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HARVEYMUDD Finding Information Leaks in Javascript

C O L L E G E

Tommy Ashmore
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Can browser add-ons leak your
personal information?

Yes, some do!

scCurrentPageDomain window.location.host;

ajax({ method: '

ppl 0 orm-urlencoded'},
getSSMapKey ()
odeURIComponent (getSerpUrl())
stId
scInstTimestamp
scAdStatus
scExtensionVersion
encodeURIComponent (scSearchString)
scSearchEngine
(isCustomSearc|
scCurrentPageDomain

request

How can we detect information leaks?

Currently, Mozilla volunteers manually inspect the source of
popular addons for leaks. Our tool helps automate this process.

We create a graph of information flow between program
statements. By tracing backwards from a call that sends data to
the internet, we can determine whether sensitive information
may be leaked.
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The analysis requires us to approximate the program's
behavior. We use abstract interpretation to determine when
two pointers could reference the same memory location.

[ Read ] write

x = new A() X
z = x x z
y = new B() y
W = X x W
w.f =y w, Y o.f
if (w == z) { W, 2

v =2z.f z, o.f v

Can the tool be improved?

Our analysis often reports potential leaks where
none exist. We can help users identify false positives
by classifying different types of data dependence.

Exceptions and goto statements alter the order of
statement execution. It's tricky to determine how they
affect data flow. Our current method could be improved.

i =10
sum = 0

while (true) {
sum += i
if (1 == 0)
break
i__
}

print (sum)
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