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Introduction

e N > 2 an integer

e a; < ap < --- < ap positive relatively
prime integers

Define the Frobenius number

F = F(al, caey CLN)

to be the largest positive integer that cannot
be expressed as

N
> ax;
1=1

where x1,...,xy are non-negative integers. F
exists because

gcd(aq,...,any) = 1.



Frobenius Problem (FP): Given N and the
numbers aq,...,ayn find F.

For N = 2:

F(ay,ap) = (a1 —1)(ax — 1) — 1.

This formula is usually attributed to Sylvester,
although there is no formal record of it in
Sylvester's work; Sylvester proposed a re-
lated problem in Educational Times in 1884,
a solution to which was presented in the same
article by Curran Sharp.

There is no known formula for an arbitrary
N: moreover:

Fact: FP is NP-hard.
Kannan (1992): For each fixed N, there ex-

ists a polynomial time algorithm for finding
the Frobenius number of a given N-tuple.



Upper bounds for N > 3

Erdds, Graham (1972):

F < QaN [a—]\}] — aq.

Vitek (1975):

F <
< |e2=2

Selmer (1977):

a N
F < 2an_ [—] — an.
~ N—1 N N

Beck, Diaz, Robins (2002):

(a2 - 1><aN—2>] L

(1)

(2)

(3)

e Jatazaz(a1 + ax +az) — a1 —ap - a3

2

(4)



Kannan’s approach

Frobenius number F can be related to the
covering radius of a certain convex body with
respect to a certain lattice.

Lattice:

N-—-1
L = {CE c ZN_l : Z a;T; = 0 (mod CLN)} .
=1

Convex body:

N-1
S:{:BER‘;VO:[: Z CLZCCZS]_}
1=1

Covering radius:

1w(S, L) = inf{t ERog 1 tS+ L = RN_l}.



Kannan (1992):

N

F = /L(S,ﬁ) — Z a;.
1=1

Standard techniques for bounding a covering
radius only work in the case when the convex
body is symmetric with respect to the origin,
which is clearly not the case here.

However, this approach motivates applying
techniques from geometry of numbers to pro-
duce upper bounds for F.



Geometry of numbers

We relate the Frobenius number to a cov-
ering radius of a Euclidean ball with respect
to a different lattice, which is much easier to
estimate.

Lattice:

N
/\a:{wEZNI ZCLZCCZ:O}
=1

Covering radius:

Rag =inf{RE€R<g: B(R) + Ag = Va},

where Vg = spangp/Aq, and B(R) = ball of
radius R centered at the origin in Vg.



Theorem 1 (F., Robins (2005)).

N —
- | z aMnan?—a +1]
WN— .
where
N-1
m™ 2

wn—1 = Voly_1(B(1)) = - (N_—H)

T he last inequality follows by classical results
of Jarnik and MinkowskKi.

For each 1 < < N — 1, the -th successive
minimum \; of Aq is defined to be the infi-
mum of all A > 0 such that B(A)N/Ag contains
1 hon-zero linearly independent vectors in Vg.

Not hard to prove:

2 <A1 <o < Ayt (5)



Theorem 1 implies a bound in terms of the
ratio of largest and smallest successive min-
ima:

Corollary 2 (F., Robins (2005)). Let the no-
tation be as above. Then

)\N_]_(N — 1)2 Zi\él a”i\/Ha'H2 o a’i2

1
M(flallV 2wy 1)V

+1

F <

In the special case when

AL = = AN

i.e. Ng is a lattice with equal successive min-
ima, the bound of Corollary 2 is particularly
good. Such lattices are called well-rounded
(WR).

Our bounds are symmetric in all aq,...,apy,
unlike the previously known ones.

Question: How often is the lattice of the
form Aq WR, if at all?

We start with some examples.



WR lattices

Theorem 3 (F., Robins (2005)). Let t €
Z~q, and define

a1(t) = 6t° — 13t — 216, ao(t) = 6t° — 125,
asz(t) = 7Tt° — 174, aq(t) = t> — 36t — 78.
Then for each t € Z~q,

a(t) = (a1(t),ax(t), a3(t), as(t)) € Z*,
and there exist infinitely many positive inte-
ger values of t such that

0 < a1(t) <ax(t) <az(t) <aa(t),

gcd (a1(t), an(t),a3(t),aa(t)) =1,
and the lattice

4
/\a(t) = {CL‘ e 7% Z a;(t)x; = O}
i=1
is WR. Moreover, for each such a(t) the min-
imum of bounds (1) - (4) on the Frobenius
number F(a(t)) is O(t*) while our bound of
Corollary 2 is O(t3). For instance, a(t) has
these properties for all t = 13s + 2, where
s > 2 Is an integer.
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Theorem 3 is a special case of a more general
conjecture, which we believe to be true in all
dimensions. To state it, we need some more
notation.

An ordered collection of linearly independent
vectors {x1,...,xi} C ZN, 2 < k < N, is
called nearly orthogonal if for each 1 <1 < k
the angle between x; and the subspace of
RY spanned by x1,...,x;_1 is in the interval
[%,g} In other words, this condition means
that for each 1 <1 < k

|<mw>|§; (6)
il [y 2

for any nonzero vector y € spang{x1,...,x;_1},
where < , > stands for the usual inner prod-
uct on RV,
Theorem 4 (Baraniuk, Dash, Neelamani).
Suppose that an ordered basis {xq,...,x}}
for sublattice N of Z& of rank 1 < k < N
is nearly orthogonal. Then it contains the
shortest non-zero vector of A.

11



Conjecture 5 (F., Robins (2005)). Let

L1 — (t17"'7tN)

be a variable vector, and write Sy for the
symmetric group on N letters where id stands
for the identity permutaion. T here exist per-
mutations

01,02,---,0N_-1 €SN
with o1 = id, and N(N — 1) integers
mils---, M(N_1)N € {0,1}
such that forevery 1 <:< N —1

L4 = ((_1>mi1tai(1)v Tt (_1)miNtUi(N))

satisfy the following conditions for infinitely
many positive integer values of the variables

t1,..., LN

12



1. ®1,...,xpny_q1 are linearly independent,

2. For each 1 < ¢ < N the corresponding
Grassmann coordinate det(X ) of the ma-
trix X = (x1...xn_1)? satisfies the con-
dition

(-1)N T det(Xy,) > 0,
where I; = {1,..., N} \ {i},

3. Absolute values of Grassmann coordinates
of X are relatively prime,

4. {x1,...,xny_1} IS @ nearly orthogonal col-
lection of vectors.

Corollary 6 (F., Robins (2005)). For each
such N-tuple t1,...,tyn the lattice

spanz{zi1,...,TN_1}
is WR and of the form Nq where a is the vec-
tor with coordinates a; = (—1)Nt17tdet(X )
for each 1 <1 < N.
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o If we fix to,...,t Iin Corollary 6 above,
and let t1 =t € Z~¢g vary, we obtain in-
finite one-parameter families of WR lat-
tices of the form Aq. For each such fam-
ily bounds on F given by (1) - (4) will in
general be O <t2(N_2)), while our bound

of Corollary 2 will be O (tN—l).

e WR lattices are essential in coding the-
ory, sphere packings and coverings, Kiss-
ing number, and related optimization prob-
lems.

e C. McMullen recently (2005, JAMS) stud-
ied the distribution of unimodular WR
lattices, proving the six-dimensional case
of a famous conjecture of Minkowski as
a corollary of his results.

e Our work on the Frobenius problem pro-
vides additional motivation to study dis-
tribution of WR sublattices of Z¥V: I have
recently done this in case N = 2.
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