previ-
ous rules by applying them to individual rows and columns, and it seems
likely that using these mappings would apply in a final map. In particular,
for any noncircular partition tiling containing a row with a horizontal tiling
ending in a domino, we can cycle that horizontal tiling one cell to the right,
introducing a circular domino. This is the same as case 2b the 1× n case
mentioned earlier.

We can also adopt rule 2a directly from the m× 1 case and rules 2b and
2c from the m× 1 case by focusing on a particular column of our partition
tiling. Note that in order to apply rule 2c, we must have a square in the cell
immediately above the right step in our lattice path through the given col-
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umn. The case that causes us difficulties is when we find part of a domino
occupying the first cell above the lattice path. In the m× 1 case, we never
had difficulties because any cell that was part of a horizontal tiling was
necessarily filled with a square.

For small cases such as 2× 2, 3× 2, and 2× 3, I seem to have found a
method to circumvent this difficulty. Unfortunately, however, with larger
grids the possible layouts for tiles in the awkward position immediately
above the lattice path increases, and I have yet to find a generalization for
the map in the case where a domino appears in a cell immediately above
the lattice path.





Chapter 4

Future Work

In the future, there are still many more Fibonomial identities to combinato-
rially prove. A list of potential identities follows. These identities were all
pulled from issues of the Fibonacci Quarterly. Note that the notation (a, b)
represents the greatest common divisor of a and b.

• [ n
k ][

k
j ] = [ n

j ][
n−j
k−j ] Gould (1969)

•
[

n
k

]
=

n

∑
j=k

Fj − Fj−k

Fk

[
j− 1
k− 1

]
Gould (1969)

•
k

∑
j=0

(−1)j(j+1)/2
[

k
j

]
Fk−1

n−j = 0 Lind (1971)

•
k+1

∑
j=0

(−1)j(j+1)/2
[

k + 1
j

] [
n− j

k

]
= 0 Lind (1971)

• Fn

(Fn, Fk)

∣∣∣∣[n
k

]
Gould (1974)

• Fn−k+1

(Fn+1, Fk)

∣∣∣∣[n
k

]
Gould (1974)

• Fk[
n
k ] = Fn[

n−1
k−1 ] Gould (1974)

• Fk[
n
k ] = Fn−k+1[

n
k−1 ] Gould (1974)

• Fn+1[
n
k ] = Fn−k+1[

n+1
k ] Gould (1974)
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•
[

n
k

]
=

Fn

(Fn, Fk)

([
n
k

]
,
[

n− 1
k− 1

])
Gould and Schlesinger (1995)

•
[

n
k

]
=

Fn−k+1

(Fn−k+1, Fk)

([
n
k

]
,
[

n
k− 1

])
Gould and Schlesinger (1995)

• Fn
(
[ n

k ], [
n−1
k−1 ]

)
= [ n

k ](Fn, Fk) Gould and Schlesinger (1995)

• Fn−k+1 ([
n
k ], [

n
k−1 ]) = [ n

k ](Fn−k+1, Fk) Gould and Schlesinger (1995)

•
k

∑
j=0

(−1)j(j+3)/2
[

k
j

]
Fk+1

n+k−j = F1 · · · FkF(k+1)(n+ k
2

Melham (1999)

•
m−1

∑
j=0

(−1)
j(j+3)

2

[
(m + 1)k + m

j

] [
(m + 1)k + m− j− 1

m− j− 1

]
Fm+1

n+k+m−j

+ (−1)
m(m+3)

2 Fm+1
n−mk =

(
Πm

j=1F(m+1)k+j

)
F(m+1)(n+m

2 )
Kilic et al. (2010)

•
k+1

∑
i=0

(−1)i(i+1)/2
[

k + 1
i

]
Fk

n−i = 0 Cooper and Kennedy (1995)

The following identities are simplified versions of those proven by Hideyuki
Ohtsuka with respect to more generalized binomial coefficients. His paper
is forthcoming.

•
n

∑
k=1

[
2n + 1

k

]
=

n

∏
k=1

L2k Ohtsuka et al. (forthcoming)

•
2n

∑
k=1

[
2n
k

]
=

n

∏
k=1

(L2k−1 + 2) Ohtsuka et al. (forthcoming)

•
2n

∑
k=1

i±k
[

2n
k

]
= i±n

n

∏
k=1

L2k−1 Ohtsuka et al. (forthcoming)

•
2n+1

∑
k=1

i±k
[

2n + 1
k

]
= (1± i)i±n

n

∏
k=1

L2
k Ohtsuka et al. (forthcoming)

•
2n

∑
k=0

[
2n
k

]
=

n

∏
k=1

L2kF4k−2

F2k
Ohtsuka et al. (forthcoming)

The following identities come from papers by Seiter and Trojovský:
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• Let m be an odd, positive integer
m

∑
i=0

(−1)
i
2 (m+i)

[
m
i

]
= 0 Seibert and Trojovský (2005)

• Let k be a positive integer, ` ≤ k−1
2 , m > k be nonnegative integers.

m

∑
i=0

(−1)
i
2 (2`+i+1) F(k−i)(k−2`)

Fk−2`

[
k + 1

i

]
= 0 Seibert and Trojovský (2005)

• Let k be a positive integer, ` ≤ k−1
2 , n and m > k be nonnegative

integers.
m

∑
i=0

(−1)
i
2 (2`+i+(−1)k)L(k−2`)(i+n)

[
k + 1

i

]
= 0 Seibert and Trojovský

(2005)

•
[

n
k

]
−

[
n− i

k

]
=

[
n− 1
k− 1

]
Fn − Fk

Fn−k
Trojovský (2007)

In addition to finding new proofs for these identities, it remains to con-
clude my work on mapping noncircular partition tilings for the general
m× n grid to circular partition tilings. Following this, there are still other
topics of interest to be explored. In particular, one could attempt to find
a way to extend Sagan and Savage’s combinatorial interpretation to hold
even for sequences with nonideal initial conditions, examine what happens
when Fn is replaced with fn in the Fibonomial coefficients, and investigate
whether anything of interest is counted when the domino restriction is re-
moved from the noncircular partition tiling interpretation.
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