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Classical problem

Let C be a compact domain in RN , N ≥ 2, and

let Λ be a lattice of full rank in RN . For a

positive real parameter t, write

tC = {tx : x ∈ C}.

Question 1. What is the the cardinality of the

set Λ ∩ tC as a function of t?

This is a fundamental problem in Diophantine

approximations, and it has a very large number of

applications. The basic expectation is that

|Λ ∩ tC| ≈ V ol(tC)

det(Λ)
.

More specifically, the following asymptotic

estimate is recorded in Lang’s “Algebraic Number

Theory”.
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Theorem 1. If C has “nice” (Lipschitz

parametrizable) boundary, then

|Λ ∩ tC| =
Vol(C)

det(Λ)
tN + O(tN−1).

The constant in O-notation depends on Λ, N , and

the Lipschitz constants.

A large amount of work has been done in the

direction of producing estimates for the error

term in various more specific situations. These

more explicit bounds can be extremely useful for

applications. For instance, there is a celebrated

result of Davenport giving an explicit, although

somewhat complicated bound on the error term

in case of a “nice” domain C.

An important application of such results is to

counting points of bounded height over number

fields and in algebraic varieties.
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Height functions

Let K be a number field of degree d over Q. Let

M(K) be the set of places of K. For each place

v ∈ M(K) let Kv be the completion of K at v

and dv = [Kv : Qv] be the local degree. For each

place v ∈ M(K) we define the absolute value ‖ ‖v

to be the unique absolute value on Kv that

extends either the usual absolute value on R or C

if v|∞, or the usual p-adic absolute value on Qp if

v|p, where p is a prime. We also define the second

absolute value | |v for each place v by

|a|v = ‖a‖dv/d
v for all a ∈ K. Then for each

non-zero a ∈ K the product formula reads
∏

v∈M(K)

|a|v = 1. (1)

For each v ∈ M(K), v - ∞, we also define the

local ring of v-adic integers by

Ov = {a ∈ Kv : |a|v ≤ 1}.
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Then the ring of algebraic integers of K is

OK =
⋂

v-∞

Ov.

We extend absolute values to vectors by defining

the local heights. For each v ∈ M(K) define a

local height Hv for each x ∈ KN
v by

Hv(x) =







max1≤i≤N |xi|v if v - ∞
(

∑N
i=1 ‖xi‖2

v

)dv/2d

if v|∞

We define the following global height function on

KN :

H(x) =
∏

v∈M(K)

Hv(x), (2)

for each x ∈ KN . Notice that H is projectively

defined, meaning that

H(ax) = H(x),

for every nonzero a ∈ K, x ∈ KN . Hence we can

talk about height of projective points.
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We also define height on subspaces of KN . Let

V ⊆ KN be an M -dimensional subspace, and let

x1, ..., xM be a basis for V . Then

x1 ∧ ... ∧ xM ∈ K(N

M)

under the standard embedding. Define

H(V ) = H(x1 ∧ ... ∧ xM ).

This definition is legitimate, i.e. does not depend

on the choice of the basis.

If V is subspace of KN , write P(V ) for the

projective space over V . A fundamental property

of height is the following.

Northcott’s theorem: For each subspace V of

KN , the set

SV (t) = {x ∈ P(V ) : H(x) ≤ t}

is finite for every positive real number t.

Question 2. What is the cardinality of SV (t) as

a function of t?
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The first asymptotic answer to this question when

V = KN was given by S. Schanuel in 1966/1979.

We present a more general very nice version due

to J. Thunder, 1993.

Theorem 2. Let V be an M -dimensional

subspace of KN . Then

|SV (t)| = a(M, K)
tdM

H(V )d
+ O(tdM−1),

as t → ∞, where the constant implicit in the O

notation depends on M and K.

The constant a(M, K) is explicit, but

complicated. Also the bound is analogous to

Lang’s theorem in the classical case, not to

Davenport’s since it does not provide explicit

upper and lower bounds, only asymptotics.

Notice that the set SV (t) is not really “nice”, for

instance it is not convex.
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Adelic ball

Let P be any finite subset of M(K), containing

all archimedean places. Let

KA(P ) =
∏

v∈P

Kv ×
∏

v/∈P

Ov.

Define the ring of adeles of K to be

KA =
⋃

P

KA(P ),

where the union is taken over all such subsets P .

We can embed K into KA by the standard

diagonal embedding

a 7→ (a, a, ...).

The additive group KA is locally compact under

the topology that makes each KA(P ) into an open

subset, and K under diagonal embedding is a

discrete subgroup, i.e. a lattice. Therefore, an

M -dimensional subspace V of KN can be viewed

as a lattice of rank M in the adelic space KN
A .
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For a positive real number t, define the adelic ball

of radius t by

BN
K (t) =

∏

v-∞

Ov ×
∏

v|∞

{x ∈ KN
v : Hv(x) ≤ t}.

This is a fundamental example of an admissible

set in terms of the adelic geometry of numbers.

Let V be an M -dimensional subspace of KN , and

consider the set V ∩ BN
K (t). It is easy to see that

V ∩ BN
K (t) ⊂ SV (t),

but V ∩ BN
K (t) is a “nicer” set. As an analogue of

questions in the classical geometry of numbers,

and for purposes of various Diophantine

applications, it is interesting to estimate the

cardinality of V ∩ BN
K (t).
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Theorem 3 (F., 2004). Let V ⊆ KN be an

M -dimensional subspace, 1 ≤ M ≤ N , and let

t ≥ 1 be a real number. Then

b1(M, K)
tdM

H(V )d
≤ |BN

K (t) ∩ V |

≤
(

b2(M, K)
t

H(V )d
+ 1

)

(2
√

2t + 1)dM−1.

The constants b1(M, K), b2(M, K) are explicit,

and the result provides actual upper and lower

counting bounds, not just asymptotics. Moreover,

comparing this with Thunder’s result, one can see

that

lim
t→∞

|V ∩ BN
K (t)|

|SV (t)| = c(M, K),

i.e. is finite and depends only on K and M . This

makes our result applicable in many situations

that would require a Thunder-like bound with all

explicit constants.
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