Claremont Colleges

Scholarship @ Claremont

Interface Compendium of Student Work HMC Student Scholarship

9-1-2013

Finding Information Leaks in JavaScript

Thomas Ashmore
Harvey Mudd College

Recommended Citation

Ashmore, Thomas, "Finding Information Leaks in JavaScript" (2013). Interface Compendium of Student Work. Paper 9.
http://scholarship.claremont.edu/interface/9

This Research is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in Interface Compendium of Student Work by an authorized administrator of Scholarship @ Claremont. For more information, please

contact scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/interface
http://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

HARVEYMUDD Finding Information Leaks in Javascript

C O L L E G E

Tommy Ashmore

A

-2

Can browser add-ons leak your
personal information?

Yes, some do!

scCurrentPageDomain window.location.host;

ajax({ method: '

ppl 0 orm-urlencoded'},
getSSMapKey ()
odeURIComponent (getSerpUrl())
stId
scInstTimestamp
scAdStatus
scExtensionVersion
encodeURIComponent (scSearchString)
scSearchEngine
(isCustomSearc|
scCurrentPageDomain

request

How can we detect information leaks?

Currently, Mozilla volunteers manually inspect the source of
popular addons for leaks. Our tool helps automate this process.

We create a graph of information flow between program
statements. By tracing backwards from a call that sends data to
the internet, we can determine whether sensitive information
may be leaked.

" -
] m
G a
-g:. W
— [
=] H —
VL “f NG
- P ™
™) "] <l
) - - N
. = - v/
=] ST = A==RAR ="
o Lg - -
W N D
- -
&

The analysis requires us to approximate the program's
behavior. We use abstract interpretation to determine when
two pointers could reference the same memory location.

[Read] write

x = new A() X
z = x x z
y = new B() y
W = X x W
w.f =y w, Y o.f
if (w == z) { W, 2

v =2z.f z, o.f v

Can the tool be improved?

Our analysis often reports potential leaks where
none exist. We can help users identify false positives
by classifying different types of data dependence.

Exceptions and goto statements alter the order of
statement execution. It's tricky to determine how they
affect data flow. Our current method could be improved.

i =10
sum = 0

while (true) {
sum += i
if (1 == 0)
break
i__
}

print (sum)

Acknowledgements & Citations

Thanks to Vineeth Kashyap and the rest of Ben
Hardekopf's team at UCSB!

Ball, Thomas, and Susan Horwitz. “Slicing programs with arbitrary control-flow.”
Springer Berlin Heidelberg, 1993.

Sridharan, Manu et al. "Thin slicing." ACM SIGPLAN Notices 42.6 (2007): 112-122.

Tip, Frank. "A survey of program slicing techniques." Journal of programming
languages 3.3 (1995): 121-189.

All images belong to T. Ashmore and V. Kashyap, with the exception of company logos.

The FireFox logo, Chrome logo, SurfCanyon logo, AdBlock Plus logo, and Ghostery logo belong to
Mozilla Foundation, Google, Surf Canyon, Imprint, and Evidon, respectively.

Advisor: Ben Wiedermann

if (w==2)

	Claremont Colleges
	Scholarship @ Claremont
	9-1-2013

	Finding Information Leaks in JavaScript
	Thomas Ashmore
	Recommended Citation

