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1. Abstract: 
 Variational techniques are used to develop a theory for the time evolution of a 

thin strand of viscous fluid suspended from two points.  The shape of the strand is 

approximated to be a parabola and energy conservation is used to derive a differential 

equation modeling the change in height over time.  Data is collected with a high 

resolution camera and a strobe light to obtain the position and shape of the strand over 

multiple intervals of time.  Three very different and unexpected types of behaviors are 

observed depending on the initial thickness and shape of the filament.  The 

approximation fits well with one type of behavior but variations in the thickness of the 

strand, and consequently in the center of mass, need to be factored in to predict the 

others. 
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2. Introduction and Background: 
2.1 A Catenary: 
 A flexible cable of uniform density suspended from two endpoints in a uniform 

gravitational field hangs in a shape knows mathematically as a catenary, after the Latin 

word for “chain.”   The problem of finding this shape was proposed by Jacob Bernoulli 

and was independently found to be a hyperbolic cosine (Figure 2.1) by Leibniz, Huygens, 

and Johann Bernoulli in 1691.  But if the material is fluid, the problem gets much more 

complicated.  Surface tension and viscous forces compete with gravity to change the 

catenary-like shape over time.  

 
Figure 2.1: A chain hanging with a cosh function superimposed on it. 

 
Recent studies in the area of fluid mechanics have focused on many different 

areas including the coiling of a falling viscous filament5,7 and the folding of viscous 

sheets4,8.  Y.M.Stokes et al9 modeled the fall of a viscous drop.  Brenner1 and Chwalek3 

observed the deflection of viscous jets by asymmetric heating.  In particular, L. 

Mahadevan and J. Teichman6 at Harvard University investigated the dynamics of this 

“viscous catenary”.  More recently, F. Brochard-Wyart and P.-G. de Gennes2 analyzed 

the problem from an energy perspective, which is intuitively easy to comprehend.  We 

seek to continue and expand on Mahadevan, Teichman, Brochard-Wyart, and de Gennes’ 

work by comparing the predictions of their theories to experimental data. 
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2.2 Teichman and Mahadevan’s Analisys: 
Mahadevan and Teichman assume that the filament is made of an incompressible 

Newtonian fluid, that gravity is the only body force acting on the filament, and that forces 

due to surface tension are small compared to viscous forces.  They use a Lagrangian 

formulation where they define the coordinate s to be along the centerline of the 

unstretched filament and ),( tss  to be along the centerline of the stretched filament.  The 

angle of the tangent to the centerline to the horizontal is θ(s,t), the vertical displacement 

of the centerline is H(s,t), h(s,t) is the diameter of the filament, 4),( 2htsA π= is the 

cross-sectional area, gAw ρ=  is the weight per unit length of the undeformed filament 

where ρ is the density, and ssts ∂∂=),(λ  is the local filament stretch.  They also define 

T(s,t) to be the tangential stress resultant (tension), N(s,t) to be the normal stress resultant 

(shear), and M(s,t) to be the torque resultant.   

 

 
Figure 2.2: Mahadevan and Teichman’s5 definition of variables.  

 

If the filament falls slowly and inertia can be neglected, the equations for the 

balance of forces and torques are 

0sin =−− θθ wNT xx ,    2.1 

0cos =−+ θθ wTN sx ,     2.2 

and   0=+ NMs .      2.3 

For a Newtonian fluid, the continuity and closure relations are 
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0)( =tAλ ,     2.4 

)(ln3 λμAT = ,             2.5 

and   stDM θ= ,     2.6 

where μ is the viscosity and is the bending stiffness of the filament.   From 

these equations, Mahadevan and Teichman derive a nonlinear integro-differential 

equation for 

πμ 4/3 2AD =

),( txθ : 

∫ −=−
2/

0

2 )(3 L

txxt wxdx
L
AD θθμθ ,          2.7 

which can be written in the dimensionless form as, 

 ∫ −=−
2/1

0

23 )(
232

xdxt
xxt θθεθε ,         2.8 

where Lh /=ε , when all lengths are rescaled by the initial length L and by a 

characteristic time wh 2/3πμ , which they determined by balancing gravity and viscosity.  

The first term represents the filament’s resistance to bending, and is dominant at small 

deformations.  The second term is the filament’s resistance to stretching, which becomes 

more dominant as time progresses, except for the region near the endpoints where the 

bending deformation is still large.  For small deformations, we can ignore the second 

term and the solution becomes 
2

2
2

224
),(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−= xL

D
wttxθ .     2.9 

They calculate a 45~ wLhtc μ  beyond which the stretching deformation cannot be 

ignored.  The value for tc is on the order of microseconds for the filaments they observed, 

so this regime is very difficult to see.  For t > tc, the bending term becomes small except 

for a bending boundary layer near the endpoints of width 3/13/15 )(~ −twLhμδ , which 

becomes smaller as time progresses.  The exact solution to the stretching term is 

3/13/1
2 )12(),( xt

AL
wtx

μ
θ = , ]2/,0[ δ−∈ Lx .  2.10 

As the filament stretches, it thins.  These equations imply that the cross-sectional area is 

given by 
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∫−=
s

dssAgtsAtsA
0

00 )(
3

)(),(
μ

ρ .    2.11 

The time when the filament breaks is determined by setting A(s,t*) equal to zero, which 

gives  

∫
= s

sApg

sAst

0
0

0

)(

)(3* )( μ .     2.12 

The position of the break is in the region between the bending boundary layer and the 

stretching solution.   

 

2.3 F. Brochard-Wyart and P.G. de Gennes’ Analysis: 
 Brochard-Wyart and de Gennes2 begin by pointing out that the filament is 

inherently unstable by a process similar to the Rayleigh-Plateau instability.  If the 

diameter of the filament is not completely uniform, it will continue to thin in any region 

where its diameter is slightly smaller.  If the diameter, d, is slightly perturbed to d + u, its 

Laplace pressure p becomes  

102

2222 pp
d

u
dudd

p +=−≈
+

→=
γγγγ ,       2.13 

where γ is the surface tension.  The approximation here is valid only when u is small 

compared to d.  This difference in pressure causes a flow along the thread axis.  If there is 

no body force acting on the strand, the Navier-Stokes equation becomes 

x
p

x
U

t
U

∂
∂

−
∂
∂

=
∂
∂

= 2

2

0 ηρ ,    2.14 

where U is the velocity of the fluid and η is the viscosity.  Integrating this yields 

u
d

p
x
U

21
21
η
γ

η
==

∂
∂ .         2.15 

For an incompressible fluid, we have 

d
u

x
U &2

−=
∂
∂ ,     2.16 

and setting this equal to equation 2.15 gives the relation 

u
d

u
η
γ

=& ,           2.17 
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indicating an exponential growth rate with characteristic time 
γ
ητ d

R = , the Rayleigh 

growth time, the timescale over which the fluid spontaneously begins to break up.  Any 

discussion of the evolution of the filament should cover times much less than τR.   

 Since we are concerned with finding a timescale over which the fluid breaks, we 

are ultimately interested in the behavior when d approaches zero.  As this happens, the 

approximation made in equation 2.13 breaks down, and this may lead to a significantly 

different τR. 

Whereas Teichman and Mahadevan predict the evolution of the filament from a 

force perspective, Brochard-Wyart and de Gennes focus on energy considerations.   For a 

filament that falls slowly, the energy gained from the decrease in potential must be equal 

to the energy dissipated in the fluid by stretching.  This dissipation is given by 
2εη && Ω=ST ,     2.18 

where is the change in entropy per unit time, ST &
ρ
M

=Ω  is the volume of the filament, M 

is the mass of the filament, ρ is the density, η is the dynamic viscosity, and ε&  is the strain 

rate.  We recognize that εη &  is the viscous stress, which multiplied by the strain rate gives 

the dissipation per unit volume.  Setting equation 2.18 equal to the change in potential 

gives, 

yMgV && = ,     2.19  

where g is the acceleration of gravity and y& is the time rate of change of the center of 

mass of the system.  For small-curved deformations, the position center of mass is 2/3 of 

the maximum deflection.  By a scaling argument Brochard-Wyart and de Gennes predict 

a growth law proportional to t1/3 (we derive this more quantitatively by the analysis 

carried out in section 3.1).  For deformations L(t) very large compared to the separation 

of the points of suspension, the center of mass is located at L/4  and Brochard-Wyart and 

de Gennes easily derive an asymptotic growth law of the form 

)(
4)(

1
)(

1
1

1

ttg
tLtL

−=−
ν

,    2.20 
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where 
ρ
ην =  is the kinematic viscosity and L is the length of the filament at time t.  

Here, t1 is an arbitrary transition time where the regimes of strong and small deformations 

meet.  Equation 2.20 indicates that the filament length diverges at a finite time. 

This gives a simple understanding of the system that is useful in developing an 

intuition of the mechanics involved.  However, this does not take into account the effects 

of any variation in the diameter of the filament.  Also, this assumes the filament falls 

slowly and that only a small fraction of the energy is kinetic, which is not the case for 

thick filaments or for filaments that are near the breaking point. 

In chapter 3, we extend this analysis by assuming functional forms for the shape 

of the filament and working out the predictions.  We work out in detail the implications 

of this for a filament that has the form of an arc of a large circle and for a parabolic 

filament. 
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3. Theory: 
3.1 Small Deformations: 
 Following F. Brochard-Wyart and P.-G de Gennes’2 qualitative analysis, we make 

more quantitative predictions of how the filament should evolve.  We approximate the 

filament as being an arc of a large circle.  Let R be the radius of the circle, L be the length 

of the filament (initially L0), mθ be the angle spanned by the filament, and ym be distance 

the middle of the filament has fallen. 

 
Figure 3.1:  Diagram of Filament 

 

Then  

)sin(
2

0
mR

L
θ= ,         3.1a 

mRL θ2= ,     3.1b 

and Euclidean geometry tells us that 

mmm RyyyR
L

2)2(
4

2
0 ≈−= .    3.1c 

For small deformations, the strain is 
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63
)sin(22 2

0

3

00

0 mmmm

L
R

L
RR

L
LL θθθθε =≈

−
=

−
= ,      3.2 

and the strain rate is 

3
mmθθε
&

& = .      3.3 

The heat dissipation in the fluid, as in equation 2.18, is given by 

 2εη
ρ

&& MST = ,         3.4 

where M is the mass of the fluid, ρ is the density, and η is the dynamic viscosity.  Since 

we are assuming the deformation is small and the filament is falling slowly, the heat 

dissipated must be equal to the change in potential.   

Assuming a uniform cross section, the position of the center of mass of the 

filament relative to the initial position of the midpoint is given by 

)1)(cot(
2

)
)sin(

)(cos(
))cos()(cos(2

00

2

m
m

m

m
mm

m

m

m L
R

dR

dR
y

θ
θ

θ
θ

θ
θρ

θθθρ

θ

θ

θ

−=−=
−

=

∫

∫

−

.     3.5a 

Approximating 
6

)sin(
3θθθ −≈  and 

2
1)cos(

2θθ −≈ , and using equations 3.1a, 3.1b, and 

3.1c, this becomes 

 m
m yRy

3
2

3

2

=≈
θ ,    3.5b 

from which we also see that 

mm
Ly θ
4

0= .        3.5c 

Therefore, the potential energy is  

Mg
L

MgyV m
m 63

2 0θ−≈−= ,        3.6 

when written in terms of θm. 

 Setting the heat dissipation equal to the change in potential, we get  

Mg
LM m

m 69
022 θ

θηθ
ρ

&
& =   dtgLd mm η

ρθθ
2

32 = .  3.7 
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Integrating yields  

gtLm 0
3

2
9
ν

θ = .     3.8 

So for small deformations, ym grows as t1/3.   To arrive at equation 3.8, we used the small 

angle approximation and assumed that the filament was an arc of a circle and that it did 

not stretch much compared to its initial length, which are valid assumptions for small 

deformations.  This is in agreement with the results predicted by Brochard-Wyart and de 

Gennes.   

 

3.2 Intermediate Deformations: 
  To try and predict the behavior over a longer period of time, we cannot work 

within the small angle approximation or assume that the filament does not stretch much 

compared to its initial length.  Again we have θRL =  and )sin(
2

0 θR
L

= .  The strain rate 

becomes 

θ
θ

θ
θ
θε &
&&&

& )1)cot(( +−=+==
R
R

L
L ,                3.9 

when we use equation 3.1a to replace R with θ.  Notice that this is the negative of the 

function of theta that appears in the exact equation for the center of mass in 3.5a.  Let 

)1)(cot()(
θ

θθ −=J .             3.10 

Equating the change in potential with the change in entropy yields the equation 

)('
2

)( 02 θθθη
ρ

J
MgL

JM
=&   dtgLd

J
J

ν
θ

θ
θ

2)('
)( 0

2

=∫ ,   3.11 

which is integrable numerically.  This approximation appears good while the filament is 

approximately an arc of a circle and seems to hold until θ is about 60 degrees.  In this 

regime we note that the maximum deflection is comparable to but less than L0.  To 

describe the motion further into the region where ym exceeds L0, we need a better 

approximation. 
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3.3 Parabolic Approximation: 

 Now we assume that the function is in the shape of a parabola of the form 

)41()41( 2
0

2

02
0

2

L
xhL

L
xyy m −−=−−= ,    3.12 

where 
0L

y
h m=  is a unitless measure of the height.  This function always equals zero at 

2
0L

x ±= and has height ym.  Then the distance along the filament is given by  

∫∫ =+=+=
−

1

0
0

22
2/

2/
02

0

22

)(161641
0

0

hFLduuhLdx
L

xhL
L

L

,     3.13 

where we define 
0

2
L

xu =  and ∫ +=
1

0

22161)( duuhhF .  Taking the derivative of this with 

respect to time, we get 

∫ =
+

=
1

0
022

2

)(
161

16 hWhLdu
uh

huhLL o
&&& ,                  3.14 

where ∫
+

=
1

0
22

2

161
16)( du

uh
huhW .  This implies a strain rate of 

h
hF
hW

L
L &
&

&
)(
)(

==ε .          3.15 

The center of mass of this parabola is given by  

)(
)(

161

161)1(
0

1

0

22
0

1

0

2222
0

hF
hhPL

duuhL

duuhuhL
y =

+

+−
=

∫

∫
.           3.16 

where ∫ +−=
1

0

222 161)1()( duuhuhP .  Graphing y  as a function of h (Graph 3.1), we 

see that the center of mass starts off at 2/3 of the height and approaches 1/2 of the height 

in the limit that L is long, as expected.  We also see that it is changing rapidly initially, 

which implies that the small angle and circular approximations quickly become bad.  

When h is 0.5, y  has already changed by about 10%. 
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Taking the time derivative of the center of mass, we get 

h
F

hPWhQPFLy &&
20
)( −+

= ,        3.17 

where    ∫
+

−
=

∂
∂

=
1

0
22

22

161
)1(16)( du
uh
uuh

h
PhQ .         3.18 

Solving analytically for F, W, P, and Q in Mathematica, 

)4(sinh
8
1161

2
1161)( 12

1

0

22 h
h

hduuhhF −++=+= ∫ ,   3.19 

)4(sinh
8

1161
2
1

161
16)( 1

2
2

1

0
22

2

h
h

h
h

du
uh

huhW −−+=
+

= ∫ ,       3.20 

∫ +−=
1

0

222 161)1()( duuhuhP

)]4(sinh)164()321(1614[
512

1 1222
3 hhhhh

h
−+−−+−= ,                 3.21 

and   ∫
+

−
=

1

0
22

22

161
)1(16)( du
uh
uuhhQ

 

)]4(sinh)364()332(1614[
512

1 1222
4 hhhhh

h
−+−++= .        3.22 

Equating the heat dissipation with the change in potential yields, 

yMgM && =2εη
ρ

,     3.23 

and substituting in equations 3.15 and 3.17 we get the differential equation 

dtgLdh
hPWhQPF

W
ν

0
2

)(
=

−+
.    3.24 

Since we know every function here, we can use Simpson’s rule to numerically solve this 

equation and make predictions for the evolution of the filament as shown in Graphs 3.2 

and 3.3.  

When integrated, we can write the left side of this equation as being a constant, α, 

multiplied by a function of h, which we know from our other approximations is h3 for 

small h, yielding  
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tgLh
ν

α 03 = .                    3.25 

Defining 
0gL

t g
αν

= , we can define a dimensionless time 
gt
t

=τ  so that equation 3.25 

becomes 

τ=3h ,         3.26 

and we can rewrite equation 3.24 as 

τ
α

ddh
hPWhQPF

W
=

−+ )(
1 2

.   3.27 

 To find α, we can look at equation 3.27 in the limit that h is small and find the 

constant that emerges.  In this limit, equation 3.13 becomes 

∫ ∫ +=+≈+=
1

0

1

0

2
0

22
0

22
0 )

3
81()

3
81(161 hLduhuLduuhLL   3.28 

and therefore, 

hhLL &&
3

16
0=      and  hh

L
L &&

3
16

0

==ε .   3.29 

We have already seen that y&  reduces to hL &
03

2 , which implies that 

hhMgLhhM &&
3
2

9
256

0
22 =η

ν
,     3.30 

and           tgLh
ν

03

9
128

= .     3.31 

Therefore, 22.14
9

128
≈=α  and tgL

ν
τ

128
9 0= . 

Graphing ln h against ln τ (Graph 3.4), we see a slope of 1/3 early on in agreement 

with the results predicted by Teichman, Mahadevan, Brochard-Wyart and de Gennes.  

According to the long term predictions of Brochard-Wyart and de Gennes, a graph of 1/L 

against τ (Graph 3.5) should be linear for long L, with a slope of 555.3
4
≈−

α  and an 

intercept of (
)(

1
4 1

1 τ
τα

L
+ ).   This is exactly the slope we see.   Graphing the value of the 

intercept for different values of τ (Graph 3.6), we see that it converges to a value of 
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around .7831, the intercept we are seeing.  As expected, there is no clear cut time where 

the regimes of small and strong deformation meet, but rather as τ increases, the more 

dominant the regime of strong deformation becomes. 
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4. The Development of our Procedure: 
4.1 Apparatus: 

When I began working on this in June 2005, my goal was to find a function that 

accurately describes the shape of the falling filament over time.  I needed a repeatable 

technique of creating a filament that would allow me to change parameters such as the 

filament’s radius and the separation between its endpoints.  Fortunately this was provided 

for me by the hard work of Chris Billingham and Glenn Flohr, who during the previous 

summer conceived and built the apparatus shown in Figs 4.1 and 4.2. 

 
Figure 4.1: Apparatus in the open position (high resolution on CD).  

 
Figure 4.2: Assorted tubes (high resolution on CD). 
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The apparatus consists of two plastic tubes that slide over a stationary stainless 

steel rod.  The tubes are filled with silicone oil (Clearco 100M Silicone “O” Ring 

Lubricant which has a kinematic viscosity of ν = 100,000 centistokes = 0.1 m2/s) and 

joined at the middle, forming a continuum of fluid.  When they are released, rubber bands 

pull the tubes apart, sliding them over the steel rods which push the oil out.  A filament of 

oil is formed between the tubes.   By using tubes of different diameter, we can adjust the 

thickness of the filament.  We have tubes at 1/8 in, 3/16 in, 1/4 in, and 5/16 in diameters.  

Also, changing the tension of the rubber bands causes the tubes to pull apart at a different 

speed, changing the thickness of the filament.  The apparatus allows for 5 different 

tension settings, which can significantly change how the filament is formed.  Placing a 

clip on the steel rods allows for adjusting how far apart the tubes are pulled, which also 

greatly changes the shape of the filament. 

 

4.2 Different Behaviors: 
Over the summer of 2005, I experimented with the various parameters and got a 

good feel for how the filament evolves under various circumstances.  It became clear that 

there were two very distinct phases or regimes in the evolution of the filament.  All 

would start essentially straight and would begin to droop or fall from the middle, forming 

a “u” shape that would become deeper and longer as it fell.  I call this the “falling” phase 

(see video “Falling”).  As expected, some filaments would continue falling in this manner 

until they hit the tray below.  Interestingly however, for thinner filaments, a point was 

reached where they would stop falling all together and they seemed to hang in a 

stationary “u” shape, evolving very slowly.  After a few moments they began to pull apart 

in the middle and square off at the edges.  Eventually the sides became very close to 

vertical, connected by an increasingly thin and straight horizontal filament by “corners” 

with a very small radius of curvature.  The thin filament would continue pulling apart, 

eventually breaking in the middle.  I call this the “breaking” phase (see video 

“Breaking”).  Sometimes, while in the breaking phase, the middle of the filament would 

move up higher than the sides supporting it, forming a “w” shape just before rupturing 

(see video “w”).  Figures 4.3 – 4.5 show examples of the falling and breaking phases and 

the “w” shape.  Figures 4.3 and 4.5 are a series of frames taken from a video.  Figure 4.4 
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is a picture taken with a strobe light (the technique is fully described later in section 4.4). 

Notice in Figure 4.4 that the middle of the filament actually moved upwards in the 

breaking phase while it was pulling apart until it flattened out.  The flattening is not a 

result of the sides falling faster than the middle. 

 

 
Figure 4.3: Example of “Falling.” 
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Figure 4.4: Example of “Breaking” 

 

 
Figure 4.5: Example of a “w.” 

 

4.3 Data Capture - Problems and Solutions:  
The runs were videotaped with a Sony DCR-TRV18 Digital Handycam which is 

capable of recording at 30 frames per second at a resolution of 640 x 480.  Since the 

viscosity of the oil is so high, it takes several seconds for it to completely evolve, yielding 

a lot of frames to analyze.  A piece of black construction paper was used for the 

background and a suitable arrangement for the position of the light was found by trial and 

error.  A good arrangement for the light was placing it on the countertop below the level 

of the oil, between the oil and the construction paper, pointing upwards and a little back 

towards the camera.  This gave a good contrast between the background and the oil in the 

video.  Using firewire, the video was captured directly into iMovie 3.03 running on a G4 
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laptop with Mac OS X 10.3.6.  iMovie allows for the extraction of individual frames from 

the video, which were imported to ImageJ 1.33u.  Clicking along the filament in ImageJ 

would give a set of (x,y) coordinates along the curve, which were then analyzed in 

Microsoft Excel. 

Two problems quickly became apparent with this process of digitizing the 

filament.  The video resolution of 640x480 is not fine enough to yield precise data points 

along the filament.  At this resolution, the thickness of the vein cannot be measured with 

sufficient precision, as the whole width of the vein is spanned by only three to four 

pixels, which leads to high uncertainties.  In addition, it is difficult to ascertain the shape 

of the filament early on in the evolution process because the trough of the vein is only a 

couple pixels lower than the sides of the vein.  Also, manually clicking all along the 

filament to get data points, especially when it is not clear where the boundaries are 

because of the poor resolution, is very time consuming, imprecise, and inefficient.  It was 

clear that a method of capturing data at a higher resolution, while maintaining a 

reasonable frame rate, was necessary. 

Purchasing a high resolution video camera, the obvious solution at the time, was 

significantly outside of our budget.  Fortunately, we have a still, digital SLR camera 

available, a Canon EOS 10D, that is capable of taking pictures at a resolution of 

3072x2048.  However, the still camera is not capable of taking pictures in rapid 

succession at a suitable rate for our purposes.  Dr. Mitescu suggested a very clever 

solution to this problem – use a strobe light.  A strobe light flashing at a sufficient speed 

in a dark room with the still camera set to a time exposure allows for capturing an image 

of the filament at multiple instances in time on a single picture.   

 After overcoming some significant initial obstacles, this technique now works 

well for capturing the motion of the oil.  Depending on where the strobe is positioned, 

different parts of the vein reflect the light into the camera.  Also, as the vein falls, the 

parts that reflect light change.  If the strobe is to the side of the oil, the vertical pieces 

reflect back (Fig 4.6).  If the strobe is centered in front of the oil but above or below the 

camera, only the horizontal sections reflect light towards the camera.  The arrangement 

that works the best is to position the strobe as close to the filament as possible, just out of 

the field of view of the camera.  It is placed slightly to the side and above the initial level 
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of the filament.  This works very well for illuminating the oil early, while it is still close 

to the strobe.  As it falls, however, it looses brightness.  I have not been able to illuminate 

the oil sufficiently so that it is visible during the full fall to the tray below using only the 

strobe we have, so we decided to focus on the region best visible.  Using sufficiently 

small separations and thin filaments, we can produce any behavior we are interested in, in 

the small, well illuminated region. 

 

 
Figure 4.6: Early picture with the strobe to the side.  Parts of the filament do not reflect back. 
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Figure 4.7: Early strobe picture with the strobe close to the oil.  The sides lose brightness as the oil 

moves down but the full filament is clearly visible early on. 

 

To further increase the contrast and make the oil more visible, different 

backgrounds were tested.  Ideally, a material that would reflect as little light as possible 

was needed.  The black construction paper background that was used for months reflected 

too much light when the strobe was up close, where it illuminated the oil the best.  Also, 

Dr. D. Tanenbaum had introduced me to a very handy program called Graph Click, 

which is capable of finding curves in a picture or graph by detecting changes in color or 

brightness and returning points all along the curve.  This program was capable of saving 

hours of time spent manually entering points as long as the pictures were clear and had a 

uniform background.  The construction paper did not meet these criteria.  I decided to try 

using polarizer film in front of a white background.  That way, with a crossed polarizer 
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lens on the camera, most of the light reflected off the film could be filtered out.  This 

works very well; most of the unwanted light disappears and the background becomes 

uniform (Fig 4.8). 

 

 
Figure 4.8: Background shot with (bottom) and without (top) cross polarization. 

 

Dr. Tanenbaum also suggested dyeing the oil to see if it helps.  Fortunately Dr. 

Neil Ribe (IGPP, Université Paris VI) had some leftover dye available from his work 

with silicone oil, which he graciously sent us.  The dye comes in the form of powder 

which dissolves in silicone oil.  It gives a red tint to the oil, which made me curious to see 

if only a white background or a color filter would help.  I experimented with both to no 
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success; the oil appears the best with the polarized background and without a color filter, 

but the dye does improve the picture (Fig 4.9).   

 
Figure 4.9: Similar runs with and without the dye.  Much more detail is visible with the dye. 

 

While testing all these different techniques, I performed numerous runs 

repeatedly.  Filling up the tubes for each run unnecessarily took a lot of time.  Instead, I 

dabbed a little bit of oil on the face of one of the tubes where they normally met and 

pressed them together.  When I released the tubes, they would pull apart, forming a 

filament between them.  This allowed me to perform many runs in a short amount of 

time.  It produced nicely shaped filaments and depending on the amount of oil I applied 

and the tension in the rubber bands, I could get the filament to evolve any way I liked.  

This was significantly easier and more efficient so I never went back to the previous 

method of filling the tubes.  The only problem with this is that it is hard to describe how 

to do it properly because it involves mostly eyeballing the amount of oil used.  However, 

I became good at it and it quickly produces the wanted results, so I ended up using it for 

my data runs. 
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4.4 Current Data Taking Process: 
Having found the best method to capture the evolution of the filament with the 

equipment I had available, I was ready to take data.  The Canon EOS 10D digital camera 

with a Canon EF 28-200mm zoom lens was placed at the minimum focusing distance 

(~18 inches) away from the plane of the oil, directly in front of where it would fall.  The 

lens was zoomed in all the way so that the region of interest would cover as much of the 

picture as possible, yielding the highest resolution in that area.  The lens was auto 

focused to the plane of the oil and then set to manual focus so that it would not change 

when the picture was actually taken.  A 8 ½ x 13 inch polarizer film made by Edmund 

Industrial Optics was positioned in the background and the Hoya PL-CIR polarizer lens 

on the camera was aligned so that no light passed through from the background.  The 

strobe, a Strobotac Stroboslave 1534A, was placed as close as possible to the area of 

interest and connected to an Elenco GF-8036 Function Generator, which controlled the 

frequency of the strobe.  The function generator was also connected to a Tektronix 

CDC250 Universal Counter, which measured the period of the strobe with an uncertainty 

of 100 μs.  

  

 
Figure 4.10: The setup after all the equipment is in place (high resolution on CD).  
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The period of the strobe was set to be slow enough that the filament would not 

overlap with itself in the picture but fast enough so that we could capture it as many times 

as possible.  We used periods of 500ms to 800ms between blinks.  The camera exposure 

was set to about 10 seconds for falling filaments and about 30 seconds for breaking 

filaments so that as much of the evolution as possible was captured.  If the filament had 

fallen outside the field of view of the camera or had broken before the exposure time was 

up, the strobe was turned off so that no unnecessary light was captured.  The aperture was 

set to around f/9.8, which was found to be a good balance for neither overexposing nor 

underexposing the image.  In order to be able to scale the filament, the tubes were always 

in the field of view of the camera.  Precise measurements of the tubes were made with a 

caliper on both the vertical and horizontal scales that were accurate to .1 mm.  This allows 

us to set up a coordinate system in meaningful units when we extract data from the 

picture.   

To take the picture, oil was put on the tubes and the tubes were clamped together.  

The strobe was set at the proper speed, the camera was focused and adjusted properly, 

and the lights in the room were turned off.  Just as the clamp was released, the camera 

started taking the picture.  After the exposure was done, the lights were turned back on 

and the process was repeated as many times as was necessary.  These raw images were 

then enhanced in Adobe Photoshop, where the levels were adjusted to increase the 

contrast as much as possible (Fig 4.11 and 4.12).  Then the pictures were imported to 

Graph Click, where a scaled Cartesian coordinate system was set up and the coordinates 

of points along the edges of the filaments and at the midpoints of the filaments were 

extracted (Fig 4.13).  These were with respect to an origin placed on what was estimated 

to be the axis of symmetry of the filament. 

For the falling filament we analyzed, the strobe was running at a period of 0.699 

seconds.  Boundary data was taken from 8 of the 16 strands visible in the picture because 

the lower few were not as bright and getting points was more difficult.  Midpoint data 

was taken from all 16.  For the breaking filament, the strobe was running at a period of 

0.500 seconds.  Boundary data was taken from the first 7 of 21 strands and for the 

remaining 14, points were taken along the middle of the strand because they had gotten 

too thin to distinguish the top from the bottom. 
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Figure 4.12: A typical breaking filament before and after Photoshop enhancement. The strobe speed 

is 0.5 seconds. A high resolution image of the enhanced picture is available on the CD. 
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Figure 4.13: A falling and breaking filament with the edge points extracted from Graph Click 

superimposed on the images. High resolution images are available on the CD. 
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Upon closer inspection of the falling image, there are points visible in the 

filament, which seem to evolve along with the fluid (Fig 4.14).  Several of these points 

are visible along the filament at random positions.  At first we thought these might be 

bubbles, but we ruled out that possibility because that would guarantee a Rayleigh-

Plateau instability and would lead to thinning at those points, which we do not observe.  

Another possibility is that these points are flakes of dye that have not dissolved.  Since 

the oil is saturated with the dye and there are flakes of dye clearly visible in the oil before 

it is applied, this seems like a reasonable conclusion.  

Although we stumbled on these points by accident, they have proven useful in our 

analysis of the system.  Since they move with the fluid, they follow a path equivalent to a 

small volume of fluid around that point.  They allow us to see how an infinitesimal 

amount of fluid evolves.  Furthermore, since there is no fluid flowing past these points, 

the volume of fluid between any two of these points must be conserved.  This provides a 

means of testing the functions we calculate for the boundaries.  The coordinates of a few 

sets of these points were extracted in Graph Click to serve as endpoints for calculating 

the volume of fluid between them (Fig 4.15).   
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Figure 4.14:  Flakes of undissolved dye appearing in the picture. 
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Figure 4.15:  The picture with the position of the dye flakes and midpoints superimposed on it. 
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5. Comparison with Theory:
5.1 Fitting Functions to the Data: 

Since the filament is symmetric, we would like to find an even function that fits 

our data so that the equations are easier to work with.  However, the x coordinates of the 

raw data from Graph Click are with respect to an origin that was only estimated to be on 

the axis of symmetry, so we needed to find an adjustment for the x coordinate to make 

the function even.  After exporting the coordinates of the edge points to Microsoft Excel, 

I ran a preliminary fourth order polynomial regression on each data set.  The fits were 

good ( ) and got better for the later strands.  This gave me a function of the 

form 

9998.2 ≈R

432 ''''''''')'( xexdxcxbaxy ++++= ,         5.1 

where x’ is the horizontal coordinate of the raw data.  We find the proper x translation, k, 

by setting the derivative of this function equal to zero and using Newton’s method to 

solve for k.  Then x, the horizontal coordinate for which y(x) is symmetric, is .  In 

terms of the same coefficients a, b, c, d, and e, y(x) becomes, 

kxx −= '

432)( exdxcxbxaxy ++++= ,          5.2 

where        5.3a ,''''' 432 kekdkckbaa ++++=
,'4'3'2' 32 kekdkcbb +++=     5.3b 

,'6'3' 2kekdcc ++=      5.3c 
,'4' kedd +=      5.3d 

,'ee =      5.3e 

which gives us our symmetric function.   

If our assumption that the filament is symmetric is correct, the coefficients of the 

odd powers of x, b and d, should be zero.  For the 8 strands analyzed, b became zero as 

expected but d did not.  It did become small, however, and comparing the product dx3 to 

the other terms in equation 5.2, it is a couple orders of magnitude smaller.  So, while the 

odd terms did become small, they did not vanish, meaning that there are slight 

asymmetries in the filament we are analyzing.  Graph 5.1 shows the raw data points and 

the adjusted and unadjusted regressions for the top and bottom of the first strand and 

Graph 5.2 shows the adjusted form of all the strands. 
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Finding a function that fits the endpoint, or dye flake, data was more complicated 

because the functions were very steep and sometimes curved back on themselves.  

Instead of running a regression to find y as a function of x, we were forced to swap the 

axes and solve for x as a function of y.   Again we used a fourth order polynomial fit 

which worked very well for all the data sets ( ).  We chose an endpoint 

function on the left side and one on the right side and found the intersection of these with 

the boundary functions of each strand using a multidimensional form of Newton’s 

method.   

9999.2 ≈R

 

5.2 Conservation of Volume: 

 If our assumption that there can be no flow in the vein because of its high 

viscosity and small diameter is correct, then the volume of oil between the two endpoints 

must remain constant as the filament stretches.  To test this, we chose strand 3 and strand 

6 to compare.  The volume, V, is given by 

∫∫ +==
2

1

22
2

1

2 )(1)(
4

)(
4

x

x

s

s

dx
dx
dyxddssdV ππ ,     5.4 

where s is the arclength coordinate and d is the diameter of the filament.  Here, s should 

be measured along the centerline of the strand but we can approximate it by using the 

function we have along the bottom boundary of the strand because the difference is 

negligible and the error introduced from this is exceedingly small compared to our error 

from other sources, which I will go into more detail further in this section.   

To estimate V, we need an idea of how d varies over x.  We measured the 

diameter of the filament at the endpoints, at x = 0, and at halfway between them along s 

by measuring as close as possible to the perpendicular distance between the top and 

bottom functions (Graph 5.3).  This gives us 5 values of d for both strand 3 and 6.  

Initially we assumed d had the form 
CBxAxd +=)( ,    5.5 

where A is the value of the top function minus the bottom function at x = 0 and then 

solved for B and C.  We did this separately for the right and left side of each strand.  This 

worked very well for strand 3; C on the right was very similar to C on the left (2.635 
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compared to 2.633).  We could not use the same form for d for strand 6 however, because 

we found that d decreased first by a small amount before increasing (Graph 5.4).  This is 

possibly the early stages of the thinning in the region predicted by Mahadevan.  Since 

variations in the diameter are exceedingly small relative to our measurement accuracy, 

this could also be an indication of extended constant diameter in the lower region of the 

strand.  Accordingly, we averaged the middle 3 points and assumed d to be constant until 

the midpoint and then assumed it grew linearly until the endpoint.  So for strand 3 we 

approximated d as having the form of equation 5.5 and for strand 6 as being piecewise, 

constant at first and then linear. 

 Having a value for every term in equation 5.4, we approximate V using Simpson’s 

rule.  Using a step size of .01 for x and integrating the raw data to the endpoints, the 

volume comes out to 3.1  for strand 3 and 3.7  for strand 6. 3mm 3mm

 To estimate the error in V, we moved the endpoints a small but noticeable amount 

to see how it would affect V.  It did not change the value of V significantly.  We would 

have to integrate over about an extra 1.5 mm to make up that much volume, so the bulk of 

the error was not coming from the location of the endpoints.  Looking closely at the data 

points on the image (Fig 5.1), we notice that the raw data is always one or two pixels 

inside the filament; it is not exactly on the boundary.  For strand 3, the top points are too 

low and the bottom points are too high by a little over one pixel each.  For strand 6, the 

top points are too low by about one pixel also, but the bottom points are good.  Therefore, 

we are systematically underestimating the volume for both strands, but are 

underestimating the volume for strand 3 by more.  One pixel corresponds with a length of 

0.027 mm, compared to our diameter values of around 0.42 mm.  For strand 3 this 

corresponds to underestimating by about 28% and for strand 6 by about 12%.  Correcting 

our volumes by that amount, we get that V is approximately 3.96  for strand 3 and 

4.14  for strand 6.  These values are a lot closer than the previous estimate and are 

within uncertainties of each other. 

3mm
3mm
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Figure 5.1: An extreme close up of a piece of strand 3.  The red points are the raw data points and 

the green lines are where the red points should be. 
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5.3 Comparison with the Parabolic Approximation: 
We are comparing the value of h at time τ as predicted by the parabolic 

approximation (Graphs 3.2 and 3.3) with what is observed experimentally.  Our data 

points (y’ and t’) are with respect to an initial y0’ and t0’ which are only estimates of the 

zero points.  So, we need a method of solving for 0'' ttt −=  and 0'' yyy −= , where the 

origin of the unprimed coordinate system corresponds with the initial vertical position 

and the moment when the oil started falling.   

Using our calculation of τ as a function of h, we define a theoretical time tth(h), 

measured in seconds 

)()(
0

h
gL

htth τν
= .          5.6 

We run a regression to find tth(h) as a function of h,  where, 
0L

yh =  is the relative 

height in units of L0. 

Experimentally we have data from Graph 5.2 at intervals of 0.7 seconds 

corresponding to a number of successive values of t’=t+t’0.  From the same graph, we 

have corresponding values of 
0

0

0
exp

''
L

yy
L
yh −
==  for each of the successive images with 

L0 = 29 mm.  From the regression coefficients obtained as in the paragraph immediately 

above we find tth(hexp), and plot tth vs t’.   

A graph of tth against t’ should be linear, assuming that we have calculated hexp, 

and therefore tth(hexp), using the correct value of y’0.  We have accordingly adjusted y’0 to 

the value that makes this graph most nearly linear as illustrated in Graph 5.5 and verified 

that it yields the best linear fit.  Using this value, Graph 5.6 shows the resulting plot of tth 

vs t’ and also provides the intercept correction t’0.  We found our y0 to be 29.60 mm ±. 

0.01mm  and our time shift to be .568 s ±. 0.17s.   

 In order to compare the theoretical timescale with that observed, we would like to 

compare the value of α obtained experimentally (αexp) with the 

theoretical 22.14
9

128
≈=α .  The slope of Graph 5.6 is 1/αexp.  This gives us an 
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experimental α value of 17.81 ±. 0.41 compared with the theoretical value of 14.2.  

Graphing our data and the theoretical predictions on the same graph with the time axis of 

the experimental points adjusted by 1/17.81 and the time axis of the theoretical points 

adjusted by 1/14.2 (Graph 5.7), we see that with this adjustment in the time scale, the 

experimental data fits very well with the theoretical predictions in this range of values of 

h.  In other words, we are seeing the filament evolve at about 25% slower than predicted.    
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6. Conclusions and What is Left for the Future:
 We have collected data in the intermediate regime between small deformations 

and long deformations and have compared it to theory we have developed using a 

parabolic approximation technique that follows and extends the method Brochard-Wyart 

and de Gennes have used to approximate the small deformation regime.  Collecting more 

accurate data or data in a different regime will require better equipment and more precise 

observations. 

We have observed three very different behaviors, “falling,” “breaking,” and “w”, 

of which we only have a qualitative theory for “falling.”  We cannot enter the “breaking” 

or “w” regimes using similar methods to those presented here.  We have assumed that the 

filament has a constant radius for most of our analysis, an assumption which we must 

abandon if we are to make predictions for these more peculiar regimes.  It appears 

evident that these other regimes are governed by the total mass of fluid in the filament.  

Dr. Neil Ribe has written and sent us Fortran code which factors in changes in radius and 

may be able to predict these behaviors.  As of this moment we have yet to have the 

opportunity to run it. 

 As for “falling,” the variational techniques used in our analysis seem to predict 

the behavior fairly well in the region we have observed.  However, the filament begins to 

thin significantly in the region predicted by Teichman and Mahadevan and our 

assumption that the strand has a uniform thickness breaks down for times just beyond our 

observations.  Our parabolic approximation agrees with the behavior predicted by 

Brochard-Wyart and de Gennes for short and long deformations but those also do not 

take into account variations in thickness. 
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