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Introduction

• N ≥ 2 an integer

• a1 < a2 < · · · < aN positive relatively

prime integers

Define the Frobenius number

F = F(a1, ..., aN)

to be the largest positive integer that cannot

be expressed as

N∑
i=1

aixi

where x1, ..., xN are non-negative integers. F
exists because

gcd(a1, ..., aN) = 1.
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Frobenius Problem (FP): Given N and the

numbers a1, . . . , aN find F.

For N = 2:

F(a1, a2) = (a1 − 1)(a2 − 1)− 1.

This formula is usually attributed to Sylvester,

although there is no formal record of it in

Sylvester’s work; Sylvester proposed a re-

lated problem in Educational Times in 1884,

a solution to which was presented in the same

article by Curran Sharp.

There is no known formula for an arbitrary

N ; moreover:

Fact: FP is NP-hard.

Kannan (1992): For each fixed N , there ex-

ists a polynomial time algorithm for finding

the Frobenius number of a given N-tuple.
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Upper bounds for N ≥ 3

Erdös, Graham (1972):

F ≤ 2aN

[
a1

N

]
− a1. (1)

Vitek (1975):

F ≤
[

(a2 − 1)(aN − 2)

2

]
− 1. (2)

Selmer (1977):

F ≤ 2aN−1

[
aN
N

]
− aN . (3)

Beck, Diaz, Robins (2002):

F ≤

√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

2
.

(4)
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Kannan’s approach

Frobenius number F can be related to the

covering radius of a certain convex body with

respect to a certain lattice.

Lattice:

L =

x ∈ ZN−1 :
N−1∑
i=1

aixi ≡ 0 (mod aN)

 .

Convex body:

S =

x ∈ RN−1
≥0 :

N−1∑
i=1

aixi ≤ 1

 .

Covering radius:

µ(S,L) = inf
{
t ∈ R>0 : tS + L = RN−1

}
.
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Kannan (1992):

F = µ(S,L)−
N∑
i=1

ai.

Standard techniques for bounding a covering

radius only work in the case when the convex

body is symmetric with respect to the origin,

which is clearly not the case here.

However, this approach motivates applying

techniques from geometry of numbers to pro-

duce upper bounds for F.

6



Geometry of numbers

We relate the Frobenius number to a cov-

ering radius of a Euclidean ball with respect

to a different lattice, which is much easier to

estimate.

Lattice:

Λa =

x ∈ ZN :
N∑
i=1

aixi = 0

 .

Covering radius:

Ra = inf {R ∈ R>0 : B(R) + Λa = Va} ,

where Va = spanR Λa, and B(R) = ball of

radius R centered at the origin in Va.
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Theorem 1 (F., Robins (2005)).

F ≤

(N − 1)Ra

‖a‖

N∑
i=1

ai

√
‖a‖2 − a2

i + 1


≤

(N − 1)2

ωN−1

N∑
i=1

ai

√
‖a‖2 − a2

i + 1

 ,
where

ωN−1 = VolN−1(B(1)) =
π
N−1

2

Γ
(
N+1

2

).
The last inequality follows by classical results

of Jarnik and Minkowski.

For each 1 ≤ i ≤ N − 1, the i-th successive

minimum λi of Λa is defined to be the infi-

mum of all λ > 0 such that B(λ)∩Λa contains

i non-zero linearly independent vectors in Va.

Not hard to prove:

2 ≤ λ1 ≤ · · · ≤ λN−1. (5)
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Theorem 1 implies a bound in terms of the
ratio of largest and smallest successive min-
ima:

Corollary 2 (F., Robins (2005)). Let the no-
tation be as above. Then

F ≤

λN−1(N − 1)2∑N
i=1 ai

√
‖a‖2 − a2

i

λ1(‖a‖N−2ωN−1)
1

N−1

+ 1

 .
In the special case when

λ1 = · · · = λN−1,

i.e. Λa is a lattice with equal successive min-
ima, the bound of Corollary 2 is particularly
good. Such lattices are called well-rounded
(WR).

Our bounds are symmetric in all a1, . . . , aN ,
unlike the previously known ones.

Question: How often is the lattice of the
form Λa WR, if at all?

We start with some examples.
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WR lattices

Theorem 3 (F., Robins (2005)). Let t ∈
Z>0, and define

a1(t) = 6t2 − 13t− 216, a2(t) = 6t2 − 125,

a3(t) = 7t2 − 174, a4(t) = t3 − 36t− 78.

Then for each t ∈ Z>0,

a(t) = (a1(t), a2(t), a3(t), a4(t)) ∈ Z4,

and there exist infinitely many positive inte-
ger values of t such that

0 < a1(t) < a2(t) < a3(t) < a4(t),

gcd (a1(t), a2(t), a3(t), a4(t)) = 1,

and the lattice

Λa(t) =

x ∈ Z4 :
4∑
i=1

ai(t)xi = 0


is WR. Moreover, for each such a(t) the min-
imum of bounds (1) - (4) on the Frobenius
number F(a(t)) is O(t4) while our bound of
Corollary 2 is O(t3). For instance, a(t) has
these properties for all t = 13s + 2, where
s ≥ 2 is an integer.
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Theorem 3 is a special case of a more general

conjecture, which we believe to be true in all

dimensions. To state it, we need some more

notation.

An ordered collection of linearly independent

vectors {x1, . . . ,xk} ⊂ ZN , 2 ≤ k ≤ N , is

called nearly orthogonal if for each 1 < i ≤ k

the angle between xi and the subspace of

RN spanned by x1, . . . ,xi−1 is in the interval[
π
3,
π
2

]
. In other words, this condition means

that for each 1 < i ≤ k

| < xi,y > |
‖xi‖‖y‖

≤
1

2
, (6)

for any nonzero vector y ∈ spanR{x1, . . . ,xi−1},
where < , > stands for the usual inner prod-

uct on RN .

Theorem 4 (Baraniuk, Dash, Neelamani).

Suppose that an ordered basis {x1, . . . ,xk}
for sublattice Λ of ZN of rank 1 < k ≤ N

is nearly orthogonal. Then it contains the

shortest non-zero vector of Λ.

11



Conjecture 5 (F., Robins (2005)). Let

x1 = (t1, . . . , tN)

be a variable vector, and write SN for the

symmetric group on N letters where id stands

for the identity permutaion. There exist per-

mutations

σ1, σ2, . . . , σN−1 ∈ SN
with σ1 = id, and N(N − 1) integers

m11, . . . ,m(N−1)N ∈ {0,1}

such that for every 1 ≤ i ≤ N − 1

xi =
(
(−1)mi1tσi(1), . . . , (−1)miN tσi(N)

)
satisfy the following conditions for infinitely

many positive integer values of the variables

t1, . . . , tN :
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1. x1, . . . ,xN−1 are linearly independent,

2. For each 1 ≤ i ≤ N the corresponding
Grassmann coordinate det(XIi) of the ma-
trix X = (x1 . . .xN−1)t satisfies the con-
dition

(−1)N+1−i det(XIi) > 0,

where Ii = {1, . . . , N} \ {i},

3. Absolute values of Grassmann coordinates
of X are relatively prime,

4. {x1, . . . ,xN−1} is a nearly orthogonal col-
lection of vectors.

Corollary 6 (F., Robins (2005)). For each
such N-tuple t1, . . . , tN the lattice

spanZ{x1, . . . ,xN−1}

is WR and of the form Λa where a is the vec-
tor with coordinates ai = (−1)N+1−i det(XIi)
for each 1 ≤ i ≤ N .
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• If we fix t2, . . . , tN in Corollary 6 above,
and let t1 = t ∈ Z>0 vary, we obtain in-
finite one-parameter families of WR lat-
tices of the form Λa. For each such fam-
ily bounds on F given by (1) - (4) will in
general be O

(
t2(N−2)

)
, while our bound

of Corollary 2 will be O
(
tN−1

)
.

• WR lattices are essential in coding the-
ory, sphere packings and coverings, kiss-
ing number, and related optimization prob-
lems.

• C. McMullen recently (2005, JAMS) stud-
ied the distribution of unimodular WR
lattices, proving the six-dimensional case
of a famous conjecture of Minkowski as
a corollary of his results.

• Our work on the Frobenius problem pro-
vides additional motivation to study dis-
tribution of WR sublattices of ZN ; I have
recently done this in case N = 2.
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