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Abstract

While the traditional form of continued fractions is well-documented, a
new form, designed to approximate real numbers between 1 and 2, is less
well-studied. This report first describes prior research into the new form,
describing the form and giving an algorithm for generating approximations
for a given real number. It then describes a rational function giving the ra-
tional number represented by the continued fraction made from a given
tuple of integers and shows that no real number has a unique continued
fraction. Next, it describes the set of real numbers that are hardest to ap-
proximate; that is, given a positive integer n, it describes the real number
α that maximizes the value |α− Tn|, where Tn is the closest continued frac-
tion to α generated from a tuple of length n. Finally, it lays out plans for
future work.
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Chapter 1

Introduction

This chapter gives an overview into the basic idea of continued fractions,
describing both the most common form that they take and elaborating on
the new form that is to be the subject of this thesis.

1.1 Ordinary Continued Fractions

Continued fractions are usually represented as

a0 +
1

a1 +
1

a2+...

.

In the above model, a0 may be any integer, and higher-indexed terms
must be positive integers. This form can be used to approximate any real
number, and its properties have been studied extensively by Aleksandr
Khinchin, among others (1992).

1.2 The New Form

Modified versions of the formula include a variant described by Pippenger
in 1979:

1 +
1

−1 + tk

(
1 + 1

−1+tk−1(−1+··· )

) .

Here, each ti must be an integer greater than or equal to 2. This model
approximates real numbers between 1 and 2, and its properties are not par-
ticularly well-known.



2 Introduction

Note that a continued fraction of this form is defined by a tuple of k
integers. Here, I define the order of a continued fraction to be k; that is, it is
the number of integers used to describe the fraction.



Chapter 2

Algorithms

The first algorithm below describes a way to approximate real numbers
with the new form of continued fractions described in the previous chapter.
The second describes a method for taking a tuple of integers and determin-
ing what real number is perfectly approximated by the continued fraction
constructed from it.

2.1 Finding an Approximation

When given a real number α such that 1 < α ≤ 2, we can generate a con-
tinued fraction approximation with the following algorithm:

First, we set
y0 = α.

Then, starting with i = 0, as long as yi > 1, we define the following:

zi+1 = 1 +
1

−1 + yi
.

Given zi+1, we set it equal to

zi+1 = ti+1 + ρi+1,

where ti+1 is an integer and 0 ≤ ρi+1 < 1. Finally,

yi+1 = zi+1/ti+1.

Halting after finding yn gives an approximation using n integers. We define
the order of a continued fraction to be this value n.



4 Algorithms

2.2 Finding a Continued Fraction from a Tuple

Definition 1. The tuple (t1, t2, . . . , tn) indicates the rational number that, under
the above algorithm, gives yi = ti when 0 < i ≤ n and terminates on the nth step.

Given integers t1, t2, . . . , tn, it is often useful to determine what contin-
ued fraction is created from these integers. Finding an explicit formula for
the value to which these integers are associated will allow us to make state-
ments about these new continued fractions.

Theorem 2.1. The continued fraction generated by the tuple (t1, t2, . . . , tn) is
equal to

∏n
i=1 ti

∑n
j=0 (−1)j+n ∏

j
k=1 tk

.

Proof. We prove this theorem by induction.
Base Case: Let n = 1. Then, the continued fraction is simply 1 + 1

−1+t1
,

which is equal to t1−1
t1−1 +

1
t1−1 = t1

t1−1 . This expression matches the formula
given above.

Inductive Hypothesis: Assume that the formula above holds whenever
n = n0. We wish to show that it also holds when n = n0 + 1.
A continued fraction of order n0 + 1 is of the form

1 +
1

−1 + tn0+1Φ(n0)
,

where Φ(n0) is a continued fraction of order n0. By the inductive hypothe-
sis, we know that

Φ(n0) =
∏n0

i=1 ti

∑n0
j=0 (−1)j+n0 ∏

j
k=1 tk

.
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Thus, our continued fraction of order n0 + 1 is equal to

=
tn0+1Φ(n0)

tn0+1Φ(n0)− 1
xyz

=

tn0+1
∏

n0
i=1 ti

∑
n0
j=0 (−1)j+n0 ∏

j
k=1 tk

tn0+1
∏

n0
i=1 ti

∑
n0
j=0 (−1)j+n0 ∏

j
k=1 tk
− 1

=
tn0+1 ∏n0

i=1 ti

tn0+1 ∏n0
i=1 ti −∑n0

j=0 (−1)j+n0 ∏
j
k=1 tk

=
∏n0+1

i=1 ti

∑n0+1
j=0 (−1)j+n0+1 ∏

j
k=1 tk

,

as desired.





Chapter 3

Nonuniqueness

We now show that

(t1, t2, . . . , tn) = (t1, t1 − 1, t2, . . . , tn).

Consider the right-hand side of the expression. It becomes equal to

tntn−1 · · · (t1 − 1)t1

tntn−1 · · · (t1 − 1)t1 − tn−1 · · · (t1 − 1)t1 + · · · ± t1(t1 − 1)∓ t1 ± 1

=
tntn−1 · · · (t1 − 1)t1

tntn−1 · · · (t1 − 1)t1 − tn−1 · · · (t1 − 1)t1 + · · · ± (t1 − 1)2 .

Dividing by (t1 − 1), we get

=
tntn−1 · · · t2t1

tntn−1 · · · t2t1 − tn−1 · · · t2t1 + · · · ± (t1 − 1)
,

which is the formula for the left-hand side.
Since any continued fraction can have an integer inserted to give an-

other continued fraction with the same value, no rational number has a
unique fraction associated with it. Note, however, that these two equiv-
alent continued fractions are of different order; therefore, in addition, no
rational number can be represented by continued fractions of only one or-
der. The statement of nonuniqueness here does not imply that there are
multiple continued fractions of minimal order associated with a given ra-
tional number.





Chapter 4

Bounds on the
Worst-Approximated Number

Given a positive integer n, we wish to find the real number that is hardest
to approximate with any continued fraction of order n. That is, we wish
to find αn that maximizes the minimum of |αn − Φn| over all continued
fractions Φn of order n.

4.1 The Alternating Bounds

First, note that

(t1, t2, . . . , tn) =
t1 ∏n

i=2 ti

t1(∑n
j=1 (−1)j+n ∏

j
k=2 tk) + (−1)n

.

Thus, we notice that, as t1 approaches ∞,

(t1, t2, . . . , tn)→ (t2, . . . , tn).

In addition, it approaches that value monotonically, increasing when n
is even and decreasing when n is odd. Furthermore, since we know that

(t1, t2, . . . , tn) = (t1, t1 − 1, t2, . . . , tn),

each n-order continued fraction where t1 = t2 + 1 is equal to a continued
fraction of order n− 1. Furthermore, the difference between continued frac-
tions of the form (t1, t2, . . . , tn) and (t1 + 1, t2, . . . , tn) is maximized when t1
is minimized. Thus, we only need to consider continued fractions of the
form (t2 + 2, t2, t3, . . . , tn) = (t2 + 2, t2 + 1, t2, t3, . . . , tn).
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We have shown that, given a tuple (t1, . . . , tn) representing the contin-
ued fraction for a given α ∈ Q, the continued fractions (x, t1, . . . , tn) pro-
ceed in strictly increasing or decreasing order for increasing values of x
(where x > t1), depending on the parity of n. We will denote by (x, α) the
continued fraction composed from the tuple (x, t1, . . . , tn).

Let mα(x) be the difference between (x, α) and (x + 1, α). Because there
are no order-(n + 1) continued fractions between these two values, mα(x)
represents the distance between consecutive continued fractions. Evaluat-
ing this function, if α = c

d , we have

mα(x) = | cx
dx + (−1)n −

c(x + 1)
d(x + 1) + (−1)n |

=
c

(dx + (−1)n)(dx + d + (−1)n)
.

Denote by Mn(x) the maximum value of mα(x) over all α with order
n. If we can show that Mn(x) > Mn(x + 1) for all x and n, then we will
have demonstrated that the maximum error occurs when x is minimized
with respect to n, showing that the maximum interval for an order-(n + 1)
continued fraction is a subinterval of the maximum interval for an order-n
continued fraction.

We examine two cases, based on the parity of n.
First, let n be even. Then,

mα(x) =
c

(dx + 1)(dx + d + 1)
.

If we replace each 1 with a 0, we see that this expression is strictly less
than

c
dx(dx + d)

=
α

d
1

x(x + 1)
.

If we replace each 1 with a d, we see that this expression is strictly
greater than

c
(dx + d)(dx + 2d)

=
α

d
1

(x + 1)(x + 2)
.

So, for the αmax and its corresponding dmax that maximize the distance
between two continued fractions of order n + 1, we have

Mn(x) >
αmax

dmax

1
(x + 1)(x + 2)

> Mn(x + 1),

implying that mα(x) is minimized by minimizing x.



The Alternating Bounds 11

Next, let n be odd. Then,

mα(x) =
c

(dx− 1)(dx + d− 1)
.

If we replace each −1 with a 0, we see that this expression is strictly
greater than

c
dx(dx + d)

=
α

d
1

x(x + 1)
.

If we replace each −1 with a −d, we see that this expression is strictly
less than

c
(dx− d)dx

=
α

d
1

x(x− 1)
.

So, for the αmax and its corresponding dmax that maximize the distance
between two continued fractions of order n + 1, we have

Mn(x) >
αmax

dmax

1
x(x + 1)

> Mn(x + 1),

implying that mα(x) is minimized by minimizing x.
In either case, we have shown that the largest interval between contin-

ued fractions of order n + 1 happens at the smallest possible value of x,
implying that the largest such interval is a subinterval of the interval pre-
viously described for order n.

Theorem 1. The greatest interval between two continued fractions of order n
occurs between (n + 1, n, . . . , 3, 2) and (n + 2, n, . . . , 3, 2).

Proof. We proceed by induction.
Base Case: Let n = 1. Then, the difference between consecutive contin-

ued fractions (t1) and (t1 + 1) is equal to

1
t1 − 1

− 1
t1

=
1

t1(t1 − 1)
.

This expression is maximized when t1 = 2. Thus, the largest interval occurs
between (2) and (3).

Inductive Step: Suppose the largest interval between two order-n con-
tinued fractions occurs between (n + 1, n, . . . , 3, 2) and (n + 2, n, . . . , 3, 2).
We must show that the largest interval between two order-(n + 1) con-
tinued fractions occurs between (n + 2, n + 1, n, . . . , 3, 2) and (n + 3, n +
1, n, . . . , 3, 2). First, observe that

(n + 2, n, . . . , 3, 2) = (n + 2, n + 1, n, . . . , 3, 2).
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Second, given any integers t2, t3, . . . , tn, tn+1, we can write the continued
fraction (t1, t2, t3, . . . , tn, tn+1) as

∏n+1
i=1 ti

∑n+1
j=0 (−1)j+n+1 ∏

j
k=1 tk

.

If we let c = ∏n+1
i=2 ti and d = ∑n+1

j=2 (−1)j+n+1 ∏
j
k=2 tk, then the contin-

ued fraction becomes
t1 · c

t1 · d + (−1)n+1 .

Here, we notice two things. First, if we take the limit as t1 → ∞,
this continued fraction approaches c

d = (t2, t3, . . . , tn, tn+1), and it does
so monotonically. Second, the difference between two continued fractions
with consecutive values of t1 is equal to∣∣∣∣ t1 · c

t1 · d + (−1)n+1 −
(t1 + 1) · c

(t1 + 1) · d + (−1)n+1

∣∣∣∣
=

c
(dt1 + (−1)n+1)(d(t1 − 1) + (−1)n+1)

.

Again, since d and t1 are both≥ 2, this value is minimized by the small-
est possible value of t1. If we specify that t1 > t2, then we get that the
greatest interval between two continued fractions with fixed t2, t3, . . . , tn+1
occurs where t1 = t2 + 1. Thus, the endpoints of the interval are (t2 +
1, t2, . . . , tn+1) and (t2 + 2, t2, . . . , tn+1).

If we let ti = n − i + 2 for all i 6= 1, then we get the continued frac-
tion (t1, n + 1, n, . . . , 3, 2) for some value of t1. From above, we know that
all of these values fall between the continued fractions (n + 1, n, . . . , 3, 2)
and (n + 2, n, . . . , 3, 2), which, by the inductive hypothesis, form the largest
interval for continued fractions of order n. We also know that the largest
subinterval here when considering continued fractions of order n + 1 oc-
curs where t1 = t2 + 1 and t1 = t2 + 2. Thus, the interval for order n + 1
has endpoints

(n + 2, n + 1, n, . . . , 3, 2) and (n + 3, n + 1, n, . . . , 3, 2),

as desired.
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4.2 Convergence of Bounds

From the formula given in Chapter 2, we know that

(n+ 1, n, . . . , 3, 2) =
(n + 1)× n× · · · × 3× 2

(n + 1)× n× · · · × 3× 2− n× · · · × 3× 2 + · · ·+ (−1)n−12 + (−1)n1
.

Dividing both the numerator and denominator by (n + 1)!, we get

1
1− 1

2! +
1
3! . . . + (−1)n 1

n!

.

Taking the limit as n approaches ∞, this expression becomes

1

−∑∞
i=1

(−1)i

i!

,

which is equal to

1
1− e−1

=
e

e− 1
.





Chapter 5

Average Error

In addition to finding the behavior for the greatest possible error among
continued fractions of order n, it is also useful to find the error in the av-
erage case. We find the average error by assuming that the real numbers
between 1 and 2 are assigned a uniform distribution.

If we are given an interval of length δ, we know that the mean value of
the distance from a point in that interval to one of the endpoints is equal to
the mean value of the function f (x) = x on the interval [0, δ/2]. This value
is easily found to be δ/4.

Given some positive integer n, we know (from a previous chapter) that
all intervals have size mα(x), for some α with order n− 1 and some integer x
greater than the greatest integer in the tuple that generates α. Thus, we can
find the average case error for continued fractions of order n by summing
over the average case on each interval, scaling by the size of that interval,
giving

1
4 ∑

(α,x)
m2

α.

5.1 Exact Form for Specific n

Let us examine the case where n = 1. Here, the only value of α with order
n− 1 = 0 is 1; thus, mα(x) = 1

x(x−1) by the distance formula given in the
previous chapter. Thus, the average error for continued fractions of order
1 is

1
4

∞

∑
x=2

1
x2(x− 1)2 =

π2 − 9
12

≈ 0.0725.
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Note that the value of the summation above was found using Mathe-
matica, although it can be found by using partial fractions.

Next, let us examine the case where n = 2. Here, each continued frac-
tion can be expressed as the ordered pair (c, x); that is, each α with order
n − 1 = 1 can be expressed as c

c−1 . By the distance formula given in the
previous chapter,

mα(x) =
c

((c− 1)x + 1)((c− 1)x + c)
.

Thus, the average error for continued fractions of order n = 2 is

1
4

∞

∑
c=2

∞

∑
x=c

(
c

((c− 1)x + 1)((c− 1)x + c)

)2

.

So far, I have been unable to find a closed form for this summation.
Finding these sums for greater values of n quickly becomes very diffi-

cult.

5.2 Asymptotic Behavior

In examining the worst case error, I found that, if α has odd order,

α

d
1

x(x− 1)
> Mα(x) >

α

d
1

x(x + 1)
,

and if α has even order,

α

d
1

x(x + 1)
> Mα(x) >

α

d
1

(x + 2)(x + 1)
.

In both cases, Mα(x) is Θ(x−2). Thus, for any given α of order n, there
are an infinite number of intervals between α = (α′, y) and (α′, y + 1)
(where α′ has order n− 1) that have size approximately d

x2 , where d is the
distance from α to (α′, y + 1). Since the original interval contributes d2

4 to
the total average error, the contribution of all the new intervals is

∞

∑
x=y+1

d2

4x4 ≈
∫ ∞

y+1

d2

4x4 =
d2

12(y + 1)3 .
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The contribution from each interval is multiplied by (3(y+ 1)3)−1; also,
y + 1 > n + 1. Thus, if f (n) is the average error for continued fractions of
order n, we have the recurrence

f (n + 1) <
f (n)

3(n + 1)3 .

Therefore, f (n) ∈ O(3−nn!−3).





Chapter 6

Future Work

The average-case error is only given for n = 1 above, and the case for n = 2
does not have a known closed form. Finding the exact average-case error
for more small values of n may provide insight into a general formula for
the average-case error. An upper bound on the asymptotic bound of the
average-case error is given above; however, this is not known to be a strict
upper bound, and no lower bound is given. Finding these bounds may also
prove valuable.
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