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Abstract

We study the equilibrium solutions of an integrodifferential equation used
to model one-dimensional biological swarms. We assume that the motion
of the swarm is governed by pairwise interactions, or a convolution in the
continuous setting, and derive a continuous model from conservation laws.
The steady-state solution found for the model is compactly supported and
is shown to be an attractive equilibrium solution via linear perturbation
theory. Numerical simulations support that the steady-state solution is at-
tractive for all initial swarm distributions. Some initial results for the model
in higher dimensions are also presented.
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Chapter 1

Introduction

Many biological species, including insects, and fish, behave as swarms and
form groups or aggregations naturally. This behavior is motivated by en-
dogenous social interactions as well as exogenous factors. Endogenous in-
teractions can arise because organisms sense each other through a variety of
different methods including sight, touch, smell, chemical interactions, and
vibrations. These interactions can result in attractive or repulsive forces
between the organisms. For example, while some organisms may group
together for safety, they will not concentrate to the point of stacking on top
of each other. The endogenous interactions may be coupled with exoge-
nous forces such as wind or gravity via superposition to account for the
forces acting on the entire swarm. These forces can lead to a variety of dif-
ferent swarm shapes or equilibrium solutions. For examples, see Bernoff
and Topaz (2010); Bodnar and Velazquez (2005, 2006); Leverentz, Topaz,
and Bernoff (2009); Mogilner, Edelstein-Keshet, Bent, and Spiros (2003).

Different models of swarming behavior may choose to incorporate dif-
ferent forces, and may model them in a variety of ways. In addition, the
model may be continuous or discrete. Discrete models, which are more
easily relatable to biological swarms, represent each organism as a particle
with a position and velocity based on the locations of the other organisms
(Mogilner et al., 2003). Typically, the organisms are modeled as interacting
in a pairwise manner so that each organism’s velocity is based on the sum
of the pairwise and exogenous forces. Continuous models instead describe
the swarm in terms of a continuous-density function or cumulative-density
function where the velocity of the swarm at a particular point is based on a
convolution over the swarm that represents the continuous analog of pair-
wise interactions.



2 Introduction

In this thesis, I examine a particular continuous model that contains at-
tractive and repulsive interaction forces with no exogenous forces acting
on the swarm. I consider a one-dimensional model where the velocity at a
point is directly proportional to the net social force felt at that point. The
density of the swarm for a given position and time is governed by the fol-
lowing integrodifferential equation:

ρt + (ρV)x = (ρρx)x, (1.1)

V(x, t) =
∫ ∞

∞
ρ(z, t)sgn(x− z) dz. (1.2)

The density is denoted by ρ(x, t) at a position x and time t. The attractive-
velocity component, V(x, t), is a convolution of the signum function with
the density. Finally, the (ρρx)x term is the porous-medium regularization
of the repulsive component of the endogenous interactions, which is where
the distance of the repulsive component is arbitrarily small. For more in-
formation on this limiting case, see Bodnar and Velazquez (2006).

1.1 Literature Review

Early work on modeling particle interactions was done by Mogilner and
colleagues (2003). They formulate a Lagrangian model to examine the spac-
ing of members of a discrete swarm using pairwise interactions between all
members of the group to model interactions. In addition, Mogilner and his
colleagues find conditions on the choices of attractive and repulsive func-
tions such that the function does not blow up.

Others, such as Bodnar and Velazquez (2006; 2005), Bernoff and Topaz
(2010), and Leverentz and colleagues (2008; 2009), have studied many vari-
ations of a more general one-dimensional continuous model given by

ρt + (ρv)x = 0 (1.3)

v(x) =
∫

R
q(x− y)ρ(y) dy + f (x), (1.4)

where v(x) is a velocity field, q(z) is the pairwise endogenous force, and
f (x) represents any exogenous forces. For an antisymmetric endogenous
force q(z), this model displays at least three different solution types that
the density distribution can converge to. Populations can concentrate to a
delta function at a point, spread out infinitely, or reach a finite steady-state.



Literature Review 3

Bodnar and Velazquez (2005) derive the continuous governing Equa-
tion 1.3 from a discrete model. They explore conditions for well-posedness
as well as finite time blow up for Equation 1.3. In addition, they also exam-
ine possible steady-state solutions and show that some may exhibit more
complicated structure than finite-time blowup or infinite spreading. Bod-
nar and Velazquez (2006) examine the change in density over time with the
addition of a stochastic element.

Bedrossian and colleagues (2010) examine higher-dimensional aggre-
gation equations with degenerate diffusion. For the set of equations they
examine they determine a critical mass such that for initial solutions with
masses greater than the critical mass there is finite time blow up, whereas
for solutions with less initial mass there is global existence. This is simi-
lar to the work of Bertozzi and Slepcev (2010), which proves existence and
uniqueness of weak solutions to the same general equation but with a non-
singular attractive kernel.

Bernoff and Topaz (2010) examine a two-dimensional model for locust
swarming. Additionally, they look at one-dimensional swarming models
from an energy minimization and calculus of variations perspective to de-
termine some conditions for steady-state solutions. The approach taken in
this thesis is similar to that taken by Bernoff and Topaz as well as Lever-
entz (2008); however, the analysis is conducted only on a particular one-
dimensional model.

Brecht and colleagues (2011) determine how different combinations of
attractive and repulsive forces change energy minimizers on the surface of
a sphere by solving an eigenvalue problem in three dimensions. Interest-
ingly, although for some parameter choices the distributions have radial
symmetry, there are a number of energy minimizers with much more com-
plex forms. Huang and Bertozzi (2010) also examine the same continuous
model in Rn, but instead examine conditions under which there the density
blows up at some point. Their approach is very similar to the eigenvalue
problem examined in Chapter 4.





Chapter 2

Mathematical Formulation of
the Model

In this chapter I will define the discrete particle interaction model and then
derive the continuum model from the discrete model. I will demonstrate
that the center of mass remains unchanged, which will be important when
examining perturbations from the steady-state solution in Chapter 3.

2.1 Discrete Model

For the discrete model, consider N identical particles in one spatial dimen-
sion with positions given by xi. These particles may represent biological
organisms engaged in swarming. By assuming that the motion of the par-
ticles is governed by Newton’s law, the acceleration is proportional to the
force acting on the particle. We will use a kinetic model where the acceler-
ation is negligible and, as a result, drag force is directly proportional to the
motive force or velocity of the particle. For a more in-depth discussion of
this approach, see Bernoff and Topaz (2010).

To simplify the model we assume that the endogenous forces act in an
additive pairwise manner and that the force is antisymmetric. In addition,
we will disregard any exogenous forces acting on the particles and consider
only endogenous forces. Thus the force from particle i felt by particle j is
the opposite of the force from particle j felt by particle i and there are no
other effects such as wind or gravity.

Given these assumptions, the governing equation for the discrete model
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takes the form
dxi

dt
= Vi(x1, . . . , xN), (2.1)

Vi(x1, . . . , xN) =
N

∑
j=1
j 6=i

mq(xi − xj), m = M/N. (2.2)

Here M is the total mass of the swarm and q is the antisymmetric endoge-
nous force of one particle on another. The mass of each δ-function, m, is
defined so that as the number of particles increases the mass remains con-
stant.

2.2 Continuous Model

In order to derive a continuum model, we describe the set of particles in
the discrete model as δ-functions of size m. Then the density at a point x is
the sum of the δ-functions. Therefore,

ρ(x) =
N

∑
i=1

mδ(x− xi), (2.3)

and the total mass is

M =
∫ ∞

−∞
ρ(x) dx = mN. (2.4)

In addition, we can rewrite the discrete velocity for a point x as

v(x) =
∫ ∞

−∞
q(x− y)ρ(y) dy. (2.5)

Here the summation is replaced by a convolution, but q remains the same.
The mass for a given region of the swarm is

M =
∫ b

a
ρ(x, t)dx, (2.6)

where the flux Q in the region is given by

Q = ρ(a)v(a)− ρ(b)v(b). (2.7)

Then, by conservation of mass and the fundamental theorem of calculus,
we can rewrite Equation 2.7 as

dM
dt

= Q = −
∫ b

a
(ρ(x)V(x))xdx (2.8)
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Taking a time derivative of the mass equation, equating Equation 2.6 with
Equation 2.8, and rearranging terms,∫ b

a
ρt + (ρv)x dx = 0. (2.9)

Equation 2.9 holds for any interval [a, b], so

ρt + (ρv)x = 0. (2.10)

For our model, the velocity term V can be represented as a combination of
attractive and repulsive velocities, where

v(x) = va(x) + vr(x). (2.11)

The attractive component is chosen as

va(x) =
∫ ∞

−∞
ρ(y)sgn(x− y) dy, (2.12)

so that the attractive component of a point’s velocity is independent of dis-
tance and dependent only on the amount of mass to the left and right on the
real axis. Next, for the repulsive force we want a force that is highly repul-
sive at short distances, negligible at larger distances, and never attractive.
In order to accomplish these force requirements, let

Fr(x) = q(x), (2.13)

where q is odd and xq > 0 for x > 0. Let ε represent the approximate size
of the region where the force is repulsive, and let q be near zero elsewhere.
Then

vr(x) =
∫ ∞

−∞
ρ(y)q(x− y) dy =

∫ ∞

−∞
ρ(x− y)q(y) dy. (2.14)

Taylor expanding ρ(x − y) and substituting the result back into the repul-
sive velocity function, we get

vr(x) = −ρx(x)Cε2 +O(ε4), (2.15)

where C is a constant. The y variables from the Taylor expansion have been
replaced by epsilon because q(y) ≈ 0 outside of a distance of ε away from
y. Substituting vr and va into the governing equation we derive our original
model

ρt + (ρV)x = (ρρx)x (2.16)

V(x, t) =
∫ ∞

−∞
ρ(z, t)sgn(x− z) dz, (2.17)

where V represents the attractive component.
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2.3 Properties of the Model

By virtue of the derivation of the governing equation, the model observes
conservation of mass for any swarm of finite mass. The antisymmetry of
the endogenous forces in the model leads to interactions between each com-
ponent of the swarm in equal magnitude and opposite direction. The lack
of exogenous forces implies that the center of mass of the system should
remain constant. Since this should hold for all antisymmetric endogenous
forces for simplicity and generality, we will derive this fact for the general
model

ρt + (ρv)x = 0, (2.18)

mentioned before, where there are only endogenous forces. For a more
complete derivation, see Leverentz (2008).

Consider the center of mass at time t,

x̄(t) =
1
M

∫ ∞

−∞
xρ(x, t) dx. (2.19)

Then, taking a time derivative of both sides, substituting from the govern-
ing equation, and applying the chain rule,

dx̄
dt

=
1
M

∫ ∞

−∞
xρt dx (2.20)

= − 1
M

∫ ∞

−∞
x(ρv)x dx (2.21)

= − 1
M

xρv|x=∞
x=−∞ +

1
M

∫ ∞

−∞
ρv dx. (2.22)

For a finite mass the density vanishes at ±∞, thus

dx̄
dt

=
1
M

∫ ∞

−∞

∫ ∞

−∞
ρ(x, t)ρ(y, t)q(x− y) dy dx, (2.23)

where q(x) represents the pairwise endogenous forces. By relabeling the
variables of integration and invoking the antisymmetry of the endogenous
forces, it follows that

dx̄
dt

= −dx̄
dt

= 0. (2.24)

Therefore, the center of mass remains unchanged for any finite swarm dis-
tribution.



Chapter 3

Steady-State Solution and
Energy Minimization

In this chapter I will derive the steady-state solution via two different ap-
proaches. Initial results of an energy minimization argument demonstrat-
ing global convergence to the steady-state solution is shown along with
results from linear perturbation theory that indicate convergence.

Consider the cumulative density function defined by

ψ(x) =
∫ x

−∞
ρ(s) ds. (3.1)

Assuming continuity of ρ, then ψx = ρ. Substituting ψ(x) into the govern-
ing equation,

(ψt)x + ((M− 2ψ)ψx)x = (ψxψxx)x, (3.2)

because

V(x) = −
∫ x

−∞
ρ(y) dy +

∫ ∞

x
ρ(y) dy (3.3)

= −ψx + M− ψx (3.4)
= M− 2ψx. (3.5)

Next, integrating both sides of the governing equation, we get a partial
differential equation in terms of ψ given by

ψt + (M− 2ψ)ψx = ψxψxx. (3.6)

Here limx→−∞ ψ(x) = 0 and limx→∞ ψ(x) = M where M is the total mass
of the swarm.
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3.1 Steady-State Solution

By setting the ψt term of the governing equation to 0, we obtain an ordinary
differential equation in terms of x that can be solved to find the steady-state
solution. The differential equation is

(M− 2ψ)ψx = ψxψxx. (3.7)

Outside the support of the solution ψx = ρ = 0. Inside the support by def-
inition ψx 6= 0. From these assumptions we can simplify the ODE further
to

ψxx + 2ψ = M. (3.8)

Because the solution is translationally invariant, a steady-state solution is
given by

ψ(x) =


0 x ≤ −π

2
√

2
,

M
2 sin(

√
2x) + M

2 − π
2
√

2
≤ x ≤ π

2
√

2
,

M x ≥ −π
2
√

2
.

(3.9)

Differentiating ψ(x) we obtain the the steady-state solution for the density
function,

ρ(x) =


0 x ≤ −π

2
√

2
,

√
2M
2 cos(

√
2x) − π

2
√

2
≤ x ≤ π

2
√

2
,

0 x ≥ −π
2
√

2
.

(3.10)

Alternatively, we can consider the mutual-interaction potential, Q(z) de-
fined by

Q(z) =
∫ z

q(s) ds. (3.11)

Then, by definition of the total velocity, it follows that

v(x) = −[Q ∗ ρ]x. (3.12)

For the specific choice of velocity we have, then

Q(z) = δ(z) + |z|. (3.13)

Consider a steady-state solution, ρ̄, then v(x) = 0 when the density is given
by ρ̄(x). Therefore from Equation 3.12, we have

0 = −[Q ∗ ρ̄]x. (3.14)
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Integrating both sides with respect to x,

λ = −Q ∗ ρ̄ (3.15)

for some constant λ. Substituting in Q(z) = δ(z) + |z| and absorbing the
negative sign into the constant yields the integral equation

λ =
∫ ∞

−∞
ρ̄(y)(δ(x− y) + |x− y|) dy (3.16)

= ρ̄(x) +
∫ ∞

−∞
ρ̄(y)|x− y| dy. (3.17)

Applying the operator ∂xx to Equation 3.16 yields the differential equation

0 = ρ̄xx + 2ρ̄. (3.18)

Because the system is translationally invariant, has finite mass, and must
satisfy the initial integral equation, the solution for ρ̄ is identical to Equa-
tion 3.10.

3.2 Energy Functional

The total energy or energy potential of a swarm configuration is given by

W[ρ] =
1
2

∫
Ω

∫
Ω

ρ(x)ρ(y)Q(x− y) dx dy. (3.19)

The energy potential is analogous to the discrete potential, which is one half
of a double sum over all the points in order to discount the double count-
ing. For a more in-depth discussion of the energy potential, see Bernoff
and Topaz (2010) where the energy functional is derived from the discrete
potential.

In addition, the rate of energy dissipation is given by

dW[ρ]

dt
= −

∫
Ω

ρ(x)v(x)2 dx, (3.20)

where v(x) is the sum of the attractive and repulsive components of the
velocity. The derivation is as follows,

dW[ρ]

dt
=

d
dt

1
2

∫
Ω

∫
Ω

ρ(x)ρ(y)Q(x− y) dx dy (3.21)

=
∫

Ω

∫
Ω

ρ(x)tρ(y)Q(x− y) dx dy. (3.22)
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Equation 3.21 follow from the product rule and symmetry of ρ(x) and ρ(y).
Then, substituting in from the general governing equation and rewriting
the second integral as a convolution,

dW[ρ]

dt
= −

∫
Ω
(vρ)x[x](Q ∗ ρ)[x] dx. (3.23)

Integrating by parts and substituting in Equation 3.12, Equation 3.21 be-
comes

dW[ρ]

dt
= −

∫
Ω
(vρ)[x](Q ∗ ρ)x[x] dx. = −

∫
Ω

ρ(x)v(x)2 dx. (3.24)

Thus the change in energy is always less than or equal to zero. In addition,
there is no change in energy at points with no density. Therefore, if a so-
lution has reached an energy minimum then it is an attractive equilibrium
solution with some basin of attraction.

We examine perturbations from the steady-state solution to determine
under what conditions or perturbations it is a minimizer of the total energy
W. Consider a swarm configuration given by

ρ(x) = ρ̄ + ρ̃(x). (3.25)

Here ρ̄ is the steady-state solution and ρ̃ is a zero-mass perturbation. Thus
if ρ̄ is a steady-state solution of mass M then∫

Ω
ρ̄(x) dx = M, (3.26)

∫
Ω

ρ̃(x) dx = 0. (3.27)

In addition, because the solutions are translationally invariant and the cen-
ter of mass is maintained we only need consider perturbations that do not
change the center of mass. Thus∫

Ω
xρ̃(x) dx = 0. (3.28)

Because W is quadratic in ρ, the energy of the configuration with a pertur-
bation is given by

W[ρ] = W[ρ̄] + 2W1[ρ̄, ρ̃] + W2[ρ̃, ρ̃], (3.29)

where W1 and W2 are the first and second variations, respectively.
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3.3 Perturbations Inside Support

Consider a perturbation of the form ρ(x) = ρ̄ + ρ̃(x) where the support of
ρ̃(x) lies inside the region of support of ρ̄. The difference in the energies of
W[ρ̄] and W[ρ] is

∆W = 2W1[ρ̄, ρ̃] + W2[ρ̃, ρ̃]. (3.30)

First, let us define
Λ(x) = Q ∗ ρ̄. (3.31)

Then, differentiating with respect to x, we get

Λ(x)x = [Q ∗ ρ̄]x = V(x) (3.32)

from Equation 3.12. If we are only concerned with the region where x is in
the support of ρ̄, then V(x) = 0. As a result,

Λ(x) = λ (3.33)

in the support of ρ̄.
The first variation is given by

W1[ρ̄, ρ̃] =
∫

Ω

∫
Ω

ρ̃(x)ρ̄(y)Q(x− y) dy dx (3.34)

=
∫

Ω
ρ̃(x)[

∫
Ω

ρ̄(y)Q(x− y) dy] dx (3.35)

=
∫

Ω
ρ̃(x)Λ(x) dx. (3.36)

Because we are integrating over the support of ρ̄, it follows from Equa-
tion 3.33 that

W1[ρ̄, ρ̃] =
∫

Ω
ρ̃(x)Λ(x) dx (3.37)

= λ
∫

Ω
ρ̃(x) dx (3.38)

= 0. (3.39)

By the zero-mass constraint on ρ̃. Therefore, the change in energy for per-
turbations inside the support of ρ̄ is

∆W = W2[ρ̃, ρ̃] =
1
2

∫
Ω

∫
Ω

ρ̃(x)ρ̃(y)Q(x− y) dy dx. (3.40)
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Next, we examine the Fourier transform of Q to analyze ∆W. Define the
Fourier transform

Q̂(k) =
∫ ∞

−∞
Q(x)e−ikx dx. (3.41)

Then

W2[ρ̃, ρ̃] =
1
2

∫
Ω

∫
Ω

ρ̃(x)ρ̃(y)Q(x− y) dy dx (3.42)

=
1
2

∫ ∞

−∞

∫ ∞

−∞
ρ̃(x)ρ̃(y)Q(x− y) dy dx (3.43)

=
1
2

∫ ∞

−∞
ρ̃(x)[ρ̃(x) ∗Q(x)] dx (3.44)

=
1

4π

∫ ∞

−∞
| ˆ̃ρ(k)|2Q̂(k) dk, (3.45)

where we have used the fact that ρ̃ is real, and compactly supported as
well as the convolution theorem and Parseval’s Theorem. For the set of
endogenous forces in our model,

Q̂(k) = 1− 2
|k|2 . (3.46)

Because Q̂(k) is not necessarily greater than zero, we analyze the eigen-
value problem.

A necessary and sufficient condition for W2 > 0 comes from consider-
ing the spectrum of I in Ω, where

W2[ρ̃, ρ̃] =
∫

Ω
I[ρ̃]ρ̃(x)dx. (3.47)

Assuming the perturbation is nontrivial, then if the eigenvalues of I are
positive it follows that W2 > 0. Define µn such that for ρn,

µnρn(x) =
∫

Ω
ρn(y)Q(x− y) dy. (3.48)

Then, substituting in Q, we have

µnρn(x) =
∫

Ω
ρn(y)(|x− y|+ δ(x− y)) dy (3.49)

= ρn(x) +
∫

Ω
ρn(y)|x− y| dy. (3.50)
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Because
∫

Ω ρ(y)δ(x− y) dy = ρ(x). Applying the differential operator d2

dx2

to eigenvalue problem yields the differential equation

(µn − 1)ρ′′n(x) = 2ρn(x). (3.51)

When µn > 1, solutions are of the form of exponentials; however, when
µn < 1, solutions to the integral equation have the form

ρn = C1 cos

√
2

1− µn
x + C2 sin

√
2

1− µn
x. (3.52)

Here C1 and C2 are constants of integration. Therefore the possible eigen-
functions are

µnodd = sin

√
2

1− µn
x, µneven = cos

√
2

1− µn
x. (3.53)

For simplicity, let a =
√

2
1−µn

and l = π
2
√

2
. Then by plugging µnodd back into

the integral equation over the region of support of the steady-state solution,
[−l, l], the solution is

µn sin ax =
2x cos(al)

a
+

(a2 − 2) sin ax
a2 . (3.54)

We constrain the possible values of µn so that there is no linear term. Thus

2x cos(al)
a

= 0. (3.55)

As a result, the eigenvalues must be of the form

µn = 1− 1
(2k + 1)2 , k ∈ Z. (3.56)

When k = 0, the eigenvalue is zero, whereas for all other values of k the
value of µn is in the range (0,1).

Next, using the same approach as for the odd eigenvalues, we substitute
µneven into the original integral equation. This yields

µn cos(ax) =
(a2 − 2)cos(ax)

a2 +
2 cos(al) + 2al sin(al)

a2 . (3.57)
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Again, we require that the constant term is zero. For this set of eigenfunc-
tions, then,

2 cos(al) + 2al sin(al)
a2 = 0, (3.58)

or rearranging terms,
al = − cot(al). (3.59)

In terms of µn, Equation 3.59 requires that

π

2

√
1

1− µn
= − cot

π

2

√
1

1− µn
. (3.60)

There are no negative eigenvalues that satisfy this constraint but, as in the
case with the even eigenvalues, an infinite number in the interval (0, 1).
Because we also require that the perturbations satisfy Equation 3.27 and
Equation 3.28, there are no even or odd eigenfunctions that satisfy this
alone. Therefore we need to look for a combination of eigenfunctions to
satisfy the physical constraints placed on the perturbation. As a result, we
can disregard µn = 0 as a possible eigenvalue for a perturbation because it
does not satisfy Equation 3.28 alone.

Because there are no negative or zero eigenvalues, the steady-state so-
lution is an energy minimizer for perturbations inside the support of the
steady-state solution. While there are only positive eigenvalues, further
work needs to be done to determine what is the smallest positive eigen-
value that meets the physical constraints of the problem as well as satisfies
the eigenvalue problem. Finding the minimum of the Rayleigh quotient,

R(ρ̃) =
W(ρ̃, ρ̃)

||ρ̃||2 =
∑ a2

n||ρ̃||2µn

∑ a2
n||ρ̃||2

, (3.61)

subject to the constraints Equation 3.27, Equation 3.28, and

||ρ̃||2 6= 0, (3.62)

should yield a minimum eigenvalue. Unfortunately, there does not appear
to be a finite number of eigenfunctions that when composed to make up ρ̃
satisfy the constraints.

3.4 Perturbations Outside Support

Next we can consider perturbations such that ρ̃ > 0 outside the support
of ρ̄. From Bernoff and Topaz (2010), it suffices for W2 > 0 to guarantee
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that ρ̄ is a global minimizer. Because Q̂(k) > 0, again we need to solve
the eigenvalue problem for this extended region of support. Unfortunately
this requires a similar approach to that of perturbations inside of the sup-
port. As a result, it is still an open question as to whether the eigenvalues
of this problem are all strictly greater than zero. While the perturbation
method leads to only some partial results, a similar approach from linear
perturbation theory provides more insight.

3.5 Linear Perturbations

In order to linearize the problem, we again look at perturbations from the
steady-state given by

ρ = ρ̄ + ερ̃, (3.63)

where ρ̄ is the steady-state solution and ερ̃ is a perturbation. We define the
perturbation so that we can rewrite ρ̃ in the form

ρ̃ = eλtρ0(x), (3.64)

where ρ0(x) is some initial distribution in order to eventually derive an
eigenvalue equation. The assumption about the time dependence of the
perturbation holds in the limit as the perturbation becomes small and t
gets large because the solution will decay to the steady-state solution at the
rate of the dominant eigenvalue. The analysis becomes simpler, however,
when looking at linear perturbations from the cumulative density function.
Let

ψ = ψ̄ + εψ̃, (3.65)

where ψ̄ is the steady-state solution and εψ̃ is a perturbation. Again,

ψ̃ = ψ̃0(x)eλt, (3.66)

where ψ̃0(x) is some initial distribution. The governing equation in terms
of ψ, Equation 3.6, is

ψt + (M− 2ψ)ψx = ψxψxx. (3.67)

Substituting in ψ = ψ̄ + εψ̃ into Equation 3.6 and separating the O(1) and
order O(ε) terms yields the system of equations

(M− 2ψ̄)ψ̄x = ψ̄xψ̄xx O(1), (3.68)
λψ̃ = (2ψ̃− ψ̃xx)ψ̄x O(ε). (3.69)
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Higher order terms in epsilon, in this case O(ε2), are ignored. The first
equation in the system is the steady-state equation which is solved in Sec-
tion 3.1, while the second equation is the linearized eigenvalue problem.
Substituting in ψ̄x, the equation becomes

λψ̃ = (2ψ̃− ψ̃xx)

√
2M
2

cos(
√

2x), − π

2
√

2
≤ x ≤ π

2
√

2
. (3.70)

Rearranging terms, the differential equation can be written as

ψ̃xx =

(
2− 2λ√

2M cos(
√

2x)

)
ψ̃. (3.71)

At the boundaries of the solution when

x = − π

2
√

2
, x =

π

2
√

2
, (3.72)

the coefficient on ψ̃ is not analytic. In order to simplify the following analy-
sis, we will shift the solution over and remove the scaling on the sinusoidal
term because the behavior remains the same regardless of how the coeffi-
cient is scaled. Then we can analyze the following equation,

uxx =

(
2− λ

c sin(x)

)
u (3.73)

The Laurent series expansion for 1/ sin(x) allows us to rewrite this as

uxx =

(
2− λ

c

) [
1
x
+

x
6
+

7x3

360
+O(x5)

]
u. (3.74)

By the method of Frobenius, we can consider a solution of the form u(x) =
∑∞

k=0 Ckxk+β. Substituting in u = xβ,

β(β− 1)xβ−2 =

(
2− λ

c

[
1
x
+

x
6
+

7x3

360
+O(x5)

])
xβ. (3.75)

In order for this to hold, we require that β ≥ 1. As a result, u(0) = 0.
Therefore, for eigenvalue problem we require that the following boundary
conditions hold,

ψ̃

(
− π

2
√

2

)
= ψ̃

(
π

2
√

2

)
= 0 (3.76)
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Figure 3.1 The eigenfunction associated with the smallest eigenvalue. Be-
cause this is a perturbation in terms of ψ, it is necessary to take a derivative in
order to get the minimum eigenfunction for the governing equation in terms of ρ.

Next, we can rewrite the second order eigenvalue equation as the system

zx =

(
2− 2λ√

2M cos(
√

2x)

)
ψ̃, (3.77)

ψ̃x = z. (3.78)

Using a fourth-order Runge-Kutta algorithm with shooting the eigenvalues
can be computed numerically. The smallest eigenvalue is λ = 2.37. For the
smallest eigenvalue, the associated eigenfunction is shown in Figure 3.1.
This result shows what is expected from the energy based perturbation
analysis. The solution converges to the steady-state for small perturbations
both inside and outside the region of support.





Chapter 4

Extensions to Higher
Dimensions

In this chapter I will present the analogous model for higher dimensions.
Radially symmetric steady-state solutions for an interval [a, b] are derived,
however, none appear to be solutions to the problem in Rn and it is unclear
if they are energy minimizers.

4.1 The Model in Higher Dimensions

For the attractive and repulsive forces used in the one-dimensional model,
an analogous continuity equation exists for the model in higher dimen-
sions. For a position vector ~x, the continuity equation becomes

ρt(~x, t) +∇ · (~V(~x, t)ρ(~x, t)) = 0, (4.1)

where
~V(~x, t) = ∇Q(~x, t)−∇ρ(~x, t), (4.2)

and
Q(~x, t) = |~x| ∗ ρ(~x, t). (4.3)

In order to attempt to find a steady-state solution, we assume it exhibits
radial symmetry. This makes the equations tractable by allowing the re-
placement of ρ(~x, t) with ρ(r, t) and creating a set of equations that more
closely resembles the one-dimensional case. Then Q becomes

Q(r, t) =
∫

SN
d(r, r′)ρ(r′, t)dΩ, (4.4)
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where dΩ is the volume element in RN , SN is the N-sphere, and d(r, r′) is
the Euclidean distance between two vectors in RN . By the law of cosines,

d(r, r′)2 = r2 + r′2 − 2rr′ cos(φ), (4.5)

where φ is the angle between the two radial vectors. By symmetry we can
rewrite Q as

Q(r, t) = cN

∫ ∞

0
ρ(r′, t)r′N−1

∫ π

o

√
r2 + r′2 − 2rr′ cos(φ) sinN−2 φ dφdr′,

(4.6)
where cN is the surface area of the unit sphere in R(N−1). A more in depth
discussion of a similar radially symmetric model can be found in Huang
and Bertozzi (2010) along with a limited derivation of Q.

To find a steady-state solution we require that the velocity is zero in
the support of the solution. Therefore to find the steady-state solution, it is
sufficient to solve

V(r) = ∇Q(r)−∇ρ(r) = ∇(Q(r)− ρ(r)) = 0. (4.7)

Integrating both sides,
Q(r)− ρ(r) = λ, (4.8)

for some constant λ. Substituting in Q(r) yields the integral equation

cN

∫ ∞

0
ρ(r′)r′N−1

∫ π

0

√
r2 + r′2 − 2rr′ cos(φ) sinN−2 φ dφdr′ − ρ(r) = λ.

(4.9)
For even powers of N the integral

k(r, r′) =
∫ π

0

√
r2 + r′2 − 2rr′ cos(φ) sinN−2 φ dφ (4.10)

has elliptic equations as the solution. For odd powers of N, however, the in-
tegral evaluates to a solution in terms of powers r and r′ along with signum
functions. As a result, we now examine the N = 3 case as the next simplest
model after N = 1. For N = 3, k(r, r′) simplifies to

k(r, r′) =

{
2
3

r′2+3r2

r r′ ≤ r,
2
3

3r′2+2r2

r′ r ≤ r′.
(4.11)

The function k(r, r′) is continuous and differentiable. Assuming the solu-
tion has support [a, b] where a ≥ 0, then we can rewrite Q(r) as

Q(r) = Q1(r) + Q2(r), (4.12)
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where

Q1(r) =
∫ r

a

2
3

ρ(r′)r′2(3r2 + r′2)
r

dr′, (4.13)

Q2(r) =
∫ b

r

2
3

ρ(r′)r′(3r′2 + r2) dr′. (4.14)

In order to simplify taking derivatives of the integral equation we multiply
both sides of the equation by r. This yields the modified integral equation

rQ(r)− rρ(r) = rλ. (4.15)

Differentiating four times with respect to r, the integral equation becomes
the differential equation

4rρ(r) + 4
d3

dr3 ρ(r) + r
d4

dr4 ρ(r). (4.16)

The four solutions to the equations are in terms of elementary functions.
The solutions are

S1(r) =
sinh(r) sin(r)

r
, (4.17)

S2(r) =
cosh(r) cos(r)

r
, (4.18)

S3(r) =
cosh(r) sin(r)

r
, (4.19)

S4(r) =
sinh(r) cos(r)

r
. (4.20)

Substituting the general solution of the differential equation given by

ρ(r) = A1S1(r) + A2S2(r) + A3S3(r) + A4S4(r), (4.21)

creates a system of equations that yields a solution in terms of a and b, the
edges of support.

4.2 Solution Intervals and Nonphysical Solutions

There are intervals [a, b], primarily with a at or near zero and b < 1, that
admit physical solutions where ρ(r) ≥ 0 for r ∈ [a, b]. However, finding
an interval where either a = 0 and ρ(b) = 0, or ρ(a) = ρ(b) = 0 proves
to be more difficult. If a solution of this form exists it is possible it is a
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Figure 4.1 The red section of the graph represents choices of a and corre-
sponding lengths of support where the steady-state solution has a physically
realizable solution. Where the grid is blue there is some interval of the steady-
state solution, possibly near one of the end points, where the density changes
sign. This indicates that if a steady-state solution exists, it likely has finite sup-
port.

steady-state solution for the original partial differential equation when we
allow r ∈ R+, while the other solutions are only steady-state solutions
if the swarm is confined to the interval [a, b] since it is likely the energy
minimizer.

In addition, for the vast majority of the space of possible choices of a
and b the steady-state solution includes sections where the density is less
than zero. In Figure 4.1, the physical solutions appear to only occur for
regions of finite support, particularly when b is not much greater than a.
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Figure 4.2 The first image shows the density distribution of a nonphysical
steady-state solution. While there are components that are less than zero, the
vast majority of the density appears to be concentrating toward the outer edge
of the support. The second image shows the density distribution of the steady-
state solution for the interval [0.1, 1]. Interestingly, the repulsive forces appear
to be stronger than the attractive forces resulting in a higher swarm density at
higher radii.





Chapter 5

Numerical Simulations

In this chapter I explain the Lagrangian approach used to model the swarm
distribution numerically. In one dimension the results are shown to match
closely with the analysis conducted in Chapter 3; however, for the higher-
dimensional case the numerical results and the analytical results appear to
disagree.

5.1 Derivation of the Model

In order to do numerical simulations to simulate the original continuous
partial differential equation, we return to the discrete Lagrangian model
introduced in Chapter 1. The cumulative mass function for the discrete
model is

ψD(xi) = i− 1/2, (5.1)

where we have used the convention that integrating up to a δ-function
yields half the mass of integrating through it. The velocity for a particle
xi is given by

dxi

dt
= Va + Vr. (5.2)

The signum function for the attractive velocity simplifies to

Va = (n− 2k + 1)m (5.3)

for a simulation with particles x1, . . . , xn. The repulsive component remains
the same,

Vr = −ψxx. (5.4)
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The second derivative of ψ is computed by numerical differentiation via
three-point interpolation. Two additional phantom points are required,
one on each end of the support, where the density is zero at the edge of
the support in order to fulfill all the constraints on ψ. These additional
points are incorporated into the numerical simulation because we require
that ψx = ρ = 0 at these points. These constraints imply that ψ(x0) = 0
and ψ(xn+1) = M.

For comparison to the steady-state solution, the numerical solutions are
normalized and translated so that the center of mass is the origin. In ad-
dition, the density ψx at the xi points is computed via differentiation of a
three-point interpolating polynomial.

5.2 Analysis

To accurately compute the error in the numerical simulation from the an-
alytical solution, the solution is imposed on an equally spaced grid where
the value of each point in the grid is computed via linear interpolation of
the densities ρi of the original and additional phantom particles.

Trivially, the mass of the system is maintained at each time step. In ad-
dition, as expected the center of mass remains unchanged. As can be seen in
Figure 5.1, initial conditions outside the support of the steady-state solution
as well as those inside the domain of support converge to the steady-state
solution. After rescaling the solution, there is strong agreement between
the steady-state solution and the discrete simulation. The agreement can
be seen in terms of both ρ and ψ in Figure 5.1. A refinement study using 40,
80, 120, and 160 particles indicates that in the limit as n → ∞ the solution
converges to the steady-state solution because the error approaches zero
and does not appear to converge to a nonzero constant.

Define the L2 error as

ε =

√∫ ∞

−∞
|ρ− ρ̄| dx, (5.5)

where ρ is the solution at time t and ρ̄ is the steady-state solution. To imple-
ment the error numerically, we take the difference of the numerical solution
imposed on the grid and the steady-state solution, square it, and then use
the trapezoid rule to integrate over all the points in the grid. Examining the
natural log of the L2 error for a small perturbation from the steady-state so-
lution indicates that the size of the L2 error is given by

ε = Ce−λt, (5.6)
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Figure 5.1 In (a), starting with a quintic density distribution of 40 particles with
zeros outside the range of support of the steady-state solution the particles con-
verge rapidly to a steady-state solution. In (b), the rescaled cumulative density
function of the discrete particles is compared to the analytical solution while in
(c) the solution is compared to the steady-state solution in terms of ρ. In (d), the
maximum and L2 error are computed for each time step. Both errors converge
rapidly to a near zero constant.
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Figure 5.2 The natural log of the L2 error for a small perturbation from the
steady-state solution in time for 40 particles. After the initial decline, the point
where numerical errors dominate is reached and the size of the error becomes
constant in time. Taking a linear fit of the plot from 1.5 to 2.0 seconds, the plot
has a slope of approximately −2.1, which corresponds to an minimum eigen-
value of 2.1.

where −λ is the slope of the natural log of the L2 error. For forty particles
the slope of the natural log of the error is approximately −2.1. The slope
corresponds to a minimum eigenvalue of 2.1, which is similar to the mini-
mum eigenvalue of 2.37 found from linear perturbation theory. In addition,
as the number of particles increases the value of the minimum eigenvalue
appears to converge to 2.37. For example, for 100 particles the slope of the
natural log of the L2 error is −2.24.

In addition to examining the change in size of the L2 error in time to
determine the magnitude of the smallest eigenvalue, the shape of the error,
or the perturbation after a small amount of time, should give an indication
of what the eigenfunction corresponding to the smallest eigenvector looks
like. For perturbations both inside and outside the region of support of
the steady-state solution the error at each point resembles a cosine function
seen in Figure 5.3. Rescaling the numerical error and the smallest eigen-
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Figure 5.3 The normalized error at each particle from the steady-state solution.
For all perturbations it quickly converges to this sinusoidal function indicating
that the smallest eigenvalue has an associated eigenfunction that resembles a
cosine.

value from the perturbation theory analysis, the two functions appear to
be identical. This indicates that the numerical results closely resemble what
was expected from linear perturbation theory.

5.3 Numerical Simulations in Higher Dimensions

Utilizing the same particle based approach as the one-dimensional model,
we need to calculate the velocity of each individual particle. Recall from
Chapter 3 that the velocity function is given by

V(r) = ∇Q(r)−∇ρ(r), (5.7)

where

Q(r, t) = cN

∫ ∞

0
ρ(r′, t)r′N−1

∫ π

o

√
r2 + r′2 − 2rr′ cos(φ) sinN−2 φ dφdr′.

(5.8)
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Figure 5.4 The normalized error from the particle simulation which should con-
verge to the minimal eigenvalue is represented in blue. The green line represents
the normalized derivative of the minimum eigenvalue from linear perturbation
analysis since the analysis was done in terms of the cumulative density function,
ψ(x).
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By radial symmetry,
V(r) = Qr(r)− ρr(r). (5.9)

Substituting in the expression for Q(r),

V(r) = cN

∫ ∞

0
r′2ρ(r′)kr(r, r′)dr′ − ρr(r). (5.10)

While k(r, r′) is differentiable with respect to r, the density at our particles,
or in this case concentric spheres, is proportional to the radius. To simplify
the numerics, let m(r) be the mass of the shell of radius r. Then,

m(r) = 4πr2ρ(r). (5.11)

Substituting mass in the place of density in the velocity function and ap-
plying the chain rule we have

V(r) = cN

∫ ∞

0
m(r′)kr(r, r′)dr′ − mr(r)

4πr2 +
2m(r)
4πr2 . (5.12)

Using a three-point interpolation to calculate the derivative of m(r), we can
discretize the velocity function as

Vi = cN

n

∑
i=1

mikr(r, r′)− mr(r)
4πr2 +

2m(r)
4πr2 , (5.13)

where mi is the ith concentric shell of mass mi.
As seen in Figure 5.5, the numerics indicate that the steady-state solu-

tion has the majority of the mass of the swarm near the origin where r = 0.
It is possible that the swarm is converging to a δ-function, though some of
the shells do appear to be steady away from zero. The posititions of the
mass shells indicates that it is possible the solution blows up at r = 0. Un-
fortunately, doing a nonlinear least squares fit of the four solutions derived
in Chapter 4 with the solution does not produce a good fit. In addition
to the poor fit with the analytical solutions, the numerical results appear
contrary to the steady-state solutions found in Chapter 4 where the mass
appeared to be concentrating at the outside edge of the support. It is pos-
sible there is an error in the numerics resulting in the distribution seen in
Figure 5.5, or that perhaps the finite number of shells is not capturing the
behavior accurately. Either way, the numerical results appear to contradict
the analytical results.
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Figure 5.5 The blue line represents the density of the swarm at each of the
particle points. The green function is the least squares fit of the four analytical
solutions to the numerical data. The poor fit potentially indicates problems with
the numerics.



Chapter 6

Conclusions and Future Work

In one dimension, the numerical results agree strongly with the results
from the perturbation theory. The solution appears to converge to the
steady-state globally. The size of the minimum eigenvalue being larger
than one may indicate why looking at the sinusoidal solutions to the en-
ergy minimization eigenproblem did not provide any eigenfunctions that
met all the physical constraints. Perhaps by incorporating the exponen-
tial solutions it maybe possible to find a minimum eigenvalue utilizing the
Rayleigh quotient method, but it is unclear if it is even a finite sum of the
solutions to the eigenproblem.

In addition to proving global convergence to the steady-state solution
in one dimension, it seems possible to show well-posedness or at least exis-
tence of solutions for all time in a similar vein to the work that Bedrossian,
Rodriguez, and Bertozzi did in their 2010 paper or Bertozzi and Slepcev
did in their 2010 paper. While the behavior of the solution in the one-
dimensional case appears to be well understood for any initial swarm dis-
tribution, the initial results from the three-dimensional case is far less clear.

The numerical results for the three dimensional case appear to show
that the density distribution has finite support and blows up at r = 0. This
is a similar result to the one-dimensional case since it has finite support,
however now the solution also has a point at which the density blows up.
It is also possible that the numerical results are actually pointing to a δ-
function solution since the magnitude of the slope of the density near the
origin is far larger than what a linear combination of the analytical solu-
tions suggests. Additional research could be completed to determine how
the energy of a δ-function compares with that of other density distribu-
tions including the steady-state distributions that occur along the border
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of the regions in Figure 4.1. There is a great deal of work remaining in the
n-dimensional cases. While for even n the eigenvalue problem becomes
significantly more complex, for odd values of n and especially for n = 3
it should be possible to find a steady-state solution without having to limit
the region of the solution. A final possibility is that the assumption of radial
symmetry is not correct and that there is not a radially symmetric steady-
state solution.
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